1
|
Garmendia JV, De Sanctis CV, Hajdúch M, De Sanctis JB. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms 2024; 12:1641. [PMID: 39203483 PMCID: PMC11357228 DOI: 10.3390/microorganisms12081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Recurrent Pregnancy Loss (RPL) affects 1-2% of women, and its triggering factors are unclear. Several studies have shown that the vaginal, endometrial, and gut microbiota may play a role in RPL. A decrease in the quantity of Lactobacillus crispatus in local microbiota has been associated with an increase in local (vaginal and endometrial) inflammatory response and immune cell activation that leads to pregnancy loss. The inflammatory response may be triggered by gram-negative bacteria, lipopolysaccharides (LPS), viral infections, mycosis, or atypia (tumor growth). Bacterial structures and metabolites produced by microbiota could be involved in immune cell modulation and may be responsible for immune cell activation and molecular mimicry. Gut microbiota metabolic products may increase the amount of circulating pro-inflammatory lymphocytes, which, in turn, will migrate into vaginal or endometrial tissues. Local pro-inflammatory Th1 and Th17 subpopulations and a decrease in local Treg and tolerogenic NK cells are accountable for the increase in pregnancy loss. Local microbiota may modulate the local inflammatory response, increasing pregnancy success. Analyzing local and gut microbiota may be necessary to characterize some RPL patients. Although oral supplementation of probiotics has not been shown to modify vaginal or endometrial microbiota, the metabolites produced by it may benefit patients. Lactobacillus crispatus transplantation into the vagina may enhance the required immune tolerogenic response to achieve a normal pregnancy. The effect of hormone stimulation and progesterone to maintain early pregnancy on microbiota has not been adequately studied, and more research is needed in this area. Well-designed clinical trials are required to ascertain the benefit of microbiota modulation in RPL.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital Olomouc (FNOL), Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic; (J.V.G.); (M.H.)
- Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
2
|
Zhang Y, He Z. Inflammatory mediators in bacterial vaginosis: The role of cytokines. APMIS 2024; 132:245-255. [PMID: 38345182 DOI: 10.1111/apm.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024]
Abstract
BV is a significant concern in women's health with a varying prevalence rate in different cities of China. The condition has been linked to the acquisition of STIs, including HIV and HPV, and can lead to infertility, adverse obstetric outcomes. We conducted a comprehensive literature search in the PubMed. The search was performed from 01/01/2018 to 01/09/2023. The following search terms were used: bacterial vaginosis and cytokine. We also manually searched the reference lists of included studies and relevant reviews to identify additional articles. The presence of Gardnerella spp. can lead to changes in cytokine levels. The immune system of the female reproductive tract consists of various immune cells and molecules that play a vital role in defending against infections. Cytokines, signaling molecules involved in immune cell recruitment and activation, have been identified as potential biomarkers for diagnosing BV and predicting STIs. Current treatments for BV primarily involve antibiotics, but there is a high recurrence rate posttreatment. BV is a complex condition that affects a significant number of women worldwide. The role of cytokines in the onset, progression, and treatment of BV offers promising avenues for future research and potential diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Yuexin Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhi He
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Xu W, Fang Y, Zhu K. Enterococci facilitate polymicrobial infections. Trends Microbiol 2024; 32:162-177. [PMID: 37550091 DOI: 10.1016/j.tim.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Enterococci are ubiquitous members of the gut microbiota in human beings and animals and are among the most important nosocomial organisms. Due to their opportunistic pathogenicity, enterococci are referred to as pathobionts and play decisive roles in a diverse array of polymicrobial infections. Enterococci can promote the colonization, pathogenesis, and persistence of various pathogens, compromise the efficacy of drugs, and pose a severe threat to public health. Most current treatments tend to focus on the sole pathogenic bacteria, with insufficient attention to the driving role of enterococci. In this review, we summarize the characteristics of enterococci in infections, the factors facilitating their outgrowth, as well as the sites and types of enterococci-associated polymicrobial infections. We present an overview of the underlying mechanisms of enterococci-mediated pathogenesis in polymicrobial infections. Furthermore, we discuss alternative strategies and potential intervention approaches to restrict such infections, shedding light on the discovery and development of new therapies against polymicrobial infections.
Collapse
Affiliation(s)
- Wenjiao Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuwen Fang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Engineering Research Center of Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Ardizzone CM, Taylor CM, Toh E, Lillis RA, Elnaggar JH, Lammons JW, Mott PD, Duffy EL, Shen L, Quayle AJ. Association of Chlamydia trachomatis burden with the vaginal microbiota, bacterial vaginosis, and metronidazole treatment. Front Cell Infect Microbiol 2023; 13:1289449. [PMID: 38149008 PMCID: PMC10750252 DOI: 10.3389/fcimb.2023.1289449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is a common coinfection with Chlamydia trachomatis (Ct), and BV-associated bacteria (BVAB) and their products have been implicated in aiding Ct evade natural immunity. Here, we determined if a non-optimal vaginal microbiota was associated with a higher genital Ct burden and if metronidazole, a standard treatment for BV, would reduce Ct burden or aid in natural clearance of Ct infection. Cervicovaginal samples were collected from women at enrollment and, if testing positive for Ct infection, at a follow-up visit approximately one week later. Cervical Ct burden was assessed by inclusion forming units (IFU) and Ct genome copy number (GCN), and 16S rRNA gene sequencing was used to determine the composition of the vaginal microbiota. We observed a six-log spectrum of IFU and an eight-log spectrum of GCN in our study participants at their enrollment visit, but BV, as indicated by Amsel's criteria, Nugent scoring, or VALENCIA community state typing, did not predict infectious and total Ct burden, although IFU : GCN increased with Amsel and Nugent scores and in BV-like community state types. Ct burden was, however, associated with the abundance of bacterial species in the vaginal microbiota, negatively with Lactobacillus crispatus and positively with Prevotella bivia. Women diagnosed with BV were treated with metronidazole, and Ct burden was significantly reduced in those who resolved BV with treatment. A subset of women naturally cleared Ct infection in the interim, typified by low Ct burden at enrollment and resolution of BV. Abundance of many BVAB decreased, and Lactobacillus increased, in response to metronidazole treatment, but no changes in abundances of specific vaginal bacteria were unique to women who spontaneously cleared Ct infection.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Evelyn Toh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rebecca A. Lillis
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - John W. Lammons
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia Dehon Mott
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Emily L. Duffy
- Department of Medicine, Section of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
5
|
Plummer EL, Sfameni AM, Vodstrcil LA, Danielewski JA, Murray GL, Fehler G, Fairley CK, Garland SM, Chow EPF, Hocking JS, Bradshaw CS. Prevotella and Gardnerella Are Associated With Treatment Failure Following First-line Antibiotics for Bacterial Vaginosis. J Infect Dis 2023; 228:646-656. [PMID: 37427495 PMCID: PMC10469350 DOI: 10.1093/infdis/jiad261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is a common vaginal dysbiosis that often recurs following first-line antibiotics. We investigated if vaginal microbiota composition was associated with BV recurrence. METHODS We analyzed samples and data from 121 women who participated in 3 published trials evaluating novel interventions for improving BV cure, including concurrent antibiotic treatment of regular sexual partners (RSPs). Women diagnosed with BV received first-line antibiotics and self-collected vaginal swabs pretreatment and the day after finishing antibiotics (immediately posttreatment). 16S rRNA gene sequencing was performed on vaginal samples. Logistic regression explored associations between BV recurrence and features of the vaginal microbiota pre- and posttreatment. RESULTS Sixteen women (13% [95% confidence interval {CI}, 8%-21%]) experienced BV recurrence within 1 month of treatment. Women with an untreated RSP were more likely to experience recurrence than women with no RSP (P = .008) or an RSP who received treatment (P = .011). A higher abundance of Prevotella pretreatment (adjusted odds ratio [AOR], 1.35 [95% CI, 1.05-1.91]) and Gardnerella immediately posttreatment (AOR, 1.23 [95% CI, 1.03-1.49]) were associated with increased odds of BV recurrence. CONCLUSIONS Having specific Prevotella spp prior to recommended treatment and persistence of Gardnerella immediately posttreatment may contribute to the high rates of BV recurrence. Interventions that target these taxa are likely required to achieve sustained BV cure.
Collapse
Affiliation(s)
- Erica L Plummer
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Amelia M Sfameni
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Lenka A Vodstrcil
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer A Danielewski
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Gerald L Murray
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Glenda Fehler
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Christopher K Fairley
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
| | - Suzanne M Garland
- Molecular Microbiology, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Women's Centre for Infectious Diseases, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Eric P F Chow
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jane S Hocking
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Catriona S Bradshaw
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Alfred Hospital, Carlton, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Lee CY, Diegel J, France MT, Ravel J, Arnold KB. Evaluation of vaginal microbiome equilibrium states identifies microbial parameters linked to resilience after menses and antibiotic therapy. PLoS Comput Biol 2023; 19:e1011295. [PMID: 37566641 PMCID: PMC10446192 DOI: 10.1371/journal.pcbi.1011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/23/2023] [Accepted: 06/23/2023] [Indexed: 08/13/2023] Open
Abstract
The vaginal microbiome (VMB) is a complex microbial community that is closely tied to reproductive health. Optimal VMB communities have compositions that are commonly defined by the dominance of certain Lactobacillus spp. and can remain stable over time or transition to non-optimal states dominated by anaerobic bacteria and associated with bacterial vaginosis (BV). The ability to remain stable or undergo transitions suggests a system with either single (mono-stable) or multiple (multi-stable) equilibrium states, though factors that contribute to stability have been difficult to determine due to heterogeneity in microbial growth characteristics and inter-species interactions. Here, we use a computational model to determine whether differences in microbial growth and interaction parameters could alter equilibrium state accessibility and account for variability in community composition after menses and antibiotic therapies. Using a global uncertainty and sensitivity analysis that captures parameter sets sampled from a physiologically relevant range, model simulations predicted that 79.7% of microbial communities were mono-stable (gravitate to one composition type) and 20.3% were predicted to be multi-stable (can gravitate to more than one composition type, given external perturbations), which was not significantly different from observations in two clinical cohorts (HMP cohort, 75.2% and 24.8%; Gajer cohort, 78.1% and 21.9%, respectively). The model identified key microbial parameters that governed equilibrium state accessibility, such as the importance of non-optimal anaerobic bacteria interactions with Lactobacillus spp., which is largely understudied. Model predictions for composition changes after menses and antibiotics were not significantly different from those observed in clinical cohorts. Lastly, simulations were performed to illustrate how this quantitative framework can be used to gain insight into the development of new combinatorial therapies involving altered prebiotic and antibiotic dosing strategies. Altogether, dynamical models could guide development of more precise therapeutic strategies to manage BV.
Collapse
Affiliation(s)
- Christina Y. Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jenna Diegel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael T. France
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jacques Ravel
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Qi F, Fan S, Fang C, Ge L, Lyu J, Huang Z, Zhao S, Zou Y, Huang L, Liu X, Liang Y, Zhang Y, Zhong Y, Zhang H, Xiao L, Zhang X. Orally administrated Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 can restore the vaginal health of patients recovering from bacterial vaginosis. Front Immunol 2023; 14:1125239. [PMID: 37575226 PMCID: PMC10415204 DOI: 10.3389/fimmu.2023.1125239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial vaginosis (BV) is a common infection of the lower genital tract with a vaginal microbiome dysbiosis caused by decreasing of lactobacilli. Previous studies suggested that supplementation with live Lactobacillus may benefit the recovery of BV, however, the outcomes vary in people from different regions. Herein, we aim to evaluate the effectiveness of oral Chinese-origin Lactobacillus with adjuvant metronidazole (MET) on treating Chinese BV patients. In total, 67 Chinese women with BV were enrolled in this parallel controlled trial and randomly assigned to two study groups: a control group treated with MET vaginal suppositories for 7 days and a probiotic group treated with oral Lactobacillus gasseri TM13 and Lactobacillus crispatus LG55 as an adjuvant to MET for 30 days. By comparing the participants with Nugent Scores ≥ 7 and < 7 on days 14, 30, and 90, we found that oral administration of probiotics did not improve BV cure rates (72.73% and 84.00% at day 14, 57.14% and 60.00% at day 30, 32.14% and 48.39% at day 90 for probiotic and control group respectively). However, the probiotics were effective in restoring vaginal health after cure by showing higher proportion of participants with Nugent Scores < 4 in the probiotic group compared to the control group (87.50% and 71.43% on day 14, 93.75% and 88.89% on day 30, and 77.78% and 66.67% on day 90). The relative abundance of the probiotic strains was significantly increased in the intestinal microbiome of the probiotic group compared to the control group at day 14, but no significance was detected after 30 and 90 days. Also, the probiotics were not detected in vaginal microbiome, suggesting that L. gasseri TM13 and L. crispatus LG55 mainly acted through the intestine. A higher abundance of Prevotella timonensis at baseline was significantly associated with long-term cure failure of BV and greatly contributed to the enrichment of the lipid IVA synthesis pathway, which could aggravate inflammation response. To sum up, L. gasseri TM13 and L. crispatus LG55 can restore the vaginal health of patients recovering from BV, and individualized intervention mode should be developed to restore the vaginal health of patients recovering from BV. Clinical trial registration https://classic.clinicaltrials.gov/ct2/show/, identifier NCT04771728.
Collapse
Affiliation(s)
- Fengyuan Qi
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Lan Ge
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhuoqi Huang
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaowei Zhao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongke Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiyi Zhong
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- ShenZhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen Peking University Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
8
|
Qin H, Jiao J, A D, Hua M, Han K, Du H, Wang Z, Li J, Zhang D, Xiao B, Chen C. Single-Molecule Approach to 16S rRNA for Vaginal Microbiome Signatures in Response to Metronidazole Treatment. Microbiol Spectr 2023; 11:e0170622. [PMID: 37199621 PMCID: PMC10269914 DOI: 10.1128/spectrum.01706-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Bacterial vaginosis (BV) is the most common infection of the lower reproductive tract among women of reproductive age, characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Metronidazole has been recommended as a first-line therapy for treating BV for decades. Although most cases are cured by the treatment, recurrent infections of BV seriously affect women's reproductive health. Until now, limited information on the vaginal microbiota has been explored at the species level. Here, we adopted a single molecular sequencing approach for the 16S rRNA gene, named FLAST (full-length assembly sequencing technology), to analyze the human vaginal microbiota that improved species-level resolution for taxonomy and identified microbiota alterations in the vaginal tract in response to treatment with metronidazole. Appling high-throughput sequencing, we identified 96 and 189 novel full-length 16S rRNA gene sequences in Lactobacillus and Prevotella, respectively, which had not previously been reported in vaginal samples. Moreover, we found that Lactobacillus iners was significantly enriched in the cured group before metronidazole treatment, and that was maintained in a high frequency after the treatment, suggesting an important role for this species in response to metronidazole treatment. Our research also highlights the importance of the single-molecule paradigm for progressing the field of microbiology and applying these insights to better understand the dynamic microbiota during BV treatment. Subsequent novel treatment approaches should be proposed to improve BV treatment outcomes, optimize the vaginal microbiome, and reduce gynecological and obstetric sequelae. IMPORTANCE Bacterial vaginosis (BV) is a common infectious disease of the reproductive tract. Metronidazole treatment, as the first line of treatment, frequently fails at recovery of the microbiome. However, the precise types of Lactobacillus and other bacteria involved in BV remain unclear, and this has resulted in a failure to identify potential markers to predict clinic outcomes. In this study, we adopted a 16S rRNA gene full-length assembly sequencing technology for the taxonomy analysis and evaluation of vaginal microbiota before and after treatment with metronidazole. We additionally identified 96 and 189 novel 16S rRNA gene sequences in Lactobacillus and Prevotella species, respectively, in vaginal samples, which improves our understanding of the vaginal microbiota. Moreover, we found that the abundance of Lactobacillus iners and Prevotella bivia before treatment was associated with a lack of cure. These potential biomarkers will help to facilitate future studies aimed at improving BV treatment outcomes, optimize the vaginal microbiome, and reduce adverse sexual and reproductive outcomes.
Collapse
Affiliation(s)
- Hanyu Qin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Disi A
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kai Han
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Haonan Du
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Zhen Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dai Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep 2023; 25:67-75. [PMID: 37234911 PMCID: PMC10209668 DOI: 10.1007/s11908-023-00798-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 03/09/2023]
Abstract
Purpose of review Vaginal lactobacilli are recognized as important drivers of genital health including protection against bacterial vaginosis and sexually transmitted infections. Lactobacillus iners is distinct from L. crispatus, L. gasseri, and L. jensenii by its high global prevalence in vaginal microbiomes, relatively small genome, production of only L-lactic acid, and inconsistent associations with genital health outcomes. In this review, we summarize our current understanding of the role of L. iners in the vaginal microbiome, highlight the importance of strain-level consideration for this species, and explain that while marker gene-based characterization of the composition of the vaginal microbiota does not capture strain-level resolution, whole metagenome sequencing can aid in expanding our understanding of this species in genital health. Recent findings L. iners exists in the vaginal microbiome as a unique combination of strains. The functional repertoires of these strain combinations are likely wide and contribute to the survival of this species in a variety of vaginal microenvironments. In published studies to date, strain-specific effects are aggregated and may yield imprecise estimates of risk associated with this species. Summary The worldwide high prevalence of Lactobacillus iners warrants more research into its functional roles in the vaginal microbiome and how it may directly impact susceptibility to infections. By incorporating strain-level resolution into future research endeavors, we may begin to appreciate L. iners more thoroughly and identify novel therapeutic targets for a variety of genital health challenges.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Kayla A. Carter
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland
School of Medicine, Baltimore, MD, USA
- Department of Epidemiology and Public Health, University of
Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Armstrong E, Hemmerling A, Joag V, Huibner S, Kulikova M, Crawford E, Castañeda GR, Anzala O, Obila O, Shahabi K, Ravel J, Coburn B, Cohen CR, Kaul R. Treatment Success Following Standard Antibiotic Treatment for Bacterial Vaginosis Is Not Associated With Pretreatment Genital Immune or Microbial Parameters. Open Forum Infect Dis 2023; 10:ofad007. [PMID: 36726539 PMCID: PMC9887266 DOI: 10.1093/ofid/ofad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Background Bacterial vaginosis (BV) is a proinflammatory genital condition associated with adverse reproductive health outcomes, including increased HIV incidence. However, BV recurrence rates are high after standard antibiotic treatment. While the composition of the vaginal microbiota before BV treatment may be linked to BV recurrence, it is unclear whether the preceding genital immune milieu is predictive of treatment success. Methods Here we assessed whether baseline vaginal soluble immune factors or the composition of the vaginal microbiota predicted treatment success 1 month after metronidazole treatment in 2 separate cohorts of women with BV, 1 in the United States and 1 in Kenya; samples within 48 hours of BV treatment were also available for the US cohort. Results Neither soluble immune factors nor the composition of the vaginal microbiota before BV treatment was associated with treatment response in either cohort. In the US cohort, although the absolute abundances of key vaginal bacterial taxa pretreatment were not associated with treatment response, participants with sustained BV clearance had a more pronounced reduction in the absolute abundance of Gardnerella vaginalis immediately after treatment. Conclusions Pretreatment immune and microbial parameters were not predictive of BV treatment success in these clinical cohorts.
Collapse
Affiliation(s)
- Eric Armstrong
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| | - Anke Hemmerling
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Kulikova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Emily Crawford
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | | | - Omu Anzala
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Onyango Obila
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kamnoosh Shahabi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bryan Coburn
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Rupert Kaul
- Correspondence: Eric Armstrong, BSc, 1 King’s College Circle, Room 6356 Toronto, ON, Canada M5S 1A8 (); or Rupert Kaul, MD, PhD, 1 King’s College Circle, Room 6356, Toronto, ON, Canada M5S 1A8 ()
| |
Collapse
|
11
|
Cerca N. Addressing the challenges with bacterial vaginosis pharmacotherapy. Expert Opin Pharmacother 2023; 24:11-13. [PMID: 35635516 DOI: 10.1080/14656566.2022.2082285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal.,LABBELS -Associate Laboratory, Braga, Portugal
| |
Collapse
|
12
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
13
|
Assessing the Cervicovaginal Microbiota in the Context of hrHPV Infections: Temporal Dynamics and Therapeutic Strategies. mBio 2022; 13:e0161922. [PMID: 35980030 PMCID: PMC9600249 DOI: 10.1128/mbio.01619-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer is the third leading cause of female cancers globally, resulting in more than 300,000 deaths every year. The majority of all cervical cancers are caused by persistent infections with high-risk human papillomaviruses (hrHPV) that can progress to cancer via a series of premalignant lesions. Most women, however, clear this infection within a year, concomitant with disease regression. Both hrHPV clearance and disease regression have been associated with the composition of the cervicovaginal microenvironment, which is defined by the host immune system and the cervicovaginal microbiome (CVM). A healthy microbiome is generally characterized by a high abundance of Lactobacillus species, and a change in the composition may cause bacterial vaginosis (BV), which is associated with an increased susceptibility to persistent hrHPV infections and disease. In this review, the composition of the CVM is discussed, with emphasis on the possible causes that drive changes in the cervicovaginal microbiota in relation to hrHPV infections, disease progression, and disease regression. The literature search focused on the composition of the CVM and its correlation with hrHPV infections and neoplastic lesions as well as the current efforts to adjust the microbiome against adverse viral outcomes.
Collapse
|
14
|
Vaginal Microbiome in Reproductive Medicine. Diagnostics (Basel) 2022; 12:diagnostics12081948. [PMID: 36010298 PMCID: PMC9406911 DOI: 10.3390/diagnostics12081948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The human microbiome has been given increasing importance in recent years. The establishment of sequencing-based technology has made it possible to identify a large number of bacterial species that were previously beyond the scope of culture-based technologies. Just as microbiome diagnostics has emerged as a major point of focus in science, reproductive medicine has developed into a subject of avid interest, particularly with regard to causal research and treatment options for implantation failure. Thus, the vaginal microbiome is discussed as a factor influencing infertility and a promising target for treatment options. The present review provides an overview of current research concerning the impact of the vaginal microbiome on the outcome of reproductive measures. A non-Lactobacillus-dominated microbiome was shown to be associated with dysbiosis, possibly even bacterial vaginosis. This imbalance has a negative impact on implantation rates in assisted reproductive technologies and may also be responsible for habitual abortions. Screening of the microbiome in conjunction with antibiotic and/or probiotic treatment appears to be one way of improving pregnancy outcomes.
Collapse
|
15
|
Mollin A, Katta M, Sobel JD, Akins RA. Association of key species of vaginal bacteria of recurrent bacterial vaginosis patients before and after oral metronidazole therapy with short- and long-term clinical outcomes. PLoS One 2022; 17:e0272012. [PMID: 35901180 PMCID: PMC9333308 DOI: 10.1371/journal.pone.0272012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial vaginosis (BV) is associated with a state of vaginal dysbiosis typically involving depletion of otherwise dominant populations of Lactobacillus. The causes of this microbial succession are not known; there may be multiple causes. Standard treatment includes oral metronidazole, which typically restores Lactobacillus species to dominance. However, recurrence rates are high; recurrent BV patients recur 3–4 times annually and are often refractory to treatment. Our previous qPCR-based study of recurrent BV patients pointed to putatively more virulent species of Gardnerella that were associated with refractory responses to oral metronidazole, and less robust recovery of Lactobacillus species associated with recurrence after an initial period of remission. However, these associations did not account for outcomes in all patients, suggesting that other bacterial species were involved. In this follow-up study, we sequenced the V4 domain of 16S rRNA sequences of 41of these same patients pre- and posttreatment. Overall compositions among pretreatment clinical outcome groups were not different, although alpha diversity significantly decreased: refractory > recurrent > remission. Combinations of key species were associated with and prognostic for outcome. Higher pretreatment abundance of Megasphaera lornae together with lower abundance of Gardnerella Gsp07 and Finegoldia magna predicted long term remission after oral metronidazole. Furthermore, a subset of refractory patients that did not have high levels of Gardnerella Gsp07, instead had elevated levels of alternative species including Atopobium vaginae, Mageeibacillus indolicus (BVAB3), and Prevotella timonensis. Patients who recurred after transient remission had elevated abundance of species including Atopobium vaginae, Gardnerella, and Aerococcus christensenii, compared to long-term remission patients. Core bacterial species among refractory patients did not change in abundance after metronidazole, suggesting resistance or tolerance, in contrast to the loss in abundance of the same species among recurrent or remission patients. These findings have potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Ashomathi Mollin
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mounika Katta
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jack D. Sobel
- Division of Infectious Diseases, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Robert A. Akins
- Department of Biochemistry, Microbiology, & Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Towards a deeper understanding of the vaginal microbiota. Nat Microbiol 2022; 7:367-378. [PMID: 35246662 DOI: 10.1038/s41564-022-01083-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
The human vaginal microbiota is a critical determinant of vaginal health. These communities live in close association with the vaginal epithelium and rely on host tissues for resources. Although often dominated by lactobacilli, the vaginal microbiota is also frequently composed of a collection of facultative and obligate anaerobes. The prevalence of these communities with a paucity of Lactobacillus species varies among women, and epidemiological studies have associated them with an increased risk of adverse health outcomes. The mechanisms that drive these associations have yet to be described in detail, with few studies establishing causative relationships. Here, we review our current understanding of the vaginal microbiota and its connection with host health. We centre our discussion around the biology of the vaginal microbiota when Lactobacillus species are dominant versus when they are not, including host factors that are implicated in shaping these microbial communities and the resulting adverse health outcomes. We discuss current approaches to modulate the vaginal microbiota, including probiotics and vaginal microbiome transplants, and argue that new model systems of the cervicovaginal environment that incorporate the vaginal microbiota are needed to progress from association to mechanism and this will prove invaluable for future research.
Collapse
|
17
|
Zhao C, Chen Y, Gao L, Huang J, Yang X, Pei L, Ye Z, Zhu L. Acidic Electrolyzed Water Inhibits the Viability of Gardnerella spp. via Oxidative Stress Response. Front Med (Lausanne) 2022; 9:817957. [PMID: 35280911 PMCID: PMC8916223 DOI: 10.3389/fmed.2022.817957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The vaginal microbiota, dominated by Lactobacilli, plays an important role in maintaining women's health. Disturbance of the vaginal microbiota allows infection by various pathogens such as Gardnerella spp. (GS) and related anaerobic bacteria resulting in bacterial vaginosis (BV). At present, the treatment options for BV are extremely limited. Treatment of antibacterial drugs and vaginal acidification are the two primary therapeutic methods. Acid electrolyzed water (AEW) is known to inactivate microorganisms and is considered a medical application in recent years. Studies have found that Lactobacillus acidophilus (LA) probiotics helps to inhibit GS-induced BV. Our study took GS and LA as the research object, which aims to explore AEW as a potential alternative therapy for BV and its underlying mechanisms. We first obtained the pH of AEW (3.71–4.22) close to normal vaginal pH (3.8–4.5) to maintain normal vaginal acidification conditions. Plate counting experiments showed that AEW (pH: 4.07, ORP: 890.67, ACC: 20 ppm) (20 ppm) could better inhibit the viability of GS but had a more negligible effect on LA. Then, we preliminarily explored the possible mechanism of AEW anti-GS using cell biology experiments and transmission electron microscopy. Results showed that the membrane permeability was significantly increased and the integrity of cell membrane was destroyed by AEW in GS than those in LA. AEW also caused protein leakage and cell lysis in GS without affecting LA. Meanwhile, AEW induced a number of reactive oxygen species (ROS) production in GS, with no obvious LA changes. Finally, we found that 20 ppm AEW exhibited excellent antibacterial effect on the vaginal secretions of women diagnosed with BV by Amsel criteria and sialic acid plum method. Taken together, our findings manifest that 20 ppm AEW has an excellent antibacterial effect in GS with less effect on LA, which might be expected to become a potential therapy for BV.
Collapse
Affiliation(s)
- Chongyu Zhao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jue Huang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiurou Yang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Luowei Pei
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhangying Ye
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Zhangying Ye
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Linyan Zhu
| |
Collapse
|
18
|
Zheng N, Guo R, Wang J, Zhou W, Ling Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol 2021; 11:792787. [PMID: 34881196 PMCID: PMC8645935 DOI: 10.3389/fcimb.2021.792787] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus iners, first described in 1999, is a prevalent bacterial species of the vaginal microbiome. As L. iners does not easily grow on de Man-Rogosa-Sharpe agar, but can grow anaerobically on blood agar, it has been initially overlooked by traditional culture methods. It was not until the wide application of molecular biology techniques that the function of L. iners in the vaginal microbiome was carefully explored. L. iners has the smallest genome among known Lactobacilli and it has many probiotic characteristics, but is partly different from other major vaginal Lactobacillus species, such as L. crispatus, in contributing to the maintenance of a healthy vaginal microbiome. It is not only commonly present in the healthy vagina but quite often recovered in high numbers in bacterial vaginosis (BV). Increasing evidence suggests that L. iners is a transitional species that colonizes after the vaginal environment is disturbed and offers overall less protection against vaginal dysbiosis and, subsequently, leads to BV, sexually transmitted infections, and adverse pregnancy outcomes. Accordingly, under certain conditions, L. iners is a genuine vaginal symbiont, but it also seems to be an opportunistic pathogen. Further studies are necessary to identify the exact role of this intriguing species in vaginal health and diseases.
Collapse
Affiliation(s)
- Nengneng Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renyong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Jinxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|