1
|
Jagadale S, Damle M, Joshi MG. Bone Tissue Engineering: From Biomaterials to Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39881051 DOI: 10.1007/5584_2024_841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response. Growth factors like bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are utilized to accelerate bone regeneration. Clinical applications include treating nonunion and mal-union fractures, osteonecrosis, orthopedic surgery, dental applications, and spinal cord injuries. Recent advances in the field include nanotechnology, 3D printing, bioprinting techniques, gene editing technologies, and microfluidic devices for drug testing. However, challenges remain, such as standardization of protocols, large-scale biomaterial production, personalized medicine approaches, cost-effectiveness, and regulatory issues. Current clinical trials are investigating the safety and efficacy of various bone tissue engineering approaches, with the potential to modernize patient care by providing more adequate treatments for bone defects and injuries.
Collapse
Affiliation(s)
- Swapnali Jagadale
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Mrunal Damle
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
- Stem Plus Biotech, Sangli, India.
| |
Collapse
|
2
|
Duan Y, Li L, Hu J, Zheng B, He K. Engineering Gas-Releasing Nanomaterials for Efficient Wound Healing. Chembiochem 2024:e202400790. [PMID: 39592412 DOI: 10.1002/cbic.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
The escalating prevalence of tissue damage and its associated complications has elicited global apprehension. While nanomaterial-based wound healing exhibits significant potential in terms of curbing infections and surpassing conventional methods, unresolved concerns regarding nanomaterial controllability and precision remain unresolved, jeopardizing its practical applications. In recent years, a unique strategy for creating gas-releasing nanomaterials for wound repair has been proposed, involving the creation of gas-releasing nanomaterials to facilitate wound repair by generating gas donor moieties. The operational spatiotemporal responsiveness and broad-spectrum antibacterial properties of these gases, combined with their inability to generate bacterial resistance like traditional antibiotics, establish their efficacy in addressing chronic non-healing wounds, specifically diabetic foot ulcers (DFUs). In this review, we delve into the intricacies of wound healing process, emphasizing the chemical design, functionality, bactericidal activity, and potential of gas-release materials, encompassing NO, CO, H2S, O2, CO2, and H2, for effective wound healing. Furthermore, we explore the advancements in synergistic therapy utilizing these gases, aiming to enhance our overall comprehension of this field. The insights gleaned from this review will undoubtedly aid researchers and developers in the creation of promising gas-releasing nanomaterials, thus propelling efficient wound healing in the future.
Collapse
Affiliation(s)
- Yutian Duan
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing, 210048, China
| | - Lei Li
- China Petroleum & Chemical Corporation, Beijing, 100728, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| |
Collapse
|
3
|
Hou J, Wei W, Geng Z, Zhang Z, Yang H, Zhang X, Li L, Gao Q. Developing Plant Exosomes as an Advanced Delivery System for Cosmetic Peptide. ACS APPLIED BIO MATERIALS 2024; 7:3050-3060. [PMID: 38598772 DOI: 10.1021/acsabm.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptides are a promising skincare ingredient, but due to their inherent instability and the barrier function of the skin's surface, they often have limited skin absorption and penetration, which can significantly hinder their skincare benefits. To address this, a novel technique called NanoGlow has been introduced for encapsulating peptide-based cosmetic raw materials into engineered nanosized plant-derived exosomes (pExo) to achieve the goal of a healthier and more radiant skin state. In this approach, pExo served as carriers for cosmetic peptides across the intact skin barrier, enhancing their biological effectiveness in skin beauty. The NanoGlow strategy combines chemical activation and physical proencapsulation, boasting a high success rate and straightforward and stable operation, making it suitable for large-scale production. Comprehensive analysis using in vitro cellular absorption and skin penetration models has demonstrated that the nanosized pExo carriers significantly improve peptide penetration into the skin compared to free peptides. Furthermore, in vivo tissue slice studies have shown that pExo carriers efficiently deliver acetyl hexapeptide-8 to the skin's dermis, surpassing the performance of free peptides. Cosmetic skincare effect analysis has also indicated that pExo-loaded cosmetic peptides deliver superior results. Therefore, the NanoGlow technique harnesses the natural size and properties of pExo to maximize the bioavailability of cosmetic peptides, holding great promise for developing advanced peptide delivery systems in both the cosmetic and medical drug industries.
Collapse
Affiliation(s)
- Jiali Hou
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Wei Wei
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Zaijun Geng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenxing Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Hui Yang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Xuhui Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Gao
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| |
Collapse
|
4
|
Borràs DM, Verbandt S, Ausserhofer M, Sturm G, Lim J, Verge GA, Vanmeerbeek I, Laureano RS, Govaerts J, Sprooten J, Hong Y, Wall R, De Hertogh G, Sagaert X, Bislenghi G, D'Hoore A, Wolthuis A, Finotello F, Park WY, Naulaerts S, Tejpar S, Garg AD. Single cell dynamics of tumor specificity vs bystander activity in CD8 + T cells define the diverse immune landscapes in colorectal cancer. Cell Discov 2023; 9:114. [PMID: 37968259 PMCID: PMC10652011 DOI: 10.1038/s41421-023-00605-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023] Open
Abstract
CD8+ T cell activation via immune checkpoint blockade (ICB) is successful in microsatellite instable (MSI) colorectal cancer (CRC) patients. By comparison, the success of immunotherapy against microsatellite stable (MSS) CRC is limited. Little is known about the most critical features of CRC CD8+ T cells that together determine the diverse immune landscapes and contrasting ICB responses. Hence, we pursued a deep single cell mapping of CRC CD8+ T cells on transcriptomic and T cell receptor (TCR) repertoire levels in a diverse patient cohort, with additional surface proteome validation. This revealed that CRC CD8+ T cell dynamics are underscored by complex interactions between interferon-γ signaling, tumor reactivity, TCR repertoire, (predicted) TCR antigen-specificities, and environmental cues like gut microbiome or colon tissue-specific 'self-like' features. MSI CRC CD8+ T cells showed tumor-specific activation reminiscent of canonical 'T cell hot' tumors, whereas the MSS CRC CD8+ T cells exhibited tumor unspecific or bystander-like features. This was accompanied by inflammation reminiscent of 'pseudo-T cell hot' tumors. Consequently, MSI and MSS CRC CD8+ T cells showed overlapping phenotypic features that differed dramatically in their TCR antigen-specificities. Given their high discriminating potential for CD8+ T cell features/specificities, we used the single cell tumor-reactive signaling modules in CD8+ T cells to build a bulk tumor transcriptome classification for CRC patients. This "Immune Subtype Classification" (ISC) successfully distinguished various tumoral immune landscapes that showed prognostic value and predicted immunotherapy responses in CRC patients. Thus, we deliver a unique map of CRC CD8+ T cells that drives a novel tumor immune landscape classification, with relevance for immunotherapy decision-making.
Collapse
Affiliation(s)
- Daniel Morales Borràs
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Markus Ausserhofer
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Gil Arasa Verge
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rebecca Wall
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Sagaert
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Gabriele Bislenghi
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Francesca Finotello
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Stefan Naulaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Abhishek D Garg
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Baetz N, Labroo P, Ifediba M, Miller D, Stauffer K, Sieverts M, Nicodemus-Johnson J, Chan E, Robinson I, Miess J, Roth S, Irvin J, Laun J, Mundinger G, Granick MS, Milner S, Garrett C, Li WW, Swanson EW, Smith DJ, Sopko NA. Evaluation in a porcine wound model and long-term clinical assessment of an autologous heterogeneous skin construct used to close full-thickness wounds. Tissue Cell 2023; 83:102126. [PMID: 37295271 DOI: 10.1016/j.tice.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Acute and chronic wounds involving deeper layers of the skin are often not adequately healed by dressings alone and require therapies such as skin grafting, skin substitutes, or growth factors. Here we report the development of an autologous heterogeneous skin construct (AHSC) that aids wound closure. AHSC is manufactured from a piece of healthy full-thickness skin. The manufacturing process creates multicellular segments, which contain endogenous skin cell populations present within hair follicles. These segments are physically optimized for engraftment within the wound bed. The ability of AHSC to facilitate closure of full thickness wounds of the skin was evaluated in a swine model and clinically in 4 patients with wounds of different etiologies. Transcriptional analysis demonstrated high concordance of gene expression between AHSC and native tissues for extracellular matrix and stem cell gene expression panels. Swine wounds demonstrated complete wound epithelialization and mature stable skin by 4 months, with hair follicle development in AHSC-treated wounds evident by 15 weeks. Biomechanical, histomorphological, and compositional analysis of the resultant swine and human skin wound biopsies demonstrated the presence of epidermal and dermal architecture with follicular and glandular structures that are similar to native skin. These data suggest that treatment with AHSC can facilitate wound closure.
Collapse
Affiliation(s)
- Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Pratima Labroo
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Devin Miller
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Kendall Stauffer
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Michael Sieverts
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | | | - Eric Chan
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Ian Robinson
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Jenny Irvin
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Jake Laun
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Gerhard Mundinger
- Department of Surgery, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Mark S Granick
- Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stephen Milner
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | | | - Edward W Swanson
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA
| | - David J Smith
- Department of Plastic Surgery, University of South Florida, Tampa, FL, USA
| | - Nikolai A Sopko
- Department of Research and Development, PolarityTE MD, Inc., Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Morozov AM, Sergeev AN, Sungurova AV, Morozov DV, Belyak MA, Domracheva AS. Computer simulation of the wound process (review of literature). BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2023.1.ictm.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Relevance. Computer simulation is a mathematical modeling process performed on a computer that is designed to predict the behavior or results of a real or physical system. Computer simulation has a number of advantages over classical models of animal experiments: the cheapness of the method (the need to acquire and maintain animals disappears by itself), the speed of obtaining results, the absence of bioethical problems, the ability to change the conditions of the experiment, etc.he purpose of this study is to review the methods of computer simulation of the wound process, to identify the shortcomings of the models and propose ways to solve them, as well as to select the best existing model for describing wound regeneration.Material and methods. In the course of this work, an analysis was made of foreign and domestic literature on the problem of computer modeling of the wound process.Results. After analyzing the relevant literature on this topic, the problem is seen precisely in the insufficiently studied process of wound regeneration, since many different cells, cytokines, growth factors, enzymes, fibrillar proteins, etc. take part in it. The models that currently exist describe wound regeneration only in an extremely generalized way, which does not allow us to apply them in clinical situations. Analyzing literature sources, we came to the conclusion that both numerical approaches, both cellular-biochemical (the first type of models) and phenomenological (the second type) are applicable in the case of wound modeling and can be used very successfully. The problem is that on the basis of one approach it is impossible to display a complete picture of wound healing, in this way it is possible to predict only individual regeneration parameters necessary for certain purposes due to the complexity and versatility of this typical pathophysiological process.Conclusion. Computer modeling of wounds is still a controversial and complex topic. Existing models are not intended to describe all the processes occurring in a healing wound. It is much more productive to describe the various phenomena during healing separately. This is due to the fact that many elements are involved in the regeneration of the skin, which are almost impossible to take into account in full. The available models are of exclusively scientific value, consisting in attempts to understand all complex processes and interactions. Practical application is difficult, since existing models require specific input data that require highly specialized equipment. If we abstract from all this, then the best existing model of the first type is the model of the authors Yangyang Wang, Christian F. Guerrero-Juarez, Yuchi Qiu and co-authors, in addition to it, any of the described phenomenological models will do.
Collapse
|
7
|
Novel Physically Cross-Linked Curcumin-Loaded PVA/Aloe vera Hydrogel Membranes for Acceleration of Topical Wound Healing: In Vitro and In Vivo Experiments. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThis study aims to prepare novel cross-linked antimicrobial membranes composed of PVA-Aloe vera hydrogels using novel physically cross-linked method via transforming PVA to high crystalline structure using propanol. Curcumin was incorporated to improve the membrane biological properties; while gentamycin improved sharply antimicrobial properties. PVA-Aloe vera hydrogel membranes were analyzed by FTIR, SEM, XRD and TGA measurements for characterizing resultant cross-linked membranes. Physicochemical measurements, e.g., swelling and mechanical stability were assessed for further studying the dressings. Antibacterial activity of cross-linked PVA-Aloe vera-curcumin membranes was tested using five bacterial strains. Results showed that high Aloe vera content in cross-linked membranes has insignificant impact on the release of gentamicin. Adult Wister Albino rats were used to test membrane’s ability for improving the wound healing rate in vivo. In vivo findings showed that PVA/Aloe vera/curcumin membranes dramatically reduced the size of mouse full-thickness wounds, as indicated by a decrease in the wound size. Furthermore, histological tests of wounds dressed with membranes revealed a significant re-epithelialization; compared to wounds treated with cotton gauze and PVA/Aloe vera dressings without curcumin, showing curcumin’s efficacy. These results refer to PVA-Aloe vera-curcumin membrane has exceptional wound healing and skin regeneration capacity.
Collapse
|
8
|
Signaling Pathways Associated with Chronic Wound Progression: A Systems Biology Approach. Antioxidants (Basel) 2022; 11:antiox11081506. [PMID: 36009225 PMCID: PMC9404828 DOI: 10.3390/antiox11081506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Previously we have shown that several oxidative stress-driven pathways in cutaneous chronic wounds are dysregulated in the first 48 h post-wounding. Here, we performed an RNASeq analysis of tissues collected up to day 20 after wounding, when we have determined full chronicity is established. Weighted Gene Correlation Network Analysis was performed in R segregating the genes into 14 modules. Genes in the modules significantly correlated (p < 0.05) to early and full chronicity were used for pathway analysis using pathfindR. In early chronicity, we observed enrichment of several pathways. Dysregulation of Ephrin/Eph signaling leads to growth cone collapse and impairs neuronal regeneration. Adra2b and Adra2a overexpression in early and full chronicity, respectively, decreased cAMP production and impaired re-epithelialization and granulation tissue formation. Several pathways involving a Smooth-muscle-actin (Acta1) were also enriched with Acta1 overexpression contributing to impaired angiogenesis. During full chronicity, the ‘JAK-STAT’ pathway was suppressed undermining host defenses against infection. Wnt signaling was also suppressed, impairing re-epithelialization and granulation tissue formation. Biomarkers of cancer such as overexpression of SDC1 and constitutive activation of ErbB2/HER2 were also identified. In conclusion, we show that during progression to full chronicity, numerous signaling pathways are dysregulated, including some related to carcinogenesis, suggesting that chronic wounds behave much like cancer. Experimental verification in vivo could identify candidates for treatment of chronic wounds.
Collapse
|
9
|
Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-Based Regenerative Strategies for Skin Tissue Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2069-2106. [PMID: 35451829 DOI: 10.1021/acsabm.2c00035] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin tissue wound healing proceeds through four major stages, including hematoma formation, inflammation, and neo-tissue formation, and culminates with tissue remodeling. These four steps significantly overlap with each other and are aided by various factors such as cells, cytokines (both anti- and pro-inflammatory), and growth factors that aid in the neo-tissue formation. In all these stages, advanced biomaterials provide several functional advantages, such as removing wound exudates, providing cover, transporting oxygen to the wound site, and preventing infection from microbes. In addition, advanced biomaterials serve as vehicles to carry proteins/drug molecules/growth factors and/or antimicrobial agents to the target wound site. In this review, we report recent advancements in biomaterials-based regenerative strategies that augment the skin tissue wound healing process. In conjunction with other medical sciences, designing nanoengineered biomaterials is gaining significant attention for providing numerous functionalities to trigger wound repair. In this regard, we highlight the advent of nanomaterial-based constructs for wound healing, especially those that are being evaluated in clinical settings. Herein, we also emphasize the competence and versatility of the three-dimensional (3D) bioprinting technique for advanced wound management. Finally, we discuss the challenges and clinical perspective of various biomaterial-based wound dressings, along with prospective future directions. With regenerative strategies that utilize a cocktail of cell sources, antimicrobial agents, drugs, and/or growth factors, it is expected that significant patient-specific strategies will be developed in the near future, resulting in complete wound healing with no scar tissue formation.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ganesh Narayanan
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Deepa Garg
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Abhay Sachdev
- Materials Science and Sensor Applications, Central Scientific Instruments Organization, Chandigarh 160030, India
| | - Ishita Matai
- Department of Biotechnology, School of Biological Sciences, Amity University Punjab, Mohali 140306, India
| |
Collapse
|
10
|
Basu P, Kim JH, Saeed S, Martins-Green M. Using systems biology approaches to identify signalling pathways activated during chronic wound initiation. Wound Repair Regen 2021; 29:881-898. [PMID: 34536049 DOI: 10.1111/wrr.12963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.
Collapse
Affiliation(s)
- Proma Basu
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Jane Hannah Kim
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Shayan Saeed
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | | |
Collapse
|
11
|
Paskal W, Kopka M, Stachura A, Paskal AM, Pietruski P, Pełka K, Woessner AE, Quinn KP, Galus R, Wejman J, Włodarski P. Single Dose of N-Acetylcysteine in Local Anesthesia Increases Expression of HIF1α, MAPK1, TGFβ1 and Growth Factors in Rat Wound Healing. Int J Mol Sci 2021; 22:8659. [PMID: 34445365 PMCID: PMC8395485 DOI: 10.3390/ijms22168659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, we aimed to investigate the influence of N-acetylcysteine (NAC) on the gene expression profile, neoangiogenesis, neutrophils and macrophages in a rat model of incisional wounds. Before creating wounds on the backs of 24 Sprague-Dawley rats, intradermal injections were made. Lidocaine-epinephrin solutions were supplemented with 0.015%, 0.03% or 0.045% solutions of NAC, or nothing (control group). Scars were harvested on the 3rd, 7th, 14th and 60th day post-surgery. We performed immunohistochemical staining in order to visualize macrophages (anti-CD68), neutrophils (anti-MPO) and newly formed blood vessels (anti-CD31). Additionally, RT-qPCR was used to measure the relative expression of 88 genes involved in the wound healing process. On the 14th day, the number of cells stained with anti-CD68 and anti-CD31 antibodies was significantly larger in the tissues treated with 0.03% NAC compared with the control. Among the selected genes, 52 were upregulated and six were downregulated at different time points. Interestingly, NAC exerted a significant effect on the expression of 45 genes 60 days after its administration. In summation, a 0.03% NAC addition to the pre-incisional anesthetic solution improves neovasculature and increases the macrophages' concentration at the wound site on the 14th day, as well as altering the expression of numerous genes that are responsible for the regenerative processes.
Collapse
Affiliation(s)
- Wiktor Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adriana M. Paskal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Piotr Pietruski
- Centre of Postgraduate Medical Education, Department of Replantation and Reconstructive Surgery, Gruca Teaching Hospital, 05-400 Otwock, Poland;
| | - Kacper Pełka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.E.W.); (K.P.Q.)
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Jarosław Wejman
- Department of Pathology, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland;
| | - Paweł Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (A.S.); (A.M.P.); (K.P.); (P.W.)
| |
Collapse
|
12
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
13
|
Dermal fibroblast cells interactions with single and triple bacterial-species biofilms. Mol Biol Rep 2021; 48:3393-3404. [PMID: 34009564 DOI: 10.1007/s11033-021-06391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Polymicrobial biofilm leads to wound healing delay. We set up an in vitro co-culture model of single- and triple-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis with dermal fibroblast to assess the fibroblast response against to the different biofilms. Scratch and viability assays and biofilm cell quantifications were performed by WST-1, CLSM and plating method, respectively. Quorum sensing-related gene expression levels in P. aeruginosa and E. faecalis were analysed by reverse-transcriptase PCR. The immune responses of cells against S. aureus, P. aeruginosa and E. faecalis biofilms were measured by cytokine and matrix metalloproteinase analyzes. The influence of biofilm soluble factors on fibroblasts was also determined. After 24 h, triple-species biofilm cells caused the removal of the fibroblasts from the surfaces indicating the negative synergistic effect of three species. After co-cultures, twenty-five cytokines were significantly increased in fibroblast cells compared to control. Compared to other strains, the most important cytokine, chemokine and growth factors increased was observed in P. aeruginosa co-cultures with fibroblast. While the expressions of fsrB and gelE genes were significantly upregulated in E. faecalis biofilm cells cultured with fibroblast cells, no significant difference was observed in P. aeruginosa. The wound healing and cell growth of fibroblasts were disrupted more aggressively in the presence of P. aeruginosa and triple-species biofilm cells. P. aeruginosa generally induced a stronger immune response in the fibroblasts than E. faecalis and S. aureus.
Collapse
|
14
|
Polyelectrolyte multilayer composite coating on 316 L stainless steel for controlled release of dual growth factors accelerating restoration of bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112187. [PMID: 34082986 DOI: 10.1016/j.msec.2021.112187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
A composite coating of polyelectrolyte multilayers (PEMs) consisting of collagen, a chitosan barrier, and poly-γ-glutamic acid was fabricated using a spin coating technique to investigate and overcome the limited osseointegration capacity of 316 L stainless steel (316 L SS). To further enhance the biocompatibility, bone morphogenetic protein 2 (BMP-2) and basic fibroblast growth factor-2 (FGF-2) were loaded separately as dual growth factors, allowing for progressive drug release following the natural process of bone regeneration. The first burst release of FGF-2 triggered the proliferation of surrounding cells, and the subsequent release of BMP-2 stimulated their differentiation. The microstructure, surface potential, hardness, reduced Young's modulus, and wettability were assessed using scanning electron microscopy, nanoindentation, and water contact angle. The formation of apatite layers after immersion in simulated body fluid confirmed the bioactivity of this PEM. PEMs loaded with BMP-2 and FGF-2 showed a long sustained release of growth factors for up to 48 days. The biological properties were studied in vitro with rat bone mesenchymal stem cells (rBMSCs) and in vivo using a rat critical-sized calvarial defect model. PEMs loaded with growth factors further stimulated the proliferation and osteogenic differentiation of rBMSCs and the histology results indicated that new bone tissues could directly grow onto the PEMs. These findings suggest that PEM composite coating possesses significant potential for surface modification and long-term drug release of metallic implants to assist with bone restoration.
Collapse
|
15
|
Liao HT, Lai YT, Kuo CY, Chen JP. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111689. [PMID: 33545851 DOI: 10.1016/j.msec.2020.111689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Curcumin is reported to possess excellent efficacy to treat wounds that exhibit impaired healing. Heparin shows high affinity for many growth factors that are key biological mediators during the wound healing process. In this study, we aimed to prepare wound dressing membranes, for sustained release of an exogenous factor curcumin as well as sequestering endogenous growth factors at the wound site, to promote wound healing in diabetic rats. Toward this end, we prepared aligned curcumin-loaded poly(lactide-co-glycolide) (PLGA) nanofiber membranes (PC NFMs), followed by high density surface grafting of heparin to fabricate PLGA/curcumin (PCH) NFMs. Both PC and PCH NFMs show high tensile strength, low cytotoxicity and suitable water vapor transmission rate for application as wound dressings. Nonetheless, the PCH NFM shows higher curcumin release rate than PC due to enhanced hydrophilicity, which leads to higher cell migration rate and induced oxidative stress protection of HS68 fibroblast cells in vitro. In vivo study indicated the PCH exhibits the fastest wound closure rate among all membranes with accelerated re-epithelization rate, higher angiogenesis rate and more collagen deposition at the wound site. The accelerated and better skin tissue regeneration could be suggested to correlate with the multi-functionality of nanofibers, where grafted heparin attracting and stabilizing the growth factors important for wound healing in situ, together with relieving the high oxidative stress and the inflammatory cascade from released curcumin during diabetic wound healing.
Collapse
Affiliation(s)
- Han Tsung Liao
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan, ROC
| | - Yu-Tin Lai
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC.
| |
Collapse
|
16
|
Negut I, Dorcioman G, Grumezescu V. Scaffolds for Wound Healing Applications. Polymers (Basel) 2020; 12:E2010. [PMID: 32899245 PMCID: PMC7563417 DOI: 10.3390/polym12092010] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 01/16/2023] Open
Abstract
In order to overcome the shortcomings related to unspecific and partially efficient conventional wound dressings, impressive efforts are oriented in the development and evaluation of new and effective platforms for wound healing applications. In situ formed wound dressings provide several advantages, including proper adaptability for wound bed microstructure and architecture, facile application, patient compliance and enhanced therapeutic effects. Natural or synthetic, composite or hybrid biomaterials represent suitable candidates for accelerated wound healing, by providing proper air and water vapor permeability, structure for macro- and microcirculation, support for cellular migration and proliferation, protection against microbial invasion and external contamination. Besides being the most promising choice for wound care applications, polymeric biomaterials (either from natural or synthetic sources) may exhibit intrinsic wound healing properties. Several nanotechnology-derived biomaterials proved great potential for wound healing applications, including micro- and nanoparticulate systems, fibrous scaffolds, and hydrogels. The present paper comprises the most recent data on modern and performant strategies for effective wound healing.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (I.N.); (G.D.)
| |
Collapse
|
17
|
Bahadoran M, Shamloo A, Nokoorani YD. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep 2020; 10:7342. [PMID: 32355267 PMCID: PMC7193649 DOI: 10.1038/s41598-020-64480-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
In the present study, a hybrid microsphere/hydrogel system, consisting of polyvinyl alcohol (PVA)/sodium alginate (SA) hydrogel incorporating PCL microspheres is introduced as a skin scaffold to accelerate wound healing. The hydrogel substrate was developed using the freeze-thawing method, and the proportion of the involved polymers in its structure was optimized based on the in-vitro assessments. The bFGF-encapsulated PCL microspheres were also fabricated utilizing the double-emulsion solvent evaporation technique. The achieved freeze-dried hybrid system was then characterized by in-vitro and in-vivo experiments. The results obtained from the optimization of the hydrogel showed that increasing the concentration of SA resulted in a more porous structure, and higher swelling ability, elasticity and degradation rate, but decreased the maximum strength and elongation at break. The embedding of PCL microspheres into the optimized hydrogel structure provided sustained and burst-free release kinetics of bFGF. Besides, the addition of drug-loaded microspheres led to no significant change in the degradation mechanism of the hydrogel substrate; however, it reduced its mechanical strength. Furthermore, the MTT assay represented no cytotoxic effect for the hybrid system. The in-vivo studies on a burn-wound rat model, including the evaluation of the wound closure mechanism, and histological analyses indicated that the fabricated scaffold efficiently contributed to promoting cell-induced tissue regeneration and burn-wound healing.
Collapse
Affiliation(s)
- Maedeh Bahadoran
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
18
|
Cairns DM, Giordano JE, Conte S, Levin M, Kaplan DL. Ivermectin Promotes Peripheral Nerve Regeneration during Wound Healing. ACS OMEGA 2018; 3:12392-12402. [PMID: 30411007 PMCID: PMC6210064 DOI: 10.1021/acsomega.8b01451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Peripheral nerves have the capacity to regenerate due to the presence of neuroprotective glia of the peripheral nervous system, Schwann cells. Upon peripheral nerve injury, Schwann cells create a permissive microenvironment for neuronal regrowth by taking up cytotoxic glutamate and secreting neurotrophic signaling molecules. Impaired peripheral nerve repair is often caused by a defective Schwann cell response after injury, and there is a critical need to develop new strategies to enhance nerve regeneration, especially in organisms with restricted regenerative potential, such as humans. One approach is to explore mechanisms in lower organisms, in which nerve repair is much more efficient. A recent study demonstrated that the antiparasitic drug, ivermectin, caused hyperinnervation of primordial eye tissue in Xenopus laevis tadpoles. Our study aimed to examine the role of ivermectin in mammalian nerve repair. We performed in vitro assays utilizing human induced neural stem cells (hiNSCs) in co-culture with human dermal fibroblasts (hDFs) and found that ivermectin-treated hDFs promote hiNSC proliferation and migration. We also characterized the effects of ivermectin on hDFs and found that ivermectin causes hDFs to uptake extracellular glutamate, secrete glial cell-derived neurotrophic factor, develop an elongated bipolar morphology, and express glial fibrillary acidic protein. Finally, in a corresponding in vivo model, we found that localized ivermectin treatment in a dermal wound site induced the upregulation of both glial and neuronal markers upon healing. Taken together, we demonstrate that ivermectin promotes peripheral nerve regeneration by inducing fibroblasts to adopt a glia-like phenotype.
Collapse
Affiliation(s)
- Dana M. Cairns
- Department
of Biomedical Engineering, Department of Biology, Allen Discovery Center, and Tufts University
Biomedical Engineering Research Scholars Program (TUBERS), Tufts University, Medford, Massachusetts 02155, United States
| | - Jodie E. Giordano
- Department
of Biomedical Engineering, Department of Biology, Allen Discovery Center, and Tufts University
Biomedical Engineering Research Scholars Program (TUBERS), Tufts University, Medford, Massachusetts 02155, United States
| | - Sylvia Conte
- Department
of Biomedical Engineering, Department of Biology, Allen Discovery Center, and Tufts University
Biomedical Engineering Research Scholars Program (TUBERS), Tufts University, Medford, Massachusetts 02155, United States
| | - Michael Levin
- Department
of Biomedical Engineering, Department of Biology, Allen Discovery Center, and Tufts University
Biomedical Engineering Research Scholars Program (TUBERS), Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Department of Biology, Allen Discovery Center, and Tufts University
Biomedical Engineering Research Scholars Program (TUBERS), Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, Kajikawa T, Murakami S. Fibroblast growth factor‐2 inhibits CD40‐mediated periodontal inflammation. J Cell Physiol 2018; 234:7149-7160. [DOI: 10.1002/jcp.27469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Yu Kanai
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Risa Masumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Jirouta Kitagaki
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Masahiro Matsumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology Tohoku University Graduate School of Dentistry Miyagi Japan
| | - Tetsuhiro Kajikawa
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Shinya Murakami
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| |
Collapse
|
20
|
Andasari V, Lü D, Swat M, Feng S, Spill F, Chen L, Luo X, Zaman M, Long M. Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes. Integr Biol (Camb) 2018; 10:605-634. [PMID: 30206629 PMCID: PMC6571173 DOI: 10.1039/c8ib00048d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression. The relationship between integrin expression (through cell-matrix adhesion) stimulated by EGF and keratinocyte migration speed is not linear since increased adhesion, due to increased integrin expression, has been experimentally shown to slow down cell migration due to the biphasic dependence of cell speed on adhesion. In our previous work we showed that keratinocytes that were co-cultured with EGF-enhanced fibroblasts formed an asymmetric migration pattern, where, the cumulative distances of keratinocytes migrating toward fibroblasts were smaller than those migrating away from fibroblasts. This asymmetric pattern is thought to be provoked by high EGF concentration secreted by fibroblasts. The EGF stimulates the expression of integrin receptors on the surface of keratinocytes migrating toward fibroblasts via paracrine signaling. In this paper, we present a computational model of keratinocyte migration that is controlled by EGF secreted by fibroblasts using the Cellular Potts Model (CPM). Our computational simulation results confirm the asymmetric pattern observed in experiments. These results provide a deeper insight into our understanding of the complexity of keratinocyte migration in the presence of growth factor gradients and may explain re-epithelialization failure in impaired wound healing.
Collapse
Affiliation(s)
- Vivi Andasari
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shamloo A, Sarmadi M, Aghababaie Z, Vossoughi M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm 2018; 537:278-289. [DOI: 10.1016/j.ijpharm.2017.12.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022]
|
22
|
Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun 2018; 9:236. [PMID: 29339718 PMCID: PMC5770460 DOI: 10.1038/s41467-017-01488-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.
Collapse
|
23
|
Tassi E, Lai EY, Li L, Solis G, Chen Y, Kietzman WE, Ray PE, Riegel AT, Welch WJ, Wilcox CS, Wellstein A. Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-Binding Protein). Hypertension 2018; 71:160-167. [PMID: 29158353 PMCID: PMC5730494 DOI: 10.1161/hypertensionaha.117.10268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factors (FGFs) participate in organ development and tissue maintenance, as well as the control of vascular function. The paracrine-acting FGFs are stored in the extracellular matrix, and their release is controlled by a secreted FGF-binding protein (FGF-BP, FGFBP1, and BP1) that modulates FGF receptor signaling. A genetic polymorphism in the human FGFBP1 gene was associated with higher gene expression and an increased risk of familial hypertension. Here, we report on the effects of inducible BP1 expression in a transgenic mouse model. Induction of BP1 expression in adult animals leads to a sustained rise in mean arterial pressure by >30 mm Hg. The hypertensive effect of BP1 expression is prevented by candesartan, an angiotensin II (AngII) receptor antagonist, or by tempol, an inhibitor of reactive oxygen species. In vivo, BP1 expression sensitizes peripheral resistance vessels to AngII constriction by 20-fold but does not alter adrenergic vasoconstriction. FGF receptor kinase inhibition reverses the sensitization to AngII. Also, constriction of isolated renal afferent arterioles by AngII is enhanced after BP1 expression and blocked by FGF receptor kinase inhibition. Furthermore, AngII-mediated constriction of renal afferent arterioles is abolished in FGF2-/- mice but can be restored by add-back of FGF2 plus BP1 proteins. In contrast to AngII, adrenergic constriction is not affected in the FGF2-/- model. Proteomics and gene expression analysis of kidney tissues after BP1 induction show that MAPK (mitogen-activated protein kinase) signaling via MKK4 (MAPK kinase 4), p38, and JNK (c-Jun N-terminal kinase) integrates the crosstalk of the FGF receptor and AngII pathways and thus impact vascular tone and blood pressure.
Collapse
Affiliation(s)
- Elena Tassi
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - En Yin Lai
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Lingli Li
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Glenn Solis
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Yifan Chen
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William E Kietzman
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Patricio E Ray
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anna T Riegel
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William J Welch
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Christopher S Wilcox
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anton Wellstein
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.).
| |
Collapse
|
24
|
Schmitt L, Huth S, Amann PM, Marquardt Y, Heise R, Fietkau K, Huth L, Steiner T, Hölzle F, Baron J. Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models. Lasers Med Sci 2017; 33:765-772. [DOI: 10.1007/s10103-017-2409-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
|
25
|
Nayak KK, Gupta P. Study of the keratin-based therapeutic dermal patches for the delivery of bioactive molecules for wound treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1088-1097. [DOI: 10.1016/j.msec.2017.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/28/2022]
|
26
|
Deng X, Jia C, Chen F, Liu J, Zhou Z. Effects of heat stress on the expression of the coxsackievirus and adenovirus receptor in mouse skin keratinocytes. Exp Ther Med 2013; 6:1029-1033. [PMID: 24137310 PMCID: PMC3797294 DOI: 10.3892/etm.2013.1230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effects of heat stress on the expression of the coxsackievirus and adenovirus receptor (CAR) in mouse skin keratinocytes. Twenty BALB/c mice were randomly divided into two groups: the sham heat (control) and scald groups. Skin specimens were obtained 6 h after the treatments. Changes in the expression of CAR in skin keratinocyte samples were detected by immunohistochemistry, quantitative polymerase chain reaction and western blotting. In an in vitro assay, mouse skin keratinocytes were cultured and randomly divided into two groups: the normal control and heat stress groups. Six hours subsequently, the changes in CAR expression in the two groups were estimated by flow cytometry to determine the differences between the two groups. Heat stress significantly increased the expression of CAR in the mouse skin keratinocytes (P<0.05). The upregulation of CAR in mouse keratinocytes in burn wounds may be beneficial for restoring healing in organisms.
Collapse
Affiliation(s)
- Xiangdong Deng
- The Graduate School, Chinese People's Liberation Army Medical College, Beijing 100039
| | | | | | | | | |
Collapse
|
27
|
Oh BH, Lee SH, Nam KA, Lee HB, Chung KY. Comparison of negative pressure wound therapy and secondary intention healing after excision of acral lentiginous melanoma on the foot. Br J Dermatol 2013; 168:333-8. [PMID: 23362968 DOI: 10.1111/bjd.12099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Melanoma in dark-skinned individuals often develops in an acral lentiginous fashion on the foot and wide excision usually results in a substantial defect. Various repair methods, including free flap, full-thickness skin graft and secondary intention healing (SIH), are used to repair these defects. Recently, use of negative pressure wound treatment (NPWT) has been shown to accelerate wound healing in different types of wound. OBJECTIVES To compare the functional and cosmetic results of NPWT and SIH in patients who underwent wide excision of melanomas on the foot. METHODS The wound defects of 22 patients after wide excision of melanoma on the foot were treated using SIH (n = 13) or NPWT (n = 9). RESULTS There was no significant difference in time to complete wound healing between the two groups. However, evaluation using the Vancouver Burn Scar Assessment Scale at the time of complete healing showed that the mean score of the NPWT group was significantly lower than that of the SIH group. The NPWT group also had significantly better results than the SIH group in terms of total score, vascularity and height of the scars. As for complications, no wound infection was encountered in the NPWT group, whereas eight of the 13 patients in SIH group had wound infections during the course of treatment despite frequent and meticulous aseptic dressing changes. CONCLUSIONS These results show that, despite the drawback of rather prolonged healing time, NPWT is an excellent therapeutic option for wounds after wide excision of melanoma on the foot, with acceptable functional and cosmetic outcomes.
Collapse
Affiliation(s)
- B H Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Role of the nuclear receptor coactivator AIB1/SRC-3 in angiogenesis and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1474-84. [PMID: 22342158 DOI: 10.1016/j.ajpath.2011.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/23/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022]
Abstract
The nuclear receptor coactivator amplified in breast cancer 1 (AIB1/SRC-3) has a well-defined role in steroid and growth factor signaling in cancer and normal epithelial cells. Less is known about its function in stromal cells, although AIB1/SRC-3 is up-regulated in tumor stroma and may, thus, contribute to tumor angiogenesis. Herein, we show that AIB1/SRC-3 depletion from cultured endothelial cells reduces their proliferation and motility in response to growth factors and prevents the formation of intact monolayers with tight junctions and of endothelial tubes. In AIB1/SRC-3(+/-) and (-/-) mice, the angiogenic responses to subcutaneous Matrigel implants was reduced by two-thirds, and exogenously added fibroblast growth factor (FGF) 2 did not overcome this deficiency. Furthermore, AIB1/SRC-3(+/-) and (-/-) mice showed similarly delayed healing of full-thickness excisional skin wounds, indicating that both alleles were required for proper tissue repair. Analysis of this defective wound healing showed reduced recruitment of inflammatory cells and macrophages, cytokine induction, and metalloprotease activity. Skin grafts from animals with different AIB1 genotypes and subsequent wounding of the grafts revealed that the defective healing was attributable to local factors and not to defective bone marrow responses. Indeed, wounds in AIB1(+/-) mice showed reduced expression of FGF10, FGFBP3, FGFR1, FGFR2b, and FGFR3, major local drivers of angiogenesis. We conclude that AIB1/SRC-3 modulates stromal cell responses via cross-talk with the FGF signaling pathway.
Collapse
|