1
|
Li Y, Yang J, Wang X, Luoreng Z. Transcriptome analysis reveals the regulation of miR-19b on inflammation in bovine mammary epithelial cells. Microb Pathog 2024:107082. [PMID: 39461446 DOI: 10.1016/j.micpath.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are involved in various biological processes where they regulate the expression of mRNAs. Bovine mammary epithelial cells (bMECs) are functional cells that mediate mammary inflammatory immunity. Although numerous miRNAs regulate the function of bMECs, the role of miR-19b in bMECs has not been reported. In this study, the transcriptome of miR-19b overexpressed bMECs was analyzed by RNA-seq. Additionally, the differentially expressed genes (DEGs) were analyzed to establish the role of miR-19b in bMECs. The results revealed 269 DEGs between the miR-19b overexpression group and the negative control, including 199 up-regulated and 70 down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEGs regulated immune and inflammatory responses through Staphylococcus aureus (S. aureus) infection and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In addition, the expression of miR-19b was significantly upregulated in lipophosphoric acid (LTA)-induced bMECs, and overexpression of miR-19b negatively regulated the expression of inflammatory cytokines IL-1β and IL-6, thereby alleviating the inflammatory response of LTA-induced bMECs. Based on the above results, we speculate that miR-19b may inhibit in dairy cow mammary inflammation caused by S. aureus, and this process may be mediated through the regulation of relevant gene expression and signaling pathways. The findings from this study provide a new reference for analyzing the molecular regulation of miR-19b in bMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
2
|
Mamun M, Zheng YC, Wang N, Wang B, Zhang Y, Pang JR, Shen DD, Liu HM, Gao Y. Decoding CLU (Clusterin): Conquering cancer treatment resistance and immunological barriers. Int Immunopharmacol 2024; 137:112355. [PMID: 38851158 DOI: 10.1016/j.intimp.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Maa Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dan-Dan Shen
- Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Bonaterra-Pastra A, Solé M, Lope-Piedrafita S, Lucas-Parra M, Castellote L, Marazuela P, Pancorbo O, Rodríguez-Luna D, Hernández-Guillamon M. The presence of circulating human apolipoprotein J reduces the occurrence of cerebral microbleeds in a transgenic mouse model with cerebral amyloid angiopathy. Alzheimers Res Ther 2024; 16:169. [PMID: 39069622 DOI: 10.1186/s13195-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β (Aβ) deposition in cerebral vessels, leading to lobar cerebral microbleeds (CMB) and intracerebral hemorrhages (ICH). Apolipoprotein J (ApoJ) is a multifunctional chaperone related to Aβ aggregation and clearance. Our study investigated the vascular impact of chronic recombinant human Apolipoprotein J (rhApoJ) treatment in a transgenic mouse model of β-amyloidosis with prominent CAA. METHODS Twenty-month-old APP23 C57BL/6 mice received 25 doses of rhApoJ (1 mg/kg) (n = 9) or saline (n = 8) intraperitoneally for 13 weeks, while Wild-type (WT) mice received saline (n = 13). Postmortem brains underwent T2*-weighted magnetic resonance imaging (MRI) to detect hemorrhagic lesions. Aβ levels and distribution, cerebral fibrinogen leakage, brain smooth muscle actin (sma), and plasma matrix metalloproteinases and inflammatory markers were analyzed after treatments. Additionally, plasma samples from 22 patients with lobar ICH were examined to determine the clinical relevance of the preclinical findings. RESULTS rhApoJ-treated APP23 presented fewer cortical CMBs (50-300 μm diameter) (p = 0.012) and cortical larger hemorrhages (> 300 μm) (p = 0.002) than saline-treated mice, independently of Aβ brain levels. MRI-detected hemorrhagic lesions correlated with fibrinogen cerebral extravasation (p = 0.011). Additionally, rhApoJ-treated mice presented higher number of sma-positive vessels than saline-treated mice (p = 0.038). In rhApoJ-treated mice, human ApoJ was detected in plasma and in occasional leptomeningeal vessels, but not in the parenchyma, suggesting that its mechanism of action operates through the periphery. The administration of rhApoJ induced an increase in plasma Groα (p = 0.035) and MIP-1α (p = 0.035) levels, while lower MMP-12 (p = 0.046) levels, compared to the saline-treated group. In acute lobar ICH patients, MMP-12 plasma levels correlated with larger hemorrhage volume (p = 0.040) and irregular ICH shape (p = 0.036). CONCLUSIONS Chronic rhApoJ treatment in aged APP23 mice ameliorated CAA-related neurovascular damage by reducing the occurrence of CMB. We propose that rhApoJ may prevent blood-brain barrier (BBB) leakage and CMB appearance partly through circulating MMP-12 modulation.
Collapse
Affiliation(s)
- Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
- Department of Bioquímica i Biologia Molecular i Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Silvia Lope-Piedrafita
- Nuclear Magnetic Resonance Service, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Lucas-Parra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain
| | - Olalla Pancorbo
- Stroke Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Mediterranean Building, 1st floor, lab 106, Barcelona, 08035, Spain.
| |
Collapse
|
4
|
Koduri MA, Pingali T, Prasad D, Singh V, Singh S, Shanbhag SS, Basu S, Singh V. Neutrophil-driven and interleukin-36γ-associated ocular surface inflammation in chronic Stevens-Johnson syndrome. Allergy 2024. [PMID: 38682250 DOI: 10.1111/all.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE This study aims to elucidate the tear proteome and understand the underlying molecular mechanisms involved in the ocular complications following Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). METHODS Mass spectrometry (MS) was performed to quantify the tear fluid proteins from chronic SJS/TEN patients (n = 22 eyes) and age- and gender-matched controls (n = 22 eyes). The candidate proteins were validated using ELISA (n = 80 eyes) in tear samples and immunohistochemistry (IHC; n = 12) in eyelid margin specimens. These proteins were compared for significant differences based on age, gender, disease duration, and ocular severity. RESULTS A total of 1692 tear fluid proteins were identified, of which 470 were significantly differentially regulated in chronic SJS/TEN. The top 10 significantly upregulated proteins were neutrophil secretions including neutrophil elastase (p < .0001), defensin (p < .0001), and matrix metalloproteinase 8 (p < .0001). The presence of neutrophils was confirmed by the upregulation of IL-8 (p < .001) in tears, a key cytokine known for recruiting neutrophils. Additionally, positive expression of myeloperoxidase was observed in the keratinized eyelid margins of SJS/TEN to validate the presence of neutrophils. Among 41 unique proteins identified by MS, IL-36γ (p < .01) was expressed in three SJS/TEN patients and was confirmed in SJS/TEN tears and eyelid margins by ELISA and IHC, respectively. IL-36γ was specifically expressed in the superficial layers of eyelid margin keratinized conjunctiva. The majority of the significantly downregulated proteins were lacrimal gland secretions such as lacritin (p < .0001) and opiorphin (p < .002). Neutrophil elastase (p < .02) was significantly elevated in patients with severe eyelid margin keratinization. CONCLUSION Our observations indicate a clear correlation between eyelid margin keratinization and the expression of IL-36γ, potentially mediated by neutrophils recruited via IL-8. Future experimental studies are needed to test the role of therapies targeting IL-8 and/or IL-36γ in reducing eyelid margin keratinization and its associated ocular complications in SJS/TEN.
Collapse
Affiliation(s)
- Madhuri Amulya Koduri
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Tejaswini Pingali
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vijay Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swapna S Shanbhag
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vivek Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Federico A, Möbus L, Al-Abdulraheem Z, Pavel A, Fortino V, Del Giudice G, Alenius H, Fyhrquist N, Greco D. Integrative network analysis suggests prioritised drugs for atopic dermatitis. J Transl Med 2024; 22:64. [PMID: 38229087 PMCID: PMC10792836 DOI: 10.1186/s12967-024-04879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery. METHODS We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD. RESULTS In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD. CONCLUSIONS Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.
Collapse
Affiliation(s)
- Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, 33100, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Lena Möbus
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Zeyad Al-Abdulraheem
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Giusy Del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Harri Alenius
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Nanna Fyhrquist
- Faculty of Medicine, Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100, Tampere, Finland.
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland.
- Institute of Biotechnology, University of Helsinki, 00100, Helsinki, Finland.
| |
Collapse
|
6
|
Kalló G, Bertalan PM, Márton I, Kiss C, Csősz É. Salivary Chemical Barrier Proteins in Oral Squamous Cell Carcinoma-Alterations in the Defense Mechanism of the Oral Cavity. Int J Mol Sci 2023; 24:13657. [PMID: 37686462 PMCID: PMC10487546 DOI: 10.3390/ijms241713657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most frequent types of head and neck cancer. Despite the genetic and environmental risk factors, OSCC is also associated with microbial infections and/or dysbiosis. The secreted saliva serves as the chemical barrier of the oral cavity and, since OSCC can alter the protein composition of saliva, our aim was to analyze the effect of OSCC on the salivary chemical barrier proteins. Publicly available datasets regarding the analysis of salivary proteins from patients with OSCC and controls were collected and examined in order to identify differentially expressed chemical barrier proteins. Network analysis and gene ontology (GO) classification of the differentially expressed chemical barrier proteins were performed as well. One hundred and twenty-seven proteins showing different expression pattern between the OSCC and control groups were found. Protein-protein interaction networks of up- and down-regulated proteins were constructed and analyzed. The main hub proteins (IL-6, IL-1B, IL-8, TNF, APOA1, APOA2, APOB, APOC3, APOE, and HP) were identified and the enriched GO terms were examined. Our study highlighted the importance of the chemical barrier of saliva in the development of OSCC.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Petra Magdolna Bertalan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ildikó Márton
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Huynh CB, Nagaarudkumaran N, Kalyaanamoorthy S, Ngo W. In Silico and In Vitro Approach for Validating the Inhibition of Matrix Metalloproteinase-9 by Quercetin. Eye Contact Lens 2023; 49:193-198. [PMID: 36912460 DOI: 10.1097/icl.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE To validate the mechanism and inhibitory activity of quercetin against matrix metalloproteinase-9 (MMP-9) using a hybrid in silico and in vitro approach. METHODS The structure of MMP-9 was obtained from the Protein Data Bank, and the active site was identified using previous annotations from the Universal Protein Resource. The structure of quercetin was obtained from ZINC15. Molecular docking was performed to quantify the binding affinity of quercetin to the active site of MMP-9. The inhibitory effect of various concentrations of quercetin (0.0025, 0.025, 0.25, 1.0, and 1.5 mM) on MMP-9 was quantified using a commercially available fluorometric assay. The cytotoxicity of quercetin to immortalized human corneal epithelial cells (HCECs) was quantified by obtaining the metabolic activities of the cells exposed to various concentrations of quercetin for 24 hr. RESULTS Quercetin interacts with MMP-9 by binding within the active site pocket and interacting with residues LEU 188, ALA 189, GLU 227, and MET 247. The binding affinity predicted by molecular docking was -9.9 kcal/mol. All concentrations of quercetin demonstrated significant inhibition of MMP-9 enzyme activity (all P <0.03). There was little to no reduction of HCEC metabolic activity after a 24-hr exposure to all concentrations of quercetin ( P >0.99). CONCLUSIONS Quercetin inhibited MMP-9 in a dose-dependent manner and was well-tolerated by HCECs, suggesting a potential role in therapy for diseases with upregulated MMP-9 as part of its pathogenesis.
Collapse
Affiliation(s)
- Cassandra Bonnie Huynh
- School of Optometry and Vision Science (C.B.H., W.N.), University of Waterloo; Centre for Ocular Research & Education (N.N.), School of Optometry & Vision Science, University of Waterloo; Department of Chemistry (S.K.), University of Waterloo; and Centre for Eye and Vision Research (CEVR) (W.N.), Hong Kong
| | | | | | | |
Collapse
|
9
|
Satapathy S, Wilson MR. Roles of constitutively secreted extracellular chaperones in neuronal cell repair and regeneration. Neural Regen Res 2023; 18:769-772. [PMID: 36204835 PMCID: PMC9700095 DOI: 10.4103/1673-5374.353483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies.
Collapse
Affiliation(s)
- Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark R. Wilson
- Molecular Horizons and The School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, Australia
| |
Collapse
|
10
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
11
|
Wilson MR, Satapathy S, Vendruscolo M. Extracellular protein homeostasis in neurodegenerative diseases. Nat Rev Neurol 2023; 19:235-245. [PMID: 36828943 DOI: 10.1038/s41582-023-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
The protein homeostasis (proteostasis) system encompasses the cellular processes that regulate protein synthesis, folding, concentration, trafficking and degradation. In the case of intracellular proteostasis, the identity and nature of these processes have been extensively studied and are relatively well known. By contrast, the mechanisms of extracellular proteostasis are yet to be fully elucidated, although evidence is accumulating that their age-related progressive impairment might contribute to neuronal death in neurodegenerative diseases. Constitutively secreted extracellular chaperones are emerging as key players in processes that operate to protect neurons and other brain cells by neutralizing the toxicity of extracellular protein aggregates and promoting their safe clearance and disposal. Growing evidence indicates that these extracellular chaperones exert multiple effects to promote cell viability and protect neurons against pathologies arising from the misfolding and aggregation of proteins in the synaptic space and interstitial fluid. In this Review, we outline the current knowledge of the mechanisms of extracellular proteostasis linked to neurodegenerative diseases, and we examine the latest understanding of key molecules and processes that protect the brain from the pathological consequences of extracellular protein aggregation and proteotoxicity. Finally, we contemplate possible therapeutic opportunities for neurodegenerative diseases on the basis of this emerging knowledge.
Collapse
Affiliation(s)
- Mark R Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Chi H, Dong Z, Gan Q, Tang X, Xing J, Sheng X, Zhan W. Matrix metalloproteinase 9 modulates immune response along with the formation of extracellular traps in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108570. [PMID: 36717064 DOI: 10.1016/j.fsi.2023.108570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/28/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
MMP-9 belongs to the Matrix Metalloprotease family, which is mainly involved in the protein hydrolysis process of extracellular matrix and plays important roles in many biological processes, such as embryogenesis, tissue remodeling, angiogenesis, inflammatory processes and wound healing. In this study, we described the sequence characteristics of the MMP-9 gene in flounder (PoMMP-9). PoMMP-9 was highly homologous to MMP-9 from turbot, medaka, and Fugu rubripes. The mRNA of PoMMP-9 was constitutively expressed in all tested tissues of healthy flounder with the highest expression levels in the head kidney and spleen. A time-dependent expression pattern of PoMMP-9 in the head kidney and spleen was found after the bacterial and virus challenge. This indicates that PoMMP-9 is inducible and involved in immune responses. Indirect immunofluorescence assay showed that the PoMMP-9 was co-localization in the extracellular traps (ETs) released by the leukocytes. After overexpression, PoMMP-9 can recruit more inflammatory cells and play a broad immune process from pathogen elimination to wound healing at the inflammatory site through ETs. In summary, this study provided new insights into the biological function of MMP-9 in teleost.
Collapse
Affiliation(s)
- Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhixiao Dong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
13
|
Chintala SK, Pan J, Satapathy S, Condruti R, Hao Z, Liu PW, O’Conner CF, Barr JT, Wilson MR, Jeong S, Fini ME. Recombinant Human Clusterin Seals Damage to the Ocular Surface Barrier in a Mouse Model of Ophthalmic Preservative-Induced Epitheliopathy. Int J Mol Sci 2023; 24:981. [PMID: 36674497 PMCID: PMC9861099 DOI: 10.3390/ijms24020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
There is a significant unmet need for therapeutics to treat ocular surface barrier damage, also called epitheliopathy, due to dry eye and related diseases. We recently reported that the natural tear glycoprotein CLU (clusterin), a molecular chaperone and matrix metalloproteinase inhibitor, seals and heals epitheliopathy in mice subjected to desiccating stress in a model of aqueous-deficient/evaporative dry eye. Here we investigated CLU sealing using a second model with features of ophthalmic preservative-induced dry eye. The ocular surface was stressed by topical application of the ophthalmic preservative benzalkonium chloride (BAC). Then eyes were treated with CLU and sealing was evaluated immediately by quantification of clinical dye uptake. A commercial recombinant form of human CLU (rhCLU), as well as an rhCLU form produced in our laboratory, designed to be compatible with U.S. Food and Drug Administration guidelines on current Good Manufacturing Practices (cGMP), were as effective as natural plasma-derived human CLU (pCLU) in sealing the damaged ocular surface barrier. In contrast, two other proteins found in tears: TIMP1 and LCN1 (tear lipocalin), exhibited no sealing activity. The efficacy and selectivity of rhCLU for sealing of the damaged ocular surface epithelial barrier suggests that it could be of therapeutic value in treating BAC-induced epitheliopathy and related diseases.
Collapse
Affiliation(s)
- Shravan K. Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinhong Pan
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sandeep Satapathy
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rebecca Condruti
- Training Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zixuan Hao
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pei-wen Liu
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christian F. O’Conner
- Doctor of Medicine Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joseph T. Barr
- The Ohio State University College of Optometry, Columbus, OH 43210, USA
| | - Mark R. Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shinwu Jeong
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
14
|
Zheng M, Lee EJ, Jeong S, Craft CM. Gene Expression of Clusterin, Tissue Inhibitor of Metalloproteinase-1, and Their Receptors in Retinal Pigment Epithelial Cells and Müller Glial Cells Is Modulated by Inflammatory Stresses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:215-219. [PMID: 37440036 DOI: 10.1007/978-3-031-27681-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Balanced activities of matrix metalloproteinases (MMPs) and their inhibitors are essential for photoreceptor (PR) cell survival. PR rod cell survival in rodent models of inherited retinitis pigmentosa (RP) is prolonged by recombinant tissue inhibitor of metalloproteinase (TIMP)-1 or clusterin (CLU) proteins. Retinal pigment epithelial cells (RPE) and Müller glia (MG) cells support PR cells. In human RPE and MG cell lines, we measured their mRNA levels of the two genes with quantitative real-time PCR (qRT-PCR) with interleukin (IL)-1β treatment, a key pathological component in retinal degeneration. Endogenous CLU gene expression was significantly downregulated by IL-1β in both cell types, whereas TIMP-1 expression was upregulated in MG cells, suggesting the transcriptional control of CLU is potentially more sensitive to inflammatory conditions. The expression levels of CLU endocytic receptors revealed that the low-density lipoprotein receptor-related protein 2 (LRP2) was upregulated only in MG cells by the treatment with no detectable change in RPE cells. Like LRP2, IL-1β upregulated TIMP-1 receptor LRP1 expression in MG cells; however, it was decreased in the expression of RPE cells. These data suggest that the gene expression of CLU and TIMP-1 and their receptors may be dynamically modulated in inflammatory conditions.
Collapse
Affiliation(s)
- Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
16
|
Zhu J, Wang Y, Rivett A, Li H, Wu L, Wang R, Yang G. Deficiency of cystathionine gamma-lyase promotes aortic elastolysis and medial degeneration in aged mice. J Mol Cell Cardiol 2022; 171:30-44. [PMID: 35843061 DOI: 10.1016/j.yjmcc.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Enzymatic degradation of elastin by matrix metalloproteinases (MMPs) leads to the permanent dilation of aortic wall and constitutes the most prominent characters of aortic aneurysm and aging-related medial degeneration. Hydrogen sulfide (H2S) as a gasotransmitter exhibits a wide variety of cardio-protective functions through its anti-inflammatory and anti-oxidative actions. Cystathionine gamma-lyase (CSE) is a main H2S-generating enzyme in cardiovascular system. The regulatory roles of CSE/H2S system on elastin homeostasis and blood vessel degeneration have not yet been explored. Here we found that aged CSE knockout mice had severe aortic dilation and elastic degradation in abdominal aorta and were more sensitive to angiotensin II-induced aortic elastolysis and medial degeneration. Administration of NaHS would protect the mice from angiotensin II-induced inflammation, gelatinolytic activity, elastin fragmentation, and aortic dilation. In addition, human aortic aneurysm samples had higher inflammatory infiltration and lower expression of CSE. In cultured smooth muscle cells (SMCs), TNFα-induced MMP2/9 hyperactivity and elastolysis could be attenuated by exogenously applied NaHS or CSE overexpression while further deteriorated by complete knockout of CSE. It was further found that H2S inhibited MMP2 transcription by posttranslational modification of Sp1 via S-sulfhydration. H2S also directly suppressed MMP hyperactivity by S-sulfhydrating the cysteine switch motif. Taken together, this study revealed the involvement of CSE/H2S system in the pathogenesis of aortic elastolysis and medial degeneration by maintaining the inactive form of MMPs, suggesting that CSE/H2S system can be a target for the prevention of age-related medial degeneration and treatment of aortic aneurysm.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Alexis Rivett
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Hongzhu Li
- School of Medicine, Xiamen University, Xiamen, China; Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Biology, York University, Toronto, Canada
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
17
|
Soundararajan A, Wang T, Ghag SA, Kang MH, Pattabiraman PP. Novel insight into the role of clusterin on intraocular pressure regulation by modifying actin polymerization and extracellular matrix remodeling in the trabecular meshwork. J Cell Physiol 2022; 237:3012-3029. [PMID: 35567755 PMCID: PMC9283260 DOI: 10.1002/jcp.30769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
This study provides comprehensive mechanistic evidence for the role of clusterin, a stress-response secretory chaperone protein, in the modulation of intraocular pressure (IOP) by regulating the trabecular meshwork (TM) actin cytoskeleton and the extracellular matrix (ECM). The pathological stressors on TM known to elevate IOP significantly lowered clusterin protein levels indicating stress-related clusterin function loss. Small interfering RNA-mediated clusterin loss in human TM cells in vitro induced actin polymerization and stabilization via protein kinase D1, serine/threonine-protein kinase N2 (PRK2), and LIM kinase 1 (LIMK1), and the recruitment and activation of adhesome proteins including paxillin, vinculin, and integrin αV and β5. A complete loss of clusterin as seen in clusterin knockout mice (Clu-/- ) led to significant IOP elevation at postnatal Day 70. Contrarily, constitutive clusterin expression using adenovirus (AdCLU) in HTM cells resulted in the loss of actin polymerization via decreased PRK2, and LIMK1 and negative regulation of integrin αV and β5. Furthermore, we found that AdCLU treatment in HTM cells significantly decreased the ECM protein expression and distribution by significantly increasing matrix metalloprotease 2 (MMP2) activity and lowering the levels of pro-fibrotic proteins such as transforming growth factor-β2 (TGFβ2), thrombospondin-1 (TSP-1), and plasminogen activator inhibitor-1 (PAI-1). Finally, we found that HTM cells supplemented with recombinant human clusterin attenuated the pro-fibrotic effects of TGFβ2. For the first time this study demonstrates the importance of clusterin in the regulation of TM actin cytoskeleton - ECM interactions and the maintenance of IOP, thus making clusterin an interesting target to reverse elevated IOP.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ting Wang
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| | - Sachin A. Ghag
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Min H. Kang
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye InstituteCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Padmanabhan P. Pattabiraman
- Department of Ophthalmology, Glick Eye InstituteIndiana University School of MedicineIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
18
|
Wilson MR, Satapathy S, Jeong S, Fini ME. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022; 89:101032. [PMID: 34896599 PMCID: PMC9184305 DOI: 10.1016/j.preteyeres.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
Collapse
Affiliation(s)
- Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Sandeep Satapathy
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street., Los Angeles, CA, 90033, USA.
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine; Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Kalló G, Kumar A, Tőzsér J, Csősz É. Chemical Barrier Proteins in Human Body Fluids. Biomedicines 2022; 10:biomedicines10071472. [PMID: 35884778 PMCID: PMC9312486 DOI: 10.3390/biomedicines10071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical barriers are composed of those sites of the human body where potential pathogens can contact the host cells. A chemical barrier is made up by different proteins that are part of the antimicrobial and immunomodulatory protein/peptide (AMP) family. Proteins of the AMP family exert antibacterial, antiviral, and/or antifungal activity and can modulate the immune system. Besides these proteins, a wide range of proteases and protease inhibitors can also be found in the chemical barriers maintaining a proteolytic balance in the host and/or the pathogens. In this review, we aimed to identify the chemical barrier components in nine human body fluids. The interaction networks of the chemical barrier proteins in each examined body fluid were generated as well.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416432
| | - Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (A.K.); (J.T.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
20
|
Marzaioli V, Canavan M, Floudas A, Flynn K, Mullan R, Veale DJ, Fearon U. CD209/CD14 + Dendritic Cells Characterization in Rheumatoid and Psoriatic Arthritis Patients: Activation, Synovial Infiltration, and Therapeutic Targeting. Front Immunol 2022; 12:722349. [PMID: 35095831 PMCID: PMC8789658 DOI: 10.3389/fimmu.2021.722349] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DC) have a key role in the initiation and progression of inflammatory arthritis (IA). In this study, we identified a DC population that derive from monocytes, characterized as CD209/CD14+ DC, expressing classical DC markers (HLADR, CD11c) and the Mo-DC marker (CD209), while also retaining the monocytic marker CD14. This CD209/CD14+ DC population is present in the circulation of Healthy Control (HC), with increased frequency in Rheumatoid Arthritis (RA) and Psoriatic arthritic (PsA) patients. We demonstrate, for the first time, that circulatory IA CD209/CD14+ DC express more cytokines (IL1β/IL6/IL12/TNFα) and display a unique chemokine receptor expression and co-expression profiles compared to HC. We demonstrated that CD209/CD14+ DC are enriched in the inflamed joint where they display a unique inflammatory and maturation phenotype, with increased CD40 and CD80 and co-expression of specific chemokine receptors, displaying unique patterns between PsA and RA. We developed a new protocol of magnetic isolation and expansion for CD209+ DC from blood and identified transcriptional differences involved in endocytosis/antigen presentation between RA and PsA CD209+ DC. In addition, we observed that culture of healthy CD209+ DC with IA synovial fluid (SF), but not Osteoarthritis (OA) SF, was sufficient to induce the development of CD209/CD14+ DC, leading to a poly-mature DC phenotype. In addition, differential effects were observed in terms of chemokine receptor and chemokine expression, with healthy CD209+ DC displaying increased expression/co-expression of CCR6, CCR7, CXCR3, CXCR4 and CXCR5 when cultured with RA SF, while an increase in the chemokines CCR3, CXCL10 and CXCL11 was observed when cultured with PsA SF. This effect may be mediated in part by the observed differential increase in chemokines expressed in RA vs PsA SF. Finally, we observed that the JAK/STAT pathway, but not the NF-κB pathway (driven by TNFα), regulated CD209/CD14+ DC function in terms of activation, inflammatory state, and migratory capacity. In conclusion, we identified a novel CD209/CD14+ DC population, which is active in the circulation of RA and PsA, an effect potentiated once they enter the joint. Furthermore, we demonstrated that JAK/STAT inhibition can be used as a therapeutic strategy to decrease the inflammatory state of the pathogenic CD209/CD14+ DC.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.,Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Keelin Flynn
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.,Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan Mullan
- Department of Rheumatology, Tallaght University Hospital, Dublin, Ireland
| | - Douglas J Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.,Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Yuan Z, Yu M, Li D, Zhang H, Li L. Protein expression changes in cornea after collagen crosslinking. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Identifying new molecular players in extracellular proteostasis. Biochem Soc Trans 2021; 50:321-334. [PMID: 34940856 DOI: 10.1042/bst20210369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023]
Abstract
Proteostasis refers to a delicately tuned balance between the processes of protein synthesis, folding, localization, and the degradation of proteins found inside and outside cells. Our understanding of extracellular proteostasis is rather limited and largely restricted to knowledge of 11 currently established extracellular chaperones (ECs). This review will briefly outline what is known of the established ECs, before moving on to discuss experimental strategies used to identify new members of this growing family, and an examination of a group of putative new ECs identified using one of these approaches. An observation that emerges from an analysis of the expanding number of ECs is that all of these proteins are multifunctional. Strikingly, the armory of activities each possess uniquely suit them as a group to act together at sites of tissue damage, infection, and inflammation to restore homeostasis. Lastly, we highlight outstanding questions to guide future research in this field.
Collapse
|
23
|
Gross C, Le-Bel G, Desjardins P, Benhassine M, Germain L, Guérin SL. Contribution of the Transcription Factors Sp1/Sp3 and AP-1 to Clusterin Gene Expression during Corneal Wound Healing of Tissue-Engineered Human Corneas. Int J Mol Sci 2021; 22:12426. [PMID: 34830308 PMCID: PMC8621254 DOI: 10.3390/ijms222212426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manel Benhassine
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre Universitaire d’Ophtalmologie-Recherche (CUO-Recherche), Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC G1S 4L8, Canada; (C.G.); (G.L.-B.); (P.D.); (M.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Génie Tissulaire et Régénération, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1V 0A6, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Geraghty NJ, Satapathy S, Kelly M, Cheng F, Lee A, Wilson MR. Expanding the family of extracellular chaperones: Identification of human plasma proteins with chaperone activity. Protein Sci 2021; 30:2272-2286. [PMID: 34553437 PMCID: PMC8521303 DOI: 10.1002/pro.4189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Proteostasis, the balance of protein synthesis, folding and degradation, is essential to maintain cellular function and viability, and the many known intracellular chaperones are recognized as playing key roles in sustaining life. In contrast, the identity of constitutively secreted extracellular chaperones (ECs) and their physiological roles in extracellular proteostasis is less completely understood. We designed and implemented a novel strategy, based on the well-known propensity of chaperones to bind to regions of hydrophobicity exposed on misfolding proteins, to discover new ECs present in human blood. We used a destabilized protein that misfolds at 37°C as "bait" to bind to potential ECs in human serum and captured the complexes formed on magnetic beads. Proteins eluted from the beads were identified by mass spectrometry and a group of seven abundant serum proteins was selected for in vitro analysis of chaperone activity. Five of these proteins were shown to specifically inhibit protein aggregation. Vitronectin and plasminogen activator-3 inhibited both the in vitro aggregation of the Alzheimer's β peptide (Aβ1-42 ) to form fibrillar amyloid, and the aggregation of citrate synthase (CS) to form unstructured (amorphous) aggregates. In contrast, prothrombin, C1r, and C1s inhibited the aggregation of Aβ1-42 but did not inhibit CS aggregation. This study thus identified five novel and abundant putative ECs which may play important roles in the maintenance of extracellular proteostasis, and which apparently have differing abilities to inhibit the amorphous and amyloid-forming protein aggregation pathways.
Collapse
Affiliation(s)
- Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Illawarra Health and Medical Research InstituteWollongongAustralia
| | - Sandeep Satapathy
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Blavatnik Institute of Cell Biology, Harvard Medical SchoolBostonMassachusettsUSA
| | - Megan Kelly
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- School of MedicineUniversity of WollongongWollongongAustralia
| | - Flora Cheng
- Department of Biomedical Sciences, Centre for Motor Neuron Disease ResearchMacquarie UniversityNorth RydeAustralia
| | - Albert Lee
- Department of Biomedical Sciences, Centre for Motor Neuron Disease ResearchMacquarie UniversityNorth RydeAustralia
| | - Mark R. Wilson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongAustralia
- Illawarra Health and Medical Research InstituteWollongongAustralia
| |
Collapse
|
25
|
Zeng S, Pan Y, Liu F, Yin J, Jiang M, Long Y, Zhao X, Lash GE, Yang H. Role of clusterin in the regulation of trophoblast development and preeclampsia. Biochem Biophys Res Commun 2021; 583:128-134. [PMID: 34735874 DOI: 10.1016/j.bbrc.2021.10.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE) threatens the safety of mothers and fetuses, and its pathogenesis is still unclear. Our previous study has found the relationship between PE and serum Clusterin (CLU). This study aimed to investigate the role of CLU on PE. Firstly, levels of CLU in serum and placental tissue from PE patients and healthy pregnancies were compared. Then, RNA sequencing, cell counting kit-8, matrigel invasion, cell apoptosis, and angiogenesis assay were performed to evaluate the role of CLU on primary isolation trophoblast cells. We found the expression of CLU was increased before the clinical syndrome occurred, whereas its level was positively related to the severity of PE. CLU significantly inhibited the expression of matrix metalloproteinase-9 and Vimentin and enhanced E-cadherin to inhibit epithelial-mesenchymal transition of trophoblast cells, further reducing its migration and invasion. Our results suggested that CLU may play a role in regulating trophoblast invasion and migration during placental development, which may be one of the risk factors for PE.
Collapse
Affiliation(s)
- Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yue Pan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiaye Yin
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xueqin Zhao
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
26
|
Bertholim L, Chaves AFA, Oliveira AK, Menezes MC, Asega AF, Tashima AK, Zelanis A, Serrano SMT. Systemic Effects of Hemorrhagic Snake Venom Metalloproteinases: Untargeted Peptidomics to Explore the Pathodegradome of Plasma Proteins. Toxins (Basel) 2021; 13:toxins13110764. [PMID: 34822548 PMCID: PMC8622078 DOI: 10.3390/toxins13110764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.
Collapse
Affiliation(s)
- Luciana Bertholim
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alison F. A. Chaves
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Ana K. Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Milene C. Menezes
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Amanda F. Asega
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
| | - Alexandre K. Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo 04023-901, SP, Brazil;
| | - Andre Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo (UNIFESP), 330 Talim St., São José dos Campos 12231-280, SP, Brazil;
| | - Solange M. T. Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signalig, CeTICS, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (L.B.); (A.F.A.C.); (A.K.O.); (M.C.M.); (A.F.A.)
- Correspondence:
| |
Collapse
|
27
|
Lackner C, Stauber RE, Davies S, Denk H, Dienes HP, Gnemmi V, Guido M, Miquel R, Paradis V, Schirmacher P, Terracciano L, Berghold A, Pregartner G, Binder L, Douschan P, Rainer F, Sygulla S, Jager M, Rautou PE, Bumbu A, Horhat A, Rusu I, Stefanescu H, Detlefsen S, Krag A, Thiele M, Cortez-Pinto H, Moreno C, Gouw ASH, Tiniakos DG. Development and prognostic relevance of a histologic grading and staging system for alcohol-related liver disease. J Hepatol 2021; 75:810-819. [PMID: 34126105 DOI: 10.1016/j.jhep.2021.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The SALVE Histopathology Group (SHG) developed and validated a grading and staging system for the clinical and full histological spectrum of alcohol-related liver disease (ALD) and evaluated its prognostic utility in a multinational cohort of 445 patients. METHODS SALVE grade was described by semiquantitative scores for steatosis, activity (hepatocellular injury and lobular neutrophils) and cholestasis. The histological diagnosis of steatohepatitis due to ALD (histological ASH, hASH) was based on the presence of hepatocellular ballooning and lobular neutrophils. Fibrosis staging was adapted from the Clinical Research Network staging system for non-alcoholic fatty liver disease and the Laennec staging system and reflects the pattern and extent of ALD fibrosis. There are 7 SALVE fibrosis stages (SFS) ranging from no fibrosis to severe cirrhosis. RESULTS Interobserver κ-value for each grading and staging parameter was >0.6. In the whole study cohort, long-term outcome was associated with activity grade and cholestasis, as well as cirrhosis with very broad septa (severe cirrhosis) (p <0.001 for all parameters). In decompensated ALD, adverse short-term outcome was associated with activity grade, hASH and cholestasis (p = 0.038, 0.012 and 0.001, respectively), whereas in compensated ALD, hASH and severe fibrosis/cirrhosis were associated with decompensation-free survival (p = 0.011 and 0.001, respectively). On multivariable analysis, severe cirrhosis emerged as an independent histological predictor of long-term survival in the whole study cohort. Severe cirrhosis and hASH were identified as independent predictors of short-term survival in decompensated ALD, and also as independent predictors of decompensation-free survival in compensated ALD. CONCLUSION The SALVE grading and staging system is a reproducible and prognostically relevant method for the histological assessment of disease activity and fibrosis in ALD. LAY SUMMARY Patients with alcohol-related liver disease (ALD) may undergo liver biopsy to assess disease severity. We developed a system to classify ALD under the microscope by grading ALD activity and staging the extent of liver scarring. We validated the prognostic performance of this system in 445 patients from 4 European centers.
Collapse
Affiliation(s)
- Carolin Lackner
- Institute of Pathology, Medical University of Graz, Austria.
| | - Rudolf E Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Susan Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Austria
| | - Hans Peter Dienes
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Viviane Gnemmi
- Université Lille, Canther, Inserm, UMR-S 1277, CHU Lille, Service de Pathologie, Lille, France
| | - Maria Guido
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Valerie Paradis
- Assistance Publique-Hôpitaux de Paris, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Universitaire Beaujon, France; Université Paris Diderot, CNRS, Centre de Recherche sur l'Inflammation (CRI), Paris, France; Département Hospitalo-Universitaire (DHU) UNITY, Clichy, France
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Luigi Terracciano
- Anatomic Pathology Institute, Humanitas University Research Hospital, Rozzano, Milano, Italy
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Lukas Binder
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Douschan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Rainer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Marion Jager
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Andreea Bumbu
- Liver Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Liver Research Club, Cluj-Napoca, Romania
| | - Adelina Horhat
- Liver Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Liver Research Club, Cluj-Napoca, Romania
| | - Ioana Rusu
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Horia Stefanescu
- Liver Unit, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Liver Research Club, Cluj-Napoca, Romania
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense C, Denmark; Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
| | - Aleksander Krag
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark; Department of Gastroenterology and Hepatology and OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense C, Denmark
| | - Maja Thiele
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark; Department of Gastroenterology and Hepatology and OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense C, Denmark
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Annette S H Gouw
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Dina G Tiniakos
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Department of Pathology, Aretaieio Hospital, Medical School, National & Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
28
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
29
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kropáčková T, Mann H, Růžičková O, Šléglová O, Vernerová L, Horváthová V, Tomčík M, Pavelka K, Vencovský J, Šenolt L. Clusterin serum levels are elevated in patients with early rheumatoid arthritis and predict disease activity and treatment response. Sci Rep 2021; 11:11525. [PMID: 34075162 PMCID: PMC8169772 DOI: 10.1038/s41598-021-90973-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Clusterin (CLU) is a molecular chaperone that participates in a variety of biological processes. Recent studies indicate its possible involvement in the development of bone erosions and autoimmunity. The aim of this study was to investigate its serum concentrations in patients with early rheumatoid arthritis (RA) and to explore their potential relationship with disease activity and treatment response. Serum levels of CLU were measured in 52 patients before and 3 months after the initiation of treatment and in 52 healthy individuals. CLU levels at baseline were significantly increased in patients with early RA compared with healthy subjects (p < 0.0001). After 3 months of treatment, the levels of CLU decreased and reached concentrations comparable to those in controls. Even though there was no relationship between CLU levels and disease activity at baseline, CLU levels positively correlated with disease activity at months 3, 6 and 12 after treatment initiation. Using ROC analysis, lower CLU baseline levels predicted achieving the therapeutic target of low disease activity and remission at months 3, 6 and 12. In summary, we found increased serum concentrations of clusterin in treatment-naïve patients with early rheumatoid arthritis, and we suggest clusterin as a predictive biomarker of disease activity and treatment response.
Collapse
Affiliation(s)
- Tereza Kropáčková
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Heřman Mann
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Růžičková
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Šléglová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucia Vernerová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic
| | - Veronika Horváthová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Šenolt
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic. .,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
31
|
de Campos TDP, da Cruz Rodrigues KC, Pereira RM, Anaruma CP, Dos Santos Canciglieri R, de Melo DG, da Silva ASR, Cintra DE, Ropelle ER, Pauli JR, de Moura LP. The protective roles of clusterin in ocular diseases caused by obesity and diabetes mellitus type 2. Mol Biol Rep 2021; 48:4637-4645. [PMID: 34036481 DOI: 10.1007/s11033-021-06419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Obesity is a chronic, non-transmissible and multifactorial disease commonly associated with systemic inflammation and damage to health. This disorder has been pointed out as leading to the development of a diversity of eye diseases and, consequently, damage to visual acuity. More specifically, cardiometabolic risk is associated with lacrimal gland dysfunctions, since it changes the inflammatory profile favoring the development and worsening of dry eye disease. In more severe and extreme cases, obesity, inflammation, and diabetes mellitus type 2 can trigger the total loss of vision. In this scenario, besides its numerous metabolic functions, clusterin, an apolipoprotein, has been described as protective to the ocular surface through the seal mechanism. Thus, the current review aimed to explain the role of clusterin in dry eye disease that can be triggered by obesity and diabetes.
Collapse
Affiliation(s)
- Thaís Dantis Pereira de Campos
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Raphael Dos Santos Canciglieri
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | - Diego Gomes de Melo
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LABGeN), School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas, 1300 Pedro Zaccaria Street, Limeira, SP, Brazil.
- CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
- Postgraduate Program in Motricity Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
32
|
Zeng S, Han M, Jiang M, Liu F, Hu Y, Long Y, Zhu C, Zeng F, Gan Q, Ye W, Fu W, Yang H. Serum complement proteomics reveal biomarkers for hypertension disorder of pregnancy and the potential role of Clusterin. Reprod Biol Endocrinol 2021; 19:56. [PMID: 33874952 PMCID: PMC8054419 DOI: 10.1186/s12958-021-00742-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Hypertension disorder of pregnancy (HDP) is one of the leading causes of maternal and foetal illness. The aim of the current study was to identify and verify novel serum markers for HDP. METHODS A label-free LC-MS/MS method was used to establish the serum proteomic profiles of 12 pre-HDP (before clinical diagnosis of HDP) pregnancies and verify prioritized candidates in the verification set of 48 pre-HDP pregnancies. These biomarkers were revalidated by ELISA in an independent cohort of 88 pre-HDP pregnancies. Subsequently, the candidate biomarkers were histologically analysed by immunohistochemistry, and function was evaluated in TEV-1 cells. RESULTS We identified 33 proteins with significantly increased abundance and 14 with decreased abundance (peptide FDR ≤ 1%, P < 0.05). Complement was one of the top enriched components in the pre-HDP group compared with the control group. Three complement factors (CLU, CFHR5, and CRP) were significantly increased in the three sets, of which CLU was a critical factor for the development of HDP (OR = 1.22, P < 0.001). When these three factors and body weight were combined, the AUC was 0.74, with a sensitivity of 0.67 and specificity of 0.68 for HDP prediction compared with normal pregnancy. In addition, inflammation-induced CLU could inhibit the invasion of TEV-1 cells. CONCLUSIONS Complement proteins may play an essential role in the occurrence of HDP by acting on trophoblast cells. CLU may be a high-risk factor for HDP, and the models combining candidates show reasonable screening efficiency of HDP in the first half of pregnancy.
Collapse
Affiliation(s)
- Shanshui Zeng
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Mengru Han
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Min Jiang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Fei Liu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yanwei Hu
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Yan Long
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Chunyan Zhu
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fangling Zeng
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qiangsheng Gan
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Weitao Ye
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenjin Fu
- Clinical Laboratory, Houjie Hospital of Guangdong Medical University, HeTian Road, Dongguan, 523945, Guangdong, China.
| | - Hongling Yang
- Department of Laboratory, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, No.9, Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
33
|
Shoari A, Kanavi MR, Rasaee MJ. Inhibition of matrix metalloproteinase-9 for the treatment of dry eye syndrome; a review study. Exp Eye Res 2021; 205:108523. [PMID: 33662353 DOI: 10.1016/j.exer.2021.108523] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Dry eye syndrome (DES) and tear dysfunction are multifactorial conditions affecting meibomian glands, lacrimal glands, and ocular surface. This ocular disorder can cause eye irritation, irregular cornea, corneal barrier disruption, and blurred vision. Uncontrolled increase in matrix metalloproteinase-9 (MMP-9) level and activity has been detected in the tears and ocular surface in the patients with DES, which has been proved to be related to disruption of tight junctions in apical corneal epithelium associated with severe signs of DES. These uncontrolled activities of MMP-9 lead to desquamation of ocular surface epithelia. Therefore, this review study was conducted to summarize the evidence regarding MMP-9 contribution in DES, and inhibition of MMP-9, as a therapeutic target for treatment of DES. For this purpose, herein, the related studies designed novel pharmaceutical compounds for direct and indirect inhibition of MMP-9 as treatment approaches for DES were reviewed. These compounds were designed to improve corneal barrier function, reduce inflammation on ocular surface, and restore tear production.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Menezes TDA, Bustamante-Filho IC, Paschoal AFL, Dalberto PF, Bizarro CV, Bernardi ML, Ulguim RDR, Bortolozzo FP, Mellagi APG. Differential seminal plasma proteome signatures of boars with high and low resistance to hypothermic semen preservation at 5°C. Andrology 2021; 8:1907-1922. [PMID: 33460278 DOI: 10.1111/andr.12869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/20/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypothermic storage at 5°C has been investigated as an alternative to promote the prudent use of antibiotics for boar artificial insemination doses. However, this temperature is challenging for some ejaculates or boars. OBJECTIVE The present study aimed to identify putative biomarkers for semen resistance to hypothermic storage at 5°C by comparing the seminal plasma proteomes of boars with high and low seminal resistance to preservation at 5°C. MATERIALS AND METHODS From an initial group of 34 boars, 15 were selected based on the following criteria: ejaculate with ≤20% abnormal spermatozoa and at least 70% progressive motility at 120 hours of storage at 17°C. Then, based on the response to semen hypothermic storage at 5°C, boars were classified into two categories: high resistance-progressive motility of >75% in the three collections (n = 3); and low resistance-progressive motility of <75% in the three collections (n = 3). Seminal plasma proteins were analyzed in pools, and differential proteomics was performed using Multidimensional Protein Identification Technology. RESULTS Progressive motility was lower at 120 hours of storage in low resistance, compared to high resistance boars (P < .05). Acrosome and plasma membrane integrity were not affected by the boar category, storage time, or their interaction (P ≥ .104). Sixty-five proteins were considered for differential proteomics. Among the differentially expressed and exclusive proteins, the identification of proteins such cathepsin B, legumain, and cystatin B suggests significant changes in key enzymes (eg, metalloproteinases) involved in spermatogenesis, sperm integrity, and fertilizing potential. DISCUSSION AND CONCLUSION Differences in the seminal plasma suggest that proteins involved in the proteolytic activation of metalloproteinases and proteins related to immune response modulation could disrupt key cellular pathways during spermatogenesis and epididymal maturation, resulting in altered resistance to chilling injury. Further in vivo studies focusing on the immunological crosstalk between epithelial cells and gametes might explain how the immune regulators influence sperm resistance to hipothermic storage.
Collapse
Affiliation(s)
- Tila de Alcantara Menezes
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mari Lourdes Bernardi
- Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael da Rosa Ulguim
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
35
|
Fini ME, Jeong S, Wilson MR. Therapeutic Potential of the Molecular Chaperone and Matrix Metalloproteinase Inhibitor Clusterin for Dry Eye. Int J Mol Sci 2020; 22:E116. [PMID: 33374364 PMCID: PMC7794831 DOI: 10.3390/ijms22010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to "protect, seal, and heal". Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.
Collapse
Affiliation(s)
- M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences Tufts University, Boston, MA 02111, USA
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA;
| | - Mark R. Wilson
- The Illawarra Health and Medical Research Institute, Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
36
|
Extensive serum biomarker analysis before and after treatment in healing of diabetic foot ulcers using a cytokine antibody array. Cytokine 2020; 133:155173. [DOI: 10.1016/j.cyto.2020.155173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/21/2023]
|
37
|
Alcazar O, Hernandez LF, Nakayasu ES, Piehowski PD, Ansong C, Abdulreda MH, Buchwald P. Longitudinal proteomics analysis in the immediate microenvironment of islet allografts during progression of rejection. J Proteomics 2020; 223:103826. [PMID: 32442648 DOI: 10.1016/j.jprot.2020.103826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The applicability and benefits of pancreatic islet transplantation are limited due to various issues including the need to avoid immune-mediated rejection. Here, we used our experimental platform of allogeneic islet transplant in the anterior chamber of the eye (ACE-platform) to longitudinally monitor the progress of rejection in mice and obtain aqueous humor samples representative of the microenvironment of the graft for accurately-timed proteomic analyses. LC-MS/MS-based proteomics performed on such mass-limited samples (~5 μL) identified a total of 1296 proteins. Various analyses revealed distinct protein patterns associated with the mounting of the inflammatory and immune responses and their evolution with the progression of the rejection. Pathway analyses indicated predominant changes in cytotoxic functions, cell movement, and innate and adaptive immune responses. Network prediction analyses revealed transition from humoral to cellular immune response and exacerbation of pro-inflammatory signaling. One of the proteins identified by this localized proteomics as a candidate biomarker of islet rejection, Cystatin 3, was further validated by ELISA in the aqueous humor. This study provides (1) experimental evidence demonstrating the feasibility of longitudinal localized proteomics using small aqueous humor samples and (2) proof-of-concept for the discovery of biomarkers of impending immune attack from the immediate local microenvironment of ACE-transplanted islets. SIGNIFICANCE: The combination of the ACE-platform and longitudinal localized proteomics offers a powerful approach to biomarker discovery during the various stages of immune reactions mounted against transplanted tissues including pancreatic islets. It also supports proteomics-assisted drug discovery and development efforts aimed at preventing rejection through efficacy assessment of new agents by noninvasive and longitudinal graft monitoring.
Collapse
Affiliation(s)
- Oscar Alcazar
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA
| | - Luis F Hernandez
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Midhat H Abdulreda
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Surgery, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Ophthalmology, Miami, FL, USA.
| | - Peter Buchwald
- University of Miami Miller School of Medicine, Diabetes Research Institute, Miami, FL, USA; University of Miami Miller School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA.
| |
Collapse
|
38
|
Clusterin Silencing in Prostate Cancer Induces Matrix Metalloproteinases by an NF- κB-Dependent Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:4081624. [PMID: 31885575 PMCID: PMC6925831 DOI: 10.1155/2019/4081624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/31/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-κB. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as in vitro and in vivo models of prostate cancer (PCa). Our results demonstrated that (i) CLU expression is significantly downregulated in human PCa and inversely correlates with the expression of p65 in metastases; (ii) CLU overexpression in PCa cells reduces the Ser536 phosphorylation of p65, inhibits NF-κB nuclear translocation, and reduces the transcription of matrix metalloproteinase-9 and metalloproteinase-2 (MMP-9 and MMP-2). Conversely, CLU silencing promotes NF-κB activation and transcriptional upregulation of MMP-9; and (iii) expression and activity of MMP-2 and MMP-9 are increased in CLU−/− mice (CLUKO) and in TRAMP/CLUKO mice in comparison to their relative Clu+/+ littermates. Taken together, our data support the hypothesis that CLU downregulation, an early and relevant event in PCa onset, may inhibit NF-κB activation and limit the execution of a transcriptional program that favor the disease progression towards a metastatic stage.
Collapse
|
39
|
Thia ZZ, Tong L. Update on the role of impression cytology in ocular surface disease. Taiwan J Ophthalmol 2019; 9:141-149. [PMID: 31572650 PMCID: PMC6759557 DOI: 10.4103/tjo.tjo_57_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding of the molecular pathology of ocular surface disease (OSD) is poor, and treatment is highly unsatisfactory. To facilitate treatment of OSD, a relatively noninvasive procedure, i.e. impression cytology (IC) has been shown to be useful. Recently, the technologies employed in research studies using IC in OSD have vastly improved, and standardized IC has even been used in clinical trials of dry eye. Here, this review aims to describe the advances of IC in the last 10 years, which serves as an update on the progress in this field since the last major review of IC. OSD that has been recently evaluated include meibomian gland dysfunction, Sjogren's syndrome, Steven–Johnson syndrome, and postmenopausal dry eye. The recent studies (4 longitudinal, 18 cross-sectional analyses) which utilized IC analyzed DNA, RNA, proteins, and ocular surface cells, including memory T-lymphocytes, dendritic cells (DCs), neutrophils, conjunctival epithelial cells, and goblet cells. These studies employed quantification of transcripts associated with inflammation, proteins involved in oxidative stress, enzymes such as matrix metalloproteinases, and cell surface proteins by flow cytometry, such as HLA-DR, cytokine and chemokine receptors, markers for T cell differentiation, and DC activation, in addition to the more traditional morphological evaluation of squamous metaplasia and staining for goblet cells. Some challenges in the clinical use of IC have also been described, including issues related to storage and normalization of data. In summary, advances in IC have permitted a more robust evaluation of the ocular surface and will facilitate progress in the understanding and treatment of OSD.
Collapse
Affiliation(s)
- Zhang-Zhe Thia
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Corneal and External Eye Disease Service, Singapore National Eye Center, Singapore.,Singapore Eye Research Institute, Singapore.,Eye-academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
40
|
Abstract
Purpose Dry eye is a major ocular pathology worldwide. Although dry eye is a multifactorial disease, recent studies have shown that chronic immunologic processes have a pivotal role in its pathogenesis, characterized by the infiltration of immune cells in the lacrimal glands, elevated levels of tear inflammatory cytokines, and increased density of immune cells in the cornea and conjunctiva. This review describes the recent advances in understanding the relationship between dry eye and inflammation. Methods This narrative review is based on searches of recent international literature using terms related to the immune response in dry eye, and includes clinical trials, animal experiments, and expert reviews. Results Although dry eye presents clinically as tear film instability associated with corneal/conjunctival epithelial disorders, Meibomian gland dysfunction, and decreased visual function, recent laboratory and clinical studies have indicated inflammation in the lacrimal glands, Meibomian glands, conjunctiva, cornea, and aqueous tears. Furthermore, inflammation at these locations leads to conjunctival goblet cell apoptosis, corneal epithelial barrier disruption, and corneal nerve damage. These inflammatory outcomes can be exacerbated by intrinsic and extrinsic factors, such as aging, sex steroid hormone, autoimmune diseases, contact lens use, visual display terminals, and dry environment. Conclusions Recent advances in dry eye research have revealed the inflammatory process and its pathogenesis, which has been proposed as an "inflammatory vicious cycle" of dry eye. Comprehensive assessment of dry eye based on inflammation will improve the selection of treatments and help break the inflammatory cycle in clinical settings.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Department of Ophthalmology, Ichikawa General Hospital, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
41
|
Contu L, Carare RO, Hawkes CA. Knockout of apolipoprotein A-I decreases parenchymal and vascular β-amyloid pathology in the Tg2576 mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:698-714. [PMID: 31002190 DOI: 10.1111/nan.12556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
AIMS Apolipoprotein A-I (apoA-I), the principal apolipoprotein associated with high-density lipoproteins in the periphery, is also found at high concentrations in the cerebrospinal fluid. Previous studies have reported either no impact or vascular-specific effects of apoA-I knockout (KO) on β-amyloid (Aβ) pathology. However, the putative mechanism(s) by which apoA-I may influence Aβ deposition is unknown. METHODS We evaluated the effect of apoA-I deletion on Aβ pathology, Aβ production and clearance from the brain in the Tg2576 mouse model of Alzheimer's disease (AD). RESULTS Contrary to previous reports, deletion of the APOA1 gene significantly reduced concentrations of insoluble Aβ40 and Aβ42 and reduced plaque load in both the parenchyma and blood vessels of apoA-I KO × Tg2576 mice compared to Tg2576 animals. This was not due to decreased Aβ production or alterations in Aβ species. Levels of soluble clusterin/apoJ were significantly higher in neurons of apoA-I KO mice compared to both wildtype (WT) and apoA-I KO × Tg2576 mice. In addition, clearance of Aβ along intramural periarterial drainage pathways was significantly higher in apoA-I KO mice compared to WT animals. CONCLUSION These data suggest that deletion of apoA-I is associated with increased clearance of Aβ and reduced parenchymal and vascular Aβ pathology in the Tg2576 model. These results suggest that peripheral dyslipidaemia can modulate the expression of apolipoproteins in the brain and may influence Aβ clearance and aggregation in AD.
Collapse
Affiliation(s)
- L Contu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| | - R O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C A Hawkes
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, UK
| |
Collapse
|
42
|
Reins RY, Lema C, Courson J, Kunnen CME, Redfern RL. MyD88 Deficiency Protects Against Dry Eye-Induced Damage. Invest Ophthalmol Vis Sci 2019; 59:2967-2976. [PMID: 30025110 PMCID: PMC5991808 DOI: 10.1167/iovs.17-23397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation. Toll-like receptors (TLRs) are integral in the initiation of inflammatory signaling. Therefore, we evaluated the effect of TLR-deficiency on dry eye–related ocular surface damage and inflammation using a mouse model of experimental dry eye (EDE). Methods C57BL/6 wild-type (WT), MyD88−/−, and IL-1R−/− mice were exposed to EDE conditions for 5 days. Tear production was measured by phenol red thread test and ocular surface damage assessed with fluorescein staining. Corneal homogenates were obtained for matrix metalloproteinase (MMP) and cytokine expression analysis by Luminex assay and quantitative PCR. In addition, whole eyes and eyelids were dissected and goblet cells and Meibomian glands were imaged, respectively. Results Following 5 days of EDE, WT mice had extensive ocular surface staining, while MyD88−/− mice had no increased staining above non-EDE conditions. Similarly, MyD88−/− mice did not have increased corneal MMP-2, 3, or 8 concentrations, as seen with WT mice. MyD88-deficiency also resulted in decreased corneal cytokine levels. In addition, MyD88−/− mice had significantly lower conjunctival goblet cell counts compared with both WT (EDE) and IL-1R−/− (non-EDE) mice. However, there was no difference in Meibomian gland morphology between WT, IL-1R−/−, and MyD88−/− mice. Conclusions These studies demonstrate the importance of TLR signaling in dry eye development. Mice lacking TLR signaling, MyD88−/−, were protected from EDE-induced ocular surface damage and inflammatory mediator expression, warranting further investigation into TLR inhibition as a potential therapeutic for DED.
Collapse
Affiliation(s)
- Rose Y Reins
- University of Houston, College of Optometry, The Ocular Surface Institute, Houston, Texas, United States
| | - Carolina Lema
- University of Houston, College of Optometry, The Ocular Surface Institute, Houston, Texas, United States
| | - Justin Courson
- University of Houston, College of Optometry, The Ocular Surface Institute, Houston, Texas, United States
| | - Carolina M E Kunnen
- University of Houston, College of Optometry, The Ocular Surface Institute, Houston, Texas, United States
| | - Rachel L Redfern
- University of Houston, College of Optometry, The Ocular Surface Institute, Houston, Texas, United States
| |
Collapse
|
43
|
Yu V, Bhattacharya D, Webster A, Bauskar A, Flowers C, Heur M, Chintala SK, Itakura T, Wilson MR, Barr JT, Jeong S, Wang M, Fini ME. Clusterin from human clinical tear samples: Positive correlation between tear concentration and Schirmer strip test results. Ocul Surf 2018; 16:478-486. [PMID: 30077709 PMCID: PMC6175631 DOI: 10.1016/j.jtos.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE To investigate the relationship between tear concentration of the homeostatic protein clusterin (CLU) and dry eye signs and symptoms, and to characterize tear CLU protein. METHODS Two independent studies were conducted, one in Tucson (44 subjects), the other in Los Angeles (52 subjects). A cohort study design was employed to enroll patients without regard to dry eye diagnosis. Dry eye signs and symptoms were assessed using clinical tests. Tear samples were collected by Schirmer strip, and also by micropipette at slit lamp when possible. CLU from both sample types was quantified by immunoassay. The relationship between CLU concentration and clinical test scores was determined by Pearson's correlation coefficient (for individual eyes) and multiple linear regression analysis (including both eyes). CLU was also evaluated biochemically by western blotting. RESULTS In the Tucson cohort, a positive correlation was observed between tear CLU concentration and results of the Schirmer strip test, a measure of tear flow (p = 0.021 includes both eyes). This result was corroborated in the Los Angeles cohort (p = 0.013). The mean tear CLU concentration was 31 ± 14 μg/mL (n = 18 subjects, 33 eyes; range = 7-48 μg/mL). CLU from clinical tear samples appeared biochemically similar to CLU from a non-clinical tear sample and from blood plasma. CONCLUSIONS Results support the hypothesis that an optimal concentration of tear CLU is important for ocular surface health, and that this drops below the effective threshold in dry eye. Tear CLU measurement might identify patients that could benefit from supplementation. Information about concentration will aid development of therapeutic dosage parameters.
Collapse
Affiliation(s)
- Valerie Yu
- MD Program, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Dhruva Bhattacharya
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Andrew Webster
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Aditi Bauskar
- PhD Program in Medical Biology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Charles Flowers
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Martin Heur
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Shravan K Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Mark R Wilson
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Joseph T Barr
- The Ohio State University College of Optometry, Columbus, OH, USA
| | - Shinwu Jeong
- USC Institute for Genetic Medicine, USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Mingwu Wang
- Department of Ophthalmology & Vision Science, University of Arizona College of Medicine, Tucson, AZ, USA
| | - M Elizabeth Fini
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Bae CH, Na HG, Choi YS, Song SY, Kim YD. Clusterin Induces MUC5AC Expression via Activation of NF-κB in Human Airway Epithelial Cells. Clin Exp Otorhinolaryngol 2018; 11:124-132. [PMID: 29316784 PMCID: PMC5951062 DOI: 10.21053/ceo.2017.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/08/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023] Open
Abstract
Objectives Clusterin (CLU) is known as apolipoprotein J, and has three isoforms with different biological functions. CLU is associated with various diseases such as Alzheimer disease, atherosclerosis, and some malignancies. Recent studies report an association of CLU with inflammation and immune response in inflammatory airway diseases. However, the effect of CLU on mucin secretion of airway epithelial cells has not yet been understood. Therefore, the effect and brief signaling pathway of CLU on MUC5AC (as a major secreted mucin) expression were investigated in human airway epithelial cells. Methods In the tissues of nasal polyp and normal inferior turbinate, the presence of MUC5AC and CLU was investigated using immunohistochemical stain and Western blot analysis. In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the effect and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway of CLU on MUC5AC expression were investigated using immunohistochemical stain, reverse transcription-polymerase chain reaction, real-time polymerase chain reaction, enzyme immunoassay, and Western blot analysis. Results In the nasal polyps, MUC5AC and CLU were abundantly present in the epithelium on immunohistochemical stain, and nuclear CLU (nCLU) was strongly detected on Western blot analysis. In human NCI-H292 airway epithelial cells or the primary cultures of normal nasal epithelial cells, recombinant nCLU increased MUC5AC expression, and significantly activated phosphorylation of NF-κB. And BAY 11-7085 (a specific NF-κB inhibitor) and knockdown of NF-κB by NF-κB siRNA (small interfering RNA) significantly attenuated recombinant nCLU-induced MUC5AC expression. Conclusion These results suggest that nCLU induces MUC5AC expression via the activation of NF-κB signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University College of Medicine, Daegu, Korea.,Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Korea
| |
Collapse
|
45
|
Müller WEG, Ackermann M, Wang S, Neufurth M, Muñoz-Espí R, Feng Q, Schröder HC, Wang X. Inorganic polyphosphate induces accelerated tube formation of HUVEC endothelial cells. Cell Mol Life Sci 2018; 75:21-32. [PMID: 28770290 PMCID: PMC11105250 DOI: 10.1007/s00018-017-2601-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022]
Abstract
In this study, the effect of inorganic polyphosphate (polyP) on the initial phase of angiogenesis and vascularization was investigated, applying the HUVEC cell tube formation assay. PolyP is a physiological and high energy phosphate polymer which has been proposed to act as a metabolic fuel in the extracellular space with only a comparably low ATP content. The experiments revealed that polyP accelerates tube formation of human umbilical vein endothelial cells (HUVEC), seeded onto a solidified basement membrane extract matrix which contains polyP-metabolizing alkaline phosphatase (ALP) activity. This effect is abolished by co-addition of apyrase, which degrades ATP to AMP and inorganic phosphate. The assumption that ATP, derived from polyP, activates HUVEC cells leading to tube formation was corroborated by experiments showing that addition of polyP to the cells causes a strong rise of ATP level in the culture medium. Finally, we show that at a later stage of cultivation of HUVEC cells, after 3 d, polyP causes a strong enhancement of the expression of the genes encoding for the two major matrix metalloproteinases (MMPs) released by endothelial cells during tube formation, MMP-9 and MMP-2. This stimulatory effect is again abrogated by addition of apyrase together with polyP. From these results, we propose that polyP is involved either directly or indirectly in energy supply, via ALP-mediated transfer of energy-rich phosphate under ATP formation. This ATP is utilized for the activation and oriented migration of endothelial cells and for the matrix organization during the initial phases of tube formation.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José, Beltrán 2, Paterna, 46980, València, Spain
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
46
|
Loughner CL, Tiwari A, Kenchegowda D, Swamynathan S, Swamynathan SK. Spatiotemporally Controlled Ablation of Klf5 Results in Dysregulated Epithelial Homeostasis in Adult Mouse Corneas. Invest Ophthalmol Vis Sci 2017; 58:4683-4693. [PMID: 28910443 PMCID: PMC5598321 DOI: 10.1167/iovs.17-22498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Corneal epithelial (CE) homeostasis requires coordination between proliferation and differentiation. Here we examine the role of cell proliferation regulator Krüppel-like factor 5 (Klf5) in adult mouse CE homeostasis. Methods Klf5 was ablated in a spatiotemporally restricted manner by inducing Cre expression in 8-week-old ternary transgenic Klf5LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre (Klf5Δ/ΔCE) mouse CE by administering doxycycline via chow. Normal chow-fed ternary transgenic siblings served as controls. The control and Klf5Δ/ΔCE corneal (1) histology, (2) cell proliferation, and (3) Klf5-target gene expression were examined using (1) periodic acid Schiff reagent-stained sections, (2) Ki67 expression, and (3) quantitative PCR and immunostaining, respectively. The effect of KLF4, KLF5, and OCT1 on gastrokine-1 (GKN1) promoter activity was determined by transient transfection in human skin keratinocyte NCTC-2544 cells. Results Klf5 expression was decreased to 23% of the controls in Klf5Δ/ΔCE corneas, which displayed increased fluorescein uptake, downregulation of tight junction proteins Tjp1 and Gkn1, desmosomal Dsg1a, and basement membrane Lama3 and Lamb1, suggesting defective permeability barrier. In transient transfection assays, KLF5 and OCT1 synergistically stimulated GKN1 promoter activity. Klf5Δ/ΔCE CE displayed significantly fewer cell layers and Ki67+ proliferative cells coupled with significantly decreased cyclin-D1, and elevated phospho(Ser-10) p27/Kip1 expression. Expression of Krt12, E-cadherin, and β-catenin remained unaltered in Klf5Δ/ΔCE corneas. Conclusions Klf5 contributes to adult mouse CE homeostasis by promoting (1) permeability barrier function through upregulation of Tjp1, Gkn1, Dsg1a, Lama3, and Lamb1, and (2) basal cell proliferation through upregulation of cyclin-D1 and suppression of phospho(Ser-10) p27/Kip1, without significantly affecting the expression of epithelial markers Krt12, E-cadherin, and β-catenin.
Collapse
Affiliation(s)
- Chelsea L Loughner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Doreswamy Kenchegowda
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
47
|
Tang HC, Huang HJ, Lee CC, Chen CYC. Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico. Comput Biol Chem 2017; 71:70-81. [PMID: 28987294 DOI: 10.1016/j.compbiolchem.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/15/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) appears to play an important role in acute skin inflammation. Subantimicrobial dose of tetracycline has been demonstrated to inhibit the activity of MMP-9 protein. However, long-term use tetracycline will induce side effect. The catalytic site of MMP-9 is located at zinc-binding amino acids, His401, His405 and His411. We attempted to search novel medicine formula as MMP-9 inhibitors from traditional Chinese medicine (TCM) database by using in silico studies. We utilized high-throughput virtual screening to find which natural compounds could bind to the zinc-binding site. The quantitative structure-activity relationship (QSAR) models, which constructed by scaffold of MMP-9 inhibitors and its activities, were employed to predict the bio-activity of the natural compounds for MMP-9. The results showed that Celacinnine, Lobelanidine and Celallocinnine were qualified to interact with zinc-binding site and displayed well predictive activity. We found that celallocinnine was the best TCM compound for zinc binging sites of MMP-9 because the stable interactions were observed under dynamic condition. In addition, Celacinnine and Lobelanidine could interact with MMP-9 related protein that identified by drug-target interaction network analysis. Thus, we suggested the herbs Hypericum patulum, Sedum acre, and Tripterygium wilfordii that containing Celallocinnine, Celacinnine and Lobelanidine might be a novel medicine formula to avoid the side effect of tetracycline and increase the efficacy of treatment.
Collapse
Affiliation(s)
- Hsin-Chieh Tang
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jin Huang
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu Chian Chen
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
48
|
Wąsik N, Sokół B, Hołysz M, Mańko W, Juszkat R, Jagodziński PP, Jankowski R. Clusterin, a New Cerebrospinal Fluid Biomarker in Severe Subarachnoid Hemorrhage: A Pilot Study. World Neurosurg 2017; 107:424-428. [PMID: 28803177 DOI: 10.1016/j.wneu.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammation following subarachnoid hemorrhage (SAH) involves numerous mediators with biomarker properties. Preliminary studies indicated that clusterin, a multifunctional chaperon protein, was a potential biomarker in SAH. We aimed to clarify the status of clusterin in SAH. METHODS From 27 patients with severe SAH, 47 cerebrospinal fluid (CSF) samples were collected 0-3, 5-7, and 10-14 days after SAH. Control CSF was collected from 25 age- and sex-matched healthy control subjects undergoing spinal anesthesia for minor surgery. Clusterin concentrations were assayed using enzyme-linked immunosorbent assay and compared with inflammatory markers, imaging findings, and treatment outcome. RESULTS In healthy control subjects, mean CSF clusterin level (1908.5 ng/mL ± 36.0) was significantly higher than in the patient group (P < 0.001). In the patient group, mean clusterin level was 741.1 ng/mL ± 759.2 0-3 days, 601.6 ng/mL ± 507.2 5-7 days, and 639.2 ng/mL ± 446.8 10-14 days after SAH. Clusterin level failed to differentiate between good (Glasgow Outcome Scale 4-5) and poor (Glasgow Outcome Scale 1-3) outcomes 0-3 days and 10-14 days after SAH (P = 0.238 and P = 0.225), but significantly higher levels of CSF clusterin were found 5-7 days after SAH in patients with good outcome (P = 0.017). There was a significant correlation between CSF clusterin level 5-7 days after SAH and Glasgow Outcome Scale at 3 months (correlation coefficient = 0.633). The best correlation was found for World Federation of Neurological Societies scale (correlation coefficient = -0.741). CONCLUSIONS SAH is associated with immediate decrease in CSF clusterin concentrations. Clusterin level at one point was a good predictor of outcome, and it may serve as a biomarker.
Collapse
Affiliation(s)
- Norbert Wąsik
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland.
| | - Bartosz Sokół
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Hołysz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Witold Mańko
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Juszkat
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland; Department of General and Interventional Radiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Paweł Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Jankowski
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
49
|
Protective effect of clusterin on rod photoreceptor in rat model of retinitis pigmentosa. PLoS One 2017; 12:e0182389. [PMID: 28767729 PMCID: PMC5540409 DOI: 10.1371/journal.pone.0182389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis Pigmentosa (RP) begins with the death of rod photoreceptors and is slowly followed by a gradual loss of cones and a rearrangement of the remaining retinal neurons. Clusterin is a chaperone protein that protects cells and is involved in various pathophysiological stresses, including retinal degeneration. Using a well-established transgenic rat model of RP (rhodopsin S334ter), we investigated the effects of clusterin on rod photoreceptor survival. To investigate the role of clusterin in S334ter-line3 retinas, Voronoi analysis and immunohistochemistry were used to evaluate the geometry of rod distribution. Additionally, immunoblot analysis, Bax activation, STAT3 and Akt phosphorylation were used to evaluate the pathway involved in rod cell protection. In this study, clusterin (10μg/ml) intravitreal treatment produced robust preservation of rod photoreceptors in S334ter-line3 retina. The mean number of rods in 1mm2 was significantly greater in clusterin injected RP retinas (postnatal (P) 30, P45, P60, & P75) than in age-matched saline injected RP retinas (P<0.01). Clusterin activated Akt, STAT3 and significantly reduced Bax activity; in addition to inducing phosphorylated STAT3 in Müller cells, which suggests it may indirectly acts on photoreceptors. Thus, clusterin treatment may interferes with mechanisms leading to rod death by suppressing cell death through activation of Akt and STAT3, followed by Bax suppression. Novel insights into the pathway of how clusterin promotes the rod cell survival suggest this treatment may be a potential therapeutic strategy to slow progression of vision loss in human RP.
Collapse
|
50
|
Abstract
The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.
Collapse
|