1
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
2
|
Abstract
Rapamycin (sirolimus) and other rapalogs (everolimus) are anti-cancer and anti-aging drugs, which delay cancer by directly targeting pre-cancerous cells and, indirectly, by slowing down organism aging. Cancer is an age-related disease and, figuratively, by slowing down time (and aging), rapamycin may delay cancer. In several dozen murine models, rapamycin robustly and reproducibly prevents cancer. Rapamycin slows cell proliferation and tumor progression, thus delaying the onset of cancer in carcinogen-treated, genetically cancer-prone and normal mice. Data on the use of rapamycin and everolimus in organ-transplant patients are consistent with their cancer-preventive effects. Treatment with rapamycin was proposed to prevent lung cancer in smokers and former smokers. Clinical trials in high-risk populations are warranted.
Collapse
|
3
|
Blagosklonny MV. Cellular senescence: when growth stimulation meets cell cycle arrest. Aging (Albany NY) 2023; 15:905-913. [PMID: 36805938 PMCID: PMC10008486 DOI: 10.18632/aging.204543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
At the very moment of cell-cycle arrest, the cell is not senescent yet. For several days in cell culture, the arrested cell is acquiring a senescent phenotype. What is happening during this geroconversion? Cellular enlargement (hypertrophy) and hyperfunctions (lysosomal and hyper-secretory) are hallmarks of geroconversion.
Collapse
|
4
|
Blagosklonny MV. As expected, based on rapamycin-like p53-mediated gerosuppression, mTOR inhibition acts as a checkpoint in p53-mediated tumor suppression. Oncoscience 2022; 9:38-41. [PMID: 36052376 PMCID: PMC9426927 DOI: 10.18632/oncoscience.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
|
5
|
Bouleftour W, Magne N. Aging preclinical models in oncology field: from cells to aging. Aging Clin Exp Res 2022; 34:751-755. [PMID: 34528213 DOI: 10.1007/s40520-021-01981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Aging is a universal complex and multifactorial physiological process that leads to the increasing incidence of various diseases including cancer. Indeed, 40% of individuals aged 65 years and over will have newly diagnosed cancers. Although most treated patients are elderly people, a low inclusion of the geriatric population is observed in most clinical trials. Furthermore, lethal side effects of antineoplastic therapy are markedly exacerbated with aging. Most cancer therapies were validated on young mice models, complicating results transposition to elderly patients. Thus, understanding the role of aging in tumor progression and response to cancer therapies with accurate preclinical models must be investigated. Therefore, this review aimed to summarize the state of the literature about preclinical models used to investigate the impact of aging microenvironment on tumorigenic potential, and on antineoplastic therapy response. Despite the advances in technology, and the increasing incidence of cancer in the elderly population, this present review focuses on the few studies using preclinical tumor model of aging. Since the biology of aging is challenging, aging animal models are an inevitable prelude. New emerging tools such as human organoid offer a promising path in research dedicated to aging.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical Oncology Department, Lucien Neuwirth Cancer Institute, 108 bis avenue Albert Raimond, 42270, Saint Priest en Jarez, France.
| | - Nicolas Magne
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270, Saint Priest en Jarez, France
| |
Collapse
|
6
|
Abstract
A hallmark of cellular senescence is proliferation-like activity of growth-promoting pathways (such as mTOR and MAPK) in non-proliferating cells. When the cell cycle is arrested, these pathways convert arrest to senescence (geroconversion), rendering cells hypertrophic, beta-Gal-positive and hyperfunctional. The senescence-associated secretory phenotype (SASP) is one of the numerous hyperfunctions. Figuratively, geroconversion is a continuation of growth in non-proliferating cells. Rapamycin, a reversible inhibitor of growth, slows down mTOR-driven geroconversion. Developed two decades ago, this model had accurately predicted that rapamycin must extend life span of animals. However, the notion that senescent cells directly cause organismal aging is oversimplified. Senescent cells contribute to organismal aging but are not strictly required. Cell senescence and organismal aging can be linked indirectly via the same underlying cause, namely hyperfunctional signaling pathways such as mTOR.
Collapse
|
7
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
8
|
Low JY, Laiho M. Caveolae-Associated Molecules, Tumor Stroma, and Cancer Drug Resistance: Current Findings and Future Perspectives. Cancers (Basel) 2022; 14:cancers14030589. [PMID: 35158857 PMCID: PMC8833326 DOI: 10.3390/cancers14030589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell membranes contain small invaginations called caveolae. They are a specialized lipid domain and orchestrate cellular signaling events, mechanoprotection, and lipid homeostasis. Formation of the caveolae depends on two classes of proteins, the caveolins and cavins, which form large complexes that allow their self-assembly into caveolae. Loss of either of these two proteins leads to distortion of the caveolae structure and disruption of many physiological processes that affect diseases of the muscle, metabolic states governing lipids, and the glucose balance as well as cancers. In cancers, the expression of caveolins and cavins is heterogenous, and they undergo alterations both in the tumors and the surrounding tumor microenvironment stromal cells. Remarkably, their expression and function has been associated with resistance to many cancer drugs. Here, we summarize the current knowledge of the resistance mechanisms and how this knowledge could be applied into the clinic in future. Abstract The discovery of small, “cave-like” invaginations at the plasma membrane, called caveola, has opened up a new and exciting research area in health and diseases revolving around this cellular ultrastructure. Caveolae are rich in cholesterol and orchestrate cellular signaling events. Within caveola, the caveola-associated proteins, caveolins and cavins, are critical components for the formation of these lipid rafts, their dynamics, and cellular pathophysiology. Their alterations underlie human diseases such as lipodystrophy, muscular dystrophy, cardiovascular disease, and diabetes. The expression of caveolins and cavins is modulated in tumors and in tumor stroma, and their alterations are connected with cancer progression and treatment resistance. To date, although substantial breakthroughs in cancer drug development have been made, drug resistance remains a problem leading to treatment failures and challenging translation and bench-to-bedside research. Here, we summarize the current progress in understanding cancer drug resistance in the context of caveola-associated molecules and tumor stroma and discuss how we can potentially design therapeutic avenues to target these molecules in order to overcome treatment resistance.
Collapse
Affiliation(s)
- Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Correspondence: ; Tel.: +1-410-502-9748; Fax: +1-410-502-2821
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
11
|
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18:59. [PMID: 32264958 PMCID: PMC7140346 DOI: 10.1186/s12964-020-0530-4] [Citation(s) in RCA: 888] [Impact Index Per Article: 222.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
The dynamic interactions of cancer cells with their microenvironment consisting of stromal cells (cellular part) and extracellular matrix (ECM) components (non-cellular) is essential to stimulate the heterogeneity of cancer cell, clonal evolution and to increase the multidrug resistance ending in cancer cell progression and metastasis. The reciprocal cell-cell/ECM interaction and tumor cell hijacking of non-malignant cells force stromal cells to lose their function and acquire new phenotypes that promote development and invasion of tumor cells. Understanding the underlying cellular and molecular mechanisms governing these interactions can be used as a novel strategy to indirectly disrupt cancer cell interplay and contribute to the development of efficient and safe therapeutic strategies to fight cancer. Furthermore, the tumor-derived circulating materials can also be used as cancer diagnostic tools to precisely predict and monitor the outcome of therapy. This review evaluates such potentials in various advanced cancer models, with a focus on 3D systems as well as lab-on-chip devices. Video abstract.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committees, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, USA
| | - Peyman Zare
- Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| |
Collapse
|
12
|
Caveolin-1 alleviates lipid accumulation in NAFLD associated with promoting autophagy by inhibiting the Akt/mTOR pathway. Eur J Pharmacol 2020; 871:172910. [PMID: 31926991 DOI: 10.1016/j.ejphar.2020.172910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most burgeoning chronic liver disease worldwide whose pathogenesis is complex and controversial. Here, we investigated the impact of caveolin-1 (CAV1), a scaffolding protein of caveolae for lipid homeostasis and endocytosis, on the pathogenesis of NAFLD. CAV1 and caveolae play crucial roles in the regulation of autophagy and hepatic energy metabolism. However, it remains unclear whether CAV1 could affect hepatic lipid metabolism by regulating autophagy. In this study, results showed that the expressions of CAV1 and autophagy-related proteins (Beclin1 and LC3-II/Ⅰ) were decreased, while the level of p62 was increased in HFD (high-fat diet) fed mice liver and in A/O (alcohol and oleic acid mixture) treated L02 cells, compared to the corresponding controls. In vivo study, upregulation of CAV1 with CAV1 scaffolding domain peptides (CSD, amino acids 82-101 of caveolin-1) could alleviate lipid accumulation and promote autophagy in NAFLD mice. In vitro study, CAV1 overexpression plasmid and its small interfering RNA were cultured with A/O treated L02 cells respectively. The results also demonstrated that CAV1 reduced lipid accumulation and promoted autophagy in L02 cells. Treatment with chloroquine, an inhibitor of autophagic degradation, abrogated CAV1 plasmid-mediated alleviation of lipid accumulation. Mechanistically, the inhibition of Akt/mTOR pathway was involved in the protective role of CAV1 in autophagy induction and lipid metabolism in NAFLD. Together, these results provided novel perception into the function of CAV1 in liver through autophagy and emphasized its positive role in NAFLD.
Collapse
|
13
|
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019; 11:8048-8067. [PMID: 31586989 PMCID: PMC6814615 DOI: 10.18632/aging.102355] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
From the dawn of civilization, humanity has dreamed of immortality. So why didn't the discovery of the anti-aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible (and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been implemented for potential life extension in humans. If you read this article from the very beginning to its end, you may realize that the time is now.
Collapse
|
14
|
Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 57:203-234. [PMID: 30097777 DOI: 10.1007/978-3-319-96704-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.
Collapse
|
15
|
Wu J, Zhou SL, Pi LH, Shi XJ, Ma LR, Chen Z, Qu ML, Li X, Nie SD, Liao DF, Pei JJ, Wang S. High glucose induces formation of tau hyperphosphorylation via Cav-1-mTOR pathway: A potential molecular mechanism for diabetes-induced cognitive dysfunction. Oncotarget 2018; 8:40843-40856. [PMID: 28489581 PMCID: PMC5522306 DOI: 10.18632/oncotarget.17257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022] Open
Abstract
The abnormally hyperphosphorylated tau is thought to be implicated in diabetes-associated cognitive deficits. The role of mammalian target of rapamycin (mTOR) / S6 kinase (S6K) signalling in the formation of tau hyperphosphorylation has been previously studied. Caveolin-1 (Cav-1), the essential structure protein of caveolae, promotes neuronal survival and growth, and inhibits glucose metabolism. In this study, we aimed to investigate the role of Cav-1 in the formation of tau hyperphosphorylation under chronic hyperglycemic condition (HGC). Diabetic rats were induced by streptozotocin (STZ). Primary hippocampal neurons with or without molecular intervention such as the transient over-expression or knock-down were subjected to HGC. The obtained experimental samples were analyzed by real time quantitative RT-PCR, Western blot, immunofluorescence or immunohistochemisty. We found: 1) that a chronic HGC directly decreases Cav-1 expression, increases tau phosphorylation and activates mTOR/S6K signalling in the brain neurons of diabetic rats, 2) that overexpression of Cav-1 attenuates tau hyperphosphorylation induced by chronic HGC in primary hippocampal neurons, whereas down-regulation of Cav-1 using Cav-1 siRNA dramatically worsens tau hyperphosphorylation via mTOR/S6K signalling pathway, and 3) that the down-regulation of Cav-1 induced by HGC is independent of mTOR signalling. Our results suggest that tau hyperphosphorylation and the sustained over-activated mTOR signalling under hyperglycemia may be due to the suppression of Cav-1. Therefore, Cav-1 is a potential therapeutic target for diabetes-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jing Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan-Lei Zhou
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Lin-Hua Pi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xia-Jie Shi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ling-Ran Ma
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Zi Chen
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Min-Li Qu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xin Li
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, People's Hospital of Hunan province, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jin-Jing Pei
- KI-Alzheimer's Disease Research Center, Karolinska Institutet, Novum, Stockholm, Sweden.,Department of Neurology, Xuan Wu Hospital, Capital Medical University, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shan Wang
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.,Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
16
|
Cadoni E, Marongiu F, Fanti M, Serra M, Laconi E. Caloric restriction delays early phases of carcinogenesis via effects on the tissue microenvironment. Oncotarget 2018; 8:36020-36032. [PMID: 28415598 PMCID: PMC5482635 DOI: 10.18632/oncotarget.16421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Caloric restriction (CR) is an effective and consistent means to delay aging and the incidence of chronic diseases related to old age, including cancer. However, the precise mechanisms responsible for the beneficial effect of CR on carcinogenic process are yet to be identified. In the present studies the hypothesis was tested that the CR might delay carcinogenesis via modulatory effects exerted on the age-associated, neoplastic-prone tissue microenvironment. Using a well characterized, orthotopic cell transplantation (Tx) system in the rat, preneoplastic hepatocytes isolated from liver nodules were injected into either old syngeneic rats fed ad libitum (AL) or animals of the same age given a CR diet (70% of AL feeding). Analysis of donor-derived cell clusters performed at 10 weeks post-Tx revealed a significant shift towards smaller class sizes in the group receiving CR diet. Clusters comprising more than 50 cells, including large hepatic nodules, were thrice more frequent in AL vs. CR animals. Incidence of spontaneous endogenous nodules was also decreased by CR. Markers of cell senescence were equally expressed in the liver of AL and CR groups. However, higher levels of SIRT1 and FOXO1 proteins were detected in CR-exposed livers, while expression of HDAC1 and C/EBPβ were decreased. These results are interpreted to indicate that CR delays the emergence of age-associated neoplastic disease through effects exerted, at least in part, on the tissue microenvironment. Nutrient-sensing pathways might mediate such modulatory effect.
Collapse
Affiliation(s)
- Erika Cadoni
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Fabio Marongiu
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Monica Serra
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, Unit of Experimental Medicine University of Cagliari-Italy, Cagliari, Italy
| |
Collapse
|
17
|
Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells. Oncotarget 2018; 8:35592-35608. [PMID: 28423685 PMCID: PMC5482601 DOI: 10.18632/oncotarget.16022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Advance-stage breast carcinomas include significant amounts of fibroblasts and infiltrating immune cells which have been implicated in tumor growth, recurrence, and response to therapy. The present study investigated the contribution of fibroblasts to tumor growth using direct tumor-fibroblast co-cultures and tumor xenograft models. Our findings revealed that fibroblasts enhance breast carcinoma growth by promoting the tumor vasculature via the MMP9-dependent mechanism. In tumor-fibroblast co-cultures, fibroblasts increased expression of TGF-β, TNF, and IL-1β cytokines in tumor cells. These cytokines cooperatively induced expression of matrix metalloproteinase MMP9 in tumor cells. Knockdown of MMP9 by shRNA significantly reduced tumor vascularization induced by fibroblasts. Mechanistically, our findings argue that expression of MMP9 in tumor cellsis regulated by crosstalk of TGF-β with TNF and/or IL-1β cytokines. The mechanism of this cooperative response did not involve cross-activation of the canonical signaling pathways as TGF-β did not activate RELA/p65 signaling, while TNF did not affect SMAD signaling. Instead, TGF-β and TNF cytokines co-stimulated MAP kinases and expression of JUN and JUNB, AP1 transcription factor subunits, which together with RELA/p65 were essential for the regulation of MMP9. Depletion of JUN and JUNB or RELA in tumor cells blocked the cooperative induction of MMP9 by the cytokines. Thus, our studies uncovered a previously unappreciated role of tumor-fibroblast interactions in the stimulation of tumor angiogenesis, and an essential role of the MAPK-AP1 axis in the cooperative up-regulation of the angiogenic driver MMP9 by cytokine crosstalk.
Collapse
|
18
|
Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, Chen W. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget 2018; 8:1290-1303. [PMID: 27901488 PMCID: PMC5352055 DOI: 10.18632/oncotarget.13609] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, play an important role in cancer progression but little is known about how CAFs affect tumorigenesis and development. MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate target mRNA expression at post-transcriptional levels. In head and neck cancer (HNC), our analysis of miRNA arrays showed that miR-7, miR-196 and miR-335 were significantly up-regulated in CAFs when compared with their paired normal fibroblasts (NFs). FAP, α-SMA and FSP, specific markers of CAFs, were significantly expressed in CAFs. Functionally, exogenous expression of miR-7 in NFs induced a functional conversion of NFs into CAFs. In contrast, inhibition of miR-7 expression in CAFs could induce a functional conversion of CAFs into NFs. Our study demonstrated that overexpression of miR-7 in NFs significantly increased the migration activity and growth rates of cancer cells in co-culture experiments. Mechanistically, we confirmed that the RASSF2-PAR-4 axis was mainly responsible for miR-7 functions in CAFs using bioinformatics methods. Overexpression of miR-7 in CAFs led to down-regulation of RASSF2, which dramatically decreased the secretion of PAR-4 from CAFs and then enhanced the proliferation and migration of the co-cultured cancer cells. Thus, these results reveal that the inactivation of the RASSF2-PAR-4 axis controlled by miR-7 may be a novel strategy for gene therapy in HNCs.
Collapse
Affiliation(s)
- Zongze Shen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Gang Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
19
|
Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice. Oncotarget 2018; 8:7265-7275. [PMID: 27980219 PMCID: PMC5352319 DOI: 10.18632/oncotarget.13919] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/05/2016] [Indexed: 01/29/2023] Open
Abstract
During aging, uncontrolled epithelial cell proliferation in the uterus results in endometrial hyperplasia and/or cancer development. The mTOR signaling pathway is one of the major regulators of aging as suppression of this pathway prolongs lifespan in model organisms. Genetic alterations in this pathway via mutations and/or amplifications are often encountered in endometrial cancers. However, the exact contribution of mTOR signaling and uterine aging to endometrial pathologies is currently unclear. This study examined the role of mTOR signaling in uterine aging and its implications in the development of endometrial hyperplasia. The hyperplastic endometrium of both postmenopausal women and aged mice exhibited elevated mTOR activity as seen with increased expression of the pS6 protein. Analysis of uteri from Pten heterozygous and Pten overexpressing mice further confirmed that over-activation of mTOR signaling leads to endometrial hyperplasia. Pharmacological inhibition of mTOR signaling using rapamycin treatment suppressed endometrial hyperplasia in aged mice. Furthermore, treatment with mTOR inhibitors reduced colony size and proliferation of a PTEN negative endometrial cancer cell line in 3D culture. Collectively, this study suggests that hyperactivation of the mTOR pathway is involved in the development of endometrial hyperplasia in aged women and mice.
Collapse
|
20
|
The tumor microenvironment promotes cancer progression and cell migration. Oncotarget 2018; 8:9608-9616. [PMID: 28030810 PMCID: PMC5354757 DOI: 10.18632/oncotarget.14155] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment contributes to cancer progression, in part through interactions between tumor and normal stromal cells. This study analyzed morphological and molecular changes induced in co-cultured human fibroblasts (HFs) and the MG-63 osteosarcoma cell line. Co-cultured cell monolayers were morphologically analyzed using high resolution scanning electron microscopy (HR-SEM), and trans-well assays were performed to assess cell migration and invasion. Proteins involved in inflammatory responses, cancer cell invasion, and angiogenesis were assessed using western blotting. HR-SEM showed progressive spatial orientation loss by fibroblasts in contact with MG-63s, while MG-63s proliferated rapidly and invaded HF space. Trans-well assays showed enhanced MG-63 migration in the presence of HFs. IL-6 expression was increased in co-cultured HFs, possibly stimulated by TNF-α. HFs do not normally express YKL-40 but did so in co-culture. Band densitometric analyses showed that increasing YKL-40 expression was followed by VEGF overexpression, especially in MG-63s. Finally, our results confirmed fibroblasts as the main matrix metalloproteinase source in this tumor microenvironment. Our study sheds new light on how tumor-stroma interactions promote tumor development and progression, and may support identification of novel anti-cancer therapeutics.
Collapse
|
21
|
Takai K, Le A, Weaver VM, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 2018; 7:82889-82901. [PMID: 27756881 PMCID: PMC5341254 DOI: 10.18632/oncotarget.12658] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Increased collagen expression in tumors is associated with increased risk of metastasis, and triple-negative breast cancer (TNBC) has the highest propensity to develop distant metastases when there is evidence of central fibrosis. Transforming growth factor-β (TGF-β) ligands regulated by cancer-associated fibroblasts (CAFs) promote accumulation of fibrosis and cancer progression. In the present study, we have evaluated TNBC tumors with enhanced collagen to determine whether we can reduce metastasis by targeting the CAFs with Pirfenidone (PFD), an anti-fibrotic agent as well as a TGF-β antagonist. In patient-derived xenograft models, TNBC tumors exhibited accumulated collagen and activated TGF-β signaling, and developed lung metastasis. Next, primary CAFs were established from 4T1 TNBC homograft tumors, TNBC xenograft tumors and tumor specimens of breast cancer patients. CAFs promoted primary tumor growth with more fibrosis and TGF-β activation and lung metastasis in 4T1 mouse model. We then examined the effects of PFD in vitro and in vivo. We found that PFD had inhibitory effects on cell viability and collagen production of CAFs in 2D culture. Furthermore, CAFs enhanced tumor growth and PFD inhibited the tumor growth induced by CAFs by causing apoptosis in the 3D co-culture assay of 4T1 tumor cells and CAFs. In vivo, PFD alone inhibited tumor fibrosis and TGF-β signaling but did not inhibit tumor growth and lung metastasis. However, PFD inhibited tumor growth and lung metastasis synergistically in combination with doxorubicin. Thus, PFD has great potential for a novel clinically applicable TNBC therapy that targets tumor-stromal interaction.
Collapse
Affiliation(s)
- Ken Takai
- Department of Anatomy, University of California, San Francisco, CA, USA.,Present address: Division of Breast Oncology, Saitama Cancer Center, Saitama, Japan
| | - Annie Le
- Department of Anatomy, University of California, San Francisco, CA, USA.,Present address: St. George's University School of Medicine, Grenada
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Chen TH, Chen MR, Chen TY, Wu TC, Liu SW, Hsu CH, Liou GG, Kao YY, Dong GC, Chu PH, Liao JW, Lin KMC. Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency. Oncotarget 2018; 7:54274-54289. [PMID: 27494843 PMCID: PMC5342341 DOI: 10.18632/oncotarget.11026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022] Open
Abstract
Proteinopathy in the heart which often manifests excessive misfolded/aggregated proteins in cardiac myocytes can result in severe fibrosis and heart failure. Here we developed a mouse model, which transgenically express tetrameric DsRed, a red fluorescent protein (RFP), in an attempt to mimic the pathological mechanisms ofcardiac fibrosis. Whilst DsRed is expressed and forms aggregation in most mouse organs, certain pathological defects are specifically recapitulated in cardiac muscle cells including mitochondria damages, aggresome-like residual bodies, excessive ubiquitinated proteins, and the induction of autophagy. The proteinopathy and cellular injuries caused by DsRed aggregates may be due to impaired or overburdened ubiquitin-proteasome system and autophagy-lysosome systems. We further identified that DsRed can be ubiquitinated and associated with MuRF1, a muscle-specific E3 ligase. Concomitantly, an activation of NF-κB signaling and a strong TIMP1 induction were noted, suggesting that RFP-induced fibrosis was augmented by a skewed balance between TIMP1 and MMPs. Taken together, our study highlights the molecular consequences of uncontrolled protein aggregation leading to congestive heart failure, and provides novel insights into fibrosis formation that can be exploited for improved therapy.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Tzu-Chin Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan.,Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Han Hsu
- Institute of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Gan-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Yu-Ying Kao
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| |
Collapse
|
23
|
Senescent stromal cell-induced divergence and therapeutic resistance in T cell acute lymphoblastic leukemia/lymphoma. Oncotarget 2018; 7:83514-83529. [PMID: 27835864 PMCID: PMC5347785 DOI: 10.18632/oncotarget.13158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
T cell Acute Lymphoblastic Leukemia/Lymphoma (T-ALL/LBL) is a precursor T cell leukemia/lymphoma that represents approximately 15% of all childhood and 25% of adult acute lymphoblastic leukemia. Although a high cure rate is observed in children, therapy resistance is often observed in adults and mechanisms leading to this resistance remain elusive. Utilizing public gene expression datasets, a fibrotic signature was detected in T-LBL but not T-ALL biopsies. Further, using a T-ALL cell line, CCRF-CEM (CEM) cells, we show that CEM cells induce pulmonary remodeling in immunocompromised mice, suggesting potential interaction between these cells and lung fibroblasts. Co-culture studies suggested that fibroblasts-induced phenotypic and genotypic divergence in co-cultured CEM cells leading to diminished therapeutic responses in vitro. Senescent rather than proliferating stromal cells induced these effects in CEM cells, due, in part, to the enhanced production of oxidative radicals and exosomes containing miRNAs targeting BRCA1 and components of the Mismatch Repair pathway (MMR). Collectively, our studies demonstrate that there may be bidirectional interaction between leukemic cells and stroma, where leukemic cells induce stromal development in vivo and senescent stromal cells generates genomic alterations in the leukemic cells rendering them therapeutic resistant. Thus, targeting senescent stroma might prove beneficial in T-ALL/LBL patients.
Collapse
|
24
|
Yuan H, Wang X, Lu J, Zhang Q, Brandina I, Alexandrov I, Glazer RI. MMTV-NeuT/ATTAC mice: a new model for studying the stromal tumor microenvironment. Oncotarget 2018; 9:8042-8053. [PMID: 29487713 PMCID: PMC5814280 DOI: 10.18632/oncotarget.24233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
One of the central challenges in cancer prevention is the identification of factors in the tumor microenvironment (TME) that increase susceptibility to tumorigenesis. One such factor is stromal fibrosis, a histopathologic negative prognostic criterion for invasive breast cancer. Since the stromal composition of the breast is largely adipose and fibroblast tissue, it is important to understand how alterations in these tissues affect cancer progression. To address this question, a novel transgenic animal model was developed by crossing MMTV-NeuT mice containing a constitutively active ErbB2 gene into the FAT-ATTAC (fat apoptosis through targeted activation of caspase 8) background, which expresses an inducible caspase 8 fusion protein targeted to mammary adipose tissue. Upon caspase 8 activation, lipoatrophy of the mammary gland results in stromal fibrosis and acceleration of mammary tumor development with an increase in tumor multiplicity. Fibrosis was accompanied by an increase in collagen deposition, α-smooth muscle actin and CD31 expression in the tumor stroma as well as an increase in PD-L1-positive tumor cells, and infiltration by regulatory T cells, myeloid-derived suppressor cells and tumor-associated macrophages. Gene expression and signal transduction profiling indicated upregulation of pathways associated with cytokine signaling, inflammation and proliferation. This model should be useful for evaluating new therapies that target desmoplasia in the TME associated with invasive cancer.
Collapse
Affiliation(s)
- Hongyan Yuan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Xiaoyi Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jin Lu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Qiongsi Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | - Robert I. Glazer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
25
|
Liguori M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiovine C, Allavena P. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment. Oncotarget 2018; 7:41662-41676. [PMID: 27191500 PMCID: PMC5173086 DOI: 10.18632/oncotarget.9340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022] Open
Abstract
Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors.
Collapse
Affiliation(s)
- Manuela Liguori
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Chiara Buracchi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Pasqualini
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Francesca Bergomas
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Samantha Pesce
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Marina Sironi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Alberto Mantovani
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy.,Humanitas University, 20089 Rozzano, Milano, Italy
| | - Cristina Belgiovine
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, 20089 Rozzano, Milano, Italy.,Humanitas University, 20089 Rozzano, Milano, Italy
| |
Collapse
|
26
|
Liang H, Zhang Z, He L, Wang Y. CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget 2017; 7:31652-62. [PMID: 27191747 PMCID: PMC5077966 DOI: 10.18632/oncotarget.9386] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of cisplatin-induced acute kidney injury (AKI) is characterized by tubular cell apoptosis and inflammation. However, the molecular mechanisms are not fully understood. We found that CXCL16 was induced in renal tubular epithelial cells in response to cisplatin-induced AKI. Therefore, we investigated whether CXCL16 played a role in cisplatin–induced tubular cell apoptosis and inflammation. Wild-type and CXCL16 knockout mice were administrated with vehicle or cisplatin at 20 mg/kg by intraperitoneal injection. CXCL16 knockout mice had lower blood urea nitrogen and less tubular damage following cisplatin-induced AKI as compared with wild-type mice. Genetic disruption of CXCL16 reduced tubular epithelial cell apoptosis and decreased caspase-3 activation. Furthermore, CXCL16 deficiency inhibited infiltration of macrophages and T cells into the kidneys following cisplatin treatment, which was associated with reduced expression of the proinflammatory cytokines in the kidneys. Taken together, our results indicate that CXCL16 plays a crucial role in the pathogenesis of cisplatin–induced AKI through regulation of apoptosis and inflammation and maybe a novel therapeutic target for cisplatin-induced AKI.
Collapse
Affiliation(s)
- Hua Liang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Anesthesiology, Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, China
| | - Zhengmao Zhang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Liqun He
- Section of Nephrology, Department of Medicine, Shuguang Hospital, Shanghai, China
| | - Yanlin Wang
- Selzman Institute for Kidney Health and Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Center for Translational Research on Inflammatory Diseases and Renal Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| |
Collapse
|
27
|
Gu Z, Tan W, Ji J, Feng G, Meng Y, Da Z, Guo G, Xia Y, Zhu X, Shi G, Cheng C. Rapamycin reverses the senescent phenotype and improves immunoregulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging (Albany NY) 2017; 8:1102-14. [PMID: 27048648 PMCID: PMC4931856 DOI: 10.18632/aging.100925] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
We have shown that bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) from SLE patients exhibit senescent behavior and are involved in the pathogenesis of SLE. The aim of this study was to investigate the effects of rapamycin (RAPA) on the senescences and immunoregulatory ability of MSCs of MRL/lpr mice and SLE patients and the underlying mechanisms. Cell morphology, senescence associated β-galactosidase (SA-β-gal) staining, F-actin staining were used to detect the senescence of cells. BM-MSCs and purified CD4+ T cells were co-cultured indirectly. Flow cytometry was used to inspect the proportion of regulatory T (Treg) /T helper type 17 (Th17). We used small interfering RNA (siRNA) to interfere the expression of mTOR, and detect the effects by RT-PCR, WB and immunofluorescence. Finally, 1×106 of SLE BM-MSCs treated with RAPA were transplanted to cure the 8 MRL/lpr mice aged 16 weeks for 12 weeks. We demonstrated that RAPA alleviated the clinical symptoms of lupus nephritis and prolonged survival in MRL/lpr mice. RAPA reversed the senescent phenotype and improved immunoregulation of MSCs from MRL/lpr mice and SLE patients through inhibition of the mTOR signaling pathway. Marked therapeutic effects were observed in MRL/lpr mice following transplantation of BM-MSCs from SLE patients pretreated with RAPA.
Collapse
Affiliation(s)
- Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wei Tan
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Emergency Medicine, The Yangzhou First People's Hospital, Yangzhou, Jiangsu Province 225001, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guijian Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Meng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhanyun Da
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Genkai Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yunfei Xia
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xinhang Zhu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Guixiu Shi
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Department of Rheumatology, Affiliated First Hospital of Xiamen University, Xiamen, Fujian Province 361000, China
| | - Chun Cheng
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
28
|
Nicolini A, Ferrari P, Diodati L, Carpi A. Recent Advances in Comprehending the Signaling Pathways Involved in the Progression of Breast Cancer. Int J Mol Sci 2017; 18:E2321. [PMID: 29099748 PMCID: PMC5713290 DOI: 10.3390/ijms18112321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
This review describes recent advances in the comprehension of signaling pathways involved in breast cancer progression. Calcium sensing receptor (CaSR), caveolae signaling, signaling referred to hypoxia-inducing factors and disturbances in the apoptotic machinery are related to more general biological mechanisms and are considered first. The others refer to signaling pathways of more specific biological mechanisms, namely the heparin/heparin-sulfate interactome, over-expression of miRNA-378a-5p, restriction of luminal and basal epithelial cells, fatty-acid synthesis, molecular pathways related to epithelial to mesenchimal transition (EMT), HER-2/neu gene amplification and protein expression, and the expression of other members of the epithelial growth factor receptor family. This progress in basic research is fundamental to foster the ongoing efforts that use the new genotyping technologies, and aim at defining new prognostic and predictive biomarkers for a better personalized management of breast cancer disease.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Lucrezia Diodati
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
29
|
Pestell TG, Jiao X, Kumar M, Peck AR, Prisco M, Deng S, Li Z, Ertel A, Casimiro MC, Ju X, Di Rocco A, Di Sante G, Katiyar S, Shupp A, Lisanti MP, Jain P, Wu K, Rui H, Hooper DC, Yu Z, Goldman AR, Speicher DW, Laury-Kleintop L, Pestell RG. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 2017; 8:81754-81775. [PMID: 29137220 PMCID: PMC5669846 DOI: 10.18632/oncotarget.19953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.
Collapse
Affiliation(s)
- Timothy G Pestell
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Mukesh Kumar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marco Prisco
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Shengqiong Deng
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Li
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Adam Ertel
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Sanjay Katiyar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Alison Shupp
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Salford, Greater Manchester, England, UK
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas C Hooper
- Department of Microbiology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
30
|
Langhammer S, Scheerer J. Breaking the crosstalk of the cellular tumorigenic network: Hypothesis for addressing resistances to targeted therapies in advanced NSCLC. Oncotarget 2017; 8:43555-43570. [PMID: 28402937 PMCID: PMC5522169 DOI: 10.18632/oncotarget.16674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 12/26/2022] Open
Abstract
In the light of current treatment developments for non-small cell lung cancer (NSCLC), the idea of a plastic cellular tumorigenic network bound by key paracrine signaling pathways mediating resistances to targeted therapies is brought forward. Based on a review of available preclinical and clinical data in NSCLC combinational approaches to address drivers of this network with marketed drugs are discussed. Five criteria for selecting drug combination regimens aiming at its disruption and thereby overcoming resistances are postulated.
Collapse
|
31
|
Leontieva OV, Blagosklonny MV. While reinforcing cell cycle arrest, rapamycin and Torins suppress senescence in UVA-irradiated fibroblasts. Oncotarget 2017; 8:109848-109856. [PMID: 29312653 PMCID: PMC5752566 DOI: 10.18632/oncotarget.17827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Sunlight predisposes to skin cancer and melanomas. Ultraviolet A (UVA), a long wave component of sunlight, can reach dermal fibroblasts. Here we studied UVA-induced senescence in human fibroblasts in vitro. It is known that senescence occurs, when cell cycle is arrested, but mTOR is still active, thus converting arrest to senescence (geroconversion). We showed that, while arresting cell cycle, UVA did not inhibit mTOR, enabling geroconversion. In UVA-treated cells, mTOR remained fully active. Rapamycin and Torins 1/ 2 prevented UVA-induced senescent phenotype, although they further re-enforced cell cycle arrest. Given that senescent stromal fibroblasts support tumorigenesis, we envision that mTOR inhibitors may potentially be used to prevent sunlight-caused tumors as well as skin photo-aging.
Collapse
Affiliation(s)
- Olga V Leontieva
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
32
|
Di Pompo G, Lemma S, Canti L, Rucci N, Ponzetti M, Errani C, Donati DM, Russell S, Gillies R, Chano T, Baldini N, Avnet S. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma. Oncotarget 2017; 8:54478-54496. [PMID: 28903357 PMCID: PMC5589596 DOI: 10.18632/oncotarget.17091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is common in patients with bone metastases (BM), significantly impairing quality of life. The current treatments for CIBP are limited since they are often ineffective. Local acidosis derived from glycolytic carcinoma and tumor-induced osteolysis is only barely explored cause of pain. We found that breast carcinoma cells that prefer bone as a metastatic site have very high extracellular proton efflux and expression of pumps/ion transporters associated with acid-base balance (MCT4, CA9, and V-ATPase). Further, the impairment of intratumoral acidification via V-ATPase targeting in xenografts with BM significantly reduced CIBP, as measured by incapacitance test. We hypothesize that in addition to the direct acid-induced stimulation of nociceptors in the bone, a novel mechanism mediated by the acid-induced and tumor-associated mesenchymal stroma might ultimately lead to nociceptor sensitization and hyperalgesia. Consistent with this, short-term exposure of cancer-associated fibroblasts, mesenchymal stem cells, and osteoblasts to pH 6.8 promotes the expression of inflammatory and nociceptive mediators (NGF, BDNF, IL6, IL8, IL1b and CCL5). This is also consistent with a significant correlation between breakthrough pain, measured by pain questionnaire, and combined high serum levels of BDNF and IL6 in patients with BM, and also by immunofluorescence staining showing IL8 expression that was more in mesenchymal stromal cells rather than in tumors cells, and close to LAMP-2 positive acidifying carcinoma cells in BM tissue sections. In summary, intratumoral acidification in BM might promote CIBP also by activating the tumor-associated stroma, offering a new target for palliative treatments in advanced cancer.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lorenzo Canti
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Shonagh Russell
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE In the last years, metabolic reprogramming, fluctuations in bioenergetic fuels, and modulation of oxidative stress became new key hallmarks of tumor development. In cancer, elevated glucose uptake and high glycolytic rate, as a source of adenosine triphosphate, constitute a growth advantage for tumors. This represents the universally known Warburg effect, which gave rise to one major clinical application for detecting cancer cells using glucose analogs: the positron emission tomography scan imaging. Recent Advances: Glucose utilization and carbon sources in tumors are much more heterogeneous than initially thought. Indeed, new studies emerged and revealed a dual capacity of tumor cells for glycolytic and oxidative phosphorylation (OXPHOS) metabolism. OXPHOS metabolism, which relies predominantly on mitochondrial respiration, exhibits fine-tuned regulation of respiratory chain complexes and enhanced antioxidant response or detoxification capacity. CRITICAL ISSUES OXPHOS-dependent cancer cells use alternative oxidizable substrates, such as glutamine and fatty acids. The diversity of carbon substrates fueling neoplastic cells is indicative of metabolic heterogeneity, even within tumors sharing the same clinical diagnosis. Metabolic switch supports cancer cell stemness and their bioenergy-consuming functions, such as proliferation, survival, migration, and invasion. Moreover, reactive oxygen species-induced mitochondrial metabolism and nutrient availability are important for interaction with tumor microenvironment components. Carcinoma-associated fibroblasts and immune cells participate in the metabolic interplay with neoplastic cells. They collectively adapt in a dynamic manner to the metabolic needs of cancer cells, thus participating in tumorigenesis and resistance to treatments. FUTURE DIRECTIONS Characterizing the reciprocal metabolic interplay between stromal, immune, and neoplastic cells will provide a better understanding of treatment resistance. Antioxid. Redox Signal. 26, 462-485.
Collapse
Affiliation(s)
- Géraldine Gentric
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Virginie Mieulet
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| | - Fatima Mechta-Grigoriou
- 1 Stress and Cancer Laboratory, Équipe Labelisée LNCC, Institut Curie , Paris, France .,2 Inserm , U830, Paris, France
| |
Collapse
|
34
|
Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X, Ren G, Tian K. Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells. Cell Cycle 2016; 16:73-81. [PMID: 27841696 DOI: 10.1080/15384101.2016.1252882] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumors are comprised of malignant cancer cells and stromal cells which constitute the tumor microenvironment (TME). Previous studies have shown that cancer associated fibroblast (CAF) in TME is an important promoter of tumor initiation and progression. However, the underlying molecular mechanisms by which CAFs influence the growth of colorectal cancer cells (CRCs) have not been clearly elucidated. In this study, by using a non-contact co-culture system between human colorectal fibroblasts (CCD-18-co) and CRCs (LoVo, SW480, and SW620), we found that fibroblasts existing in tumor microenvironment positively influenced the metabolism of colorectal cancer cells, through its autophagy and oxidative stress pathway which were initially induced by neighboring tumor cells. Therefore, our data provided a novel possibility to develop fibroblasts as a potential target to treat CRC.
Collapse
Affiliation(s)
- Wenjing Zhou
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China.,b Department of Neurosurgery , Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University , Jinan , China
| | - Gang Xu
- c Department of Gastroenterology , 456 Hospital of PLA , Jinan , Shandong , China
| | - Yunqiu Wang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Ziao Xu
- d The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Xiaofei Liu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Xia Xu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Guijie Ren
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Keli Tian
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| |
Collapse
|
35
|
Jung AC, Ray AM, Ramolu L, Macabre C, Simon F, Noulet F, Blandin AF, Renner G, Lehmann M, Choulier L, Kessler H, Abecassis J, Dontenwill M, Martin S. Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties. Oncotarget 2016; 6:41884-901. [PMID: 26474461 PMCID: PMC4747196 DOI: 10.18632/oncotarget.6099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
Distant metastases arise in 20-30% of patients with squamous cell carcinoma of the head and neck (HNSCC) in the 2 years following treatment. Therapeutic options are limited and the outcome of the patients is poor. The identification of predictive biomarkers of patient at risk for distant metastasis and therapies are urgently needed. We previously identified a clinical subgroup, called "R1" characterized by high propensity for rapid distant metastasis. Here, we showed that "R1" patients do not or at very low level express caveolin-1 (Cav1). Low or no expression of Cav1 is of bad prognosis. Disappearance of Cav1 enables cells to undergo epithelial-mesenchymal transition (EMT). EMT is associated with enhanced migration and invasion. Our study uncovered a new target, α5β1 integrin. Targeting α5β1 integrins might not only prevent metastasis of HNSCC but also delay the development of the primary tumor by reducing tumor cell viability. Cav1 detection might be taken into consideration in the future in the clinic not only to identify patients at high risk of metastasis but also to select patient who might benefit from an anti-integrin therapy.
Collapse
Affiliation(s)
- Alain C Jung
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Anne-Marie Ray
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Ludivine Ramolu
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Christine Macabre
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | - Florian Simon
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | - Fanny Noulet
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | | | - Maxime Lehmann
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| | | | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Studies, Technische Universität München, Department Chemie, Garching, Germany
| | - Joseph Abecassis
- Laboratoire de Biologie Tumorale, EA 3430 Université de Strasbourg, CRLC Paul Strauss, Strasbourg, France
| | | | - Sophie Martin
- Université de Strasbourg, LBP, CNRS UMR 7213, Illkirch, France
| |
Collapse
|
36
|
Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression. Oncotarget 2016; 6:22081-97. [PMID: 26098779 PMCID: PMC4673148 DOI: 10.18632/oncotarget.4203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022] Open
Abstract
Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy.
Collapse
|
37
|
Weber H, Leal P, Stein S, Kunkel H, García P, Bizama C, Espinoza JA, Riquelme I, Nervi B, Araya JC, Grez M, Roa JC. Rapamycin and WYE-354 suppress human gallbladder cancer xenografts in mice. Oncotarget 2016; 6:31877-88. [PMID: 26397134 PMCID: PMC4741647 DOI: 10.18632/oncotarget.5047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/01/2015] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer (GBC) is a highly malignant tumor characterized by a poor response to chemotherapy and radiotherapy. We evaluated the in vitro and in vivo antitumor efficacy of mTOR inhibitors, rapamycin and WYE-354. In vitro assays showed WYE-354 significantly reduced cell viability, migration and invasion and phospho-P70S6K expression in GBC cells. Mice harboring subcutaneous gallbladder tumors, treated with WYE-354 or rapamycin, exhibited a significant reduction in tumor mass. A short-term treatment with a higher dose of WYE-354 decreased the tumor size by 68.6% and 52.4%, in mice harboring G-415 or TGBC-2TKB tumors, respectively, compared to the control group. By contrast, treatment with a prolonged-low-dose regime of rapamycin almost abrogated tumor growth, exhibiting 92.7% and 97.1% reduction in tumor size, respectively, compared to control mice. These results were accompanied by a greater decrease in the phosphorylation status of P70S6K and a lower cell proliferation Ki67 index, compared to WYE-354 treated mice, suggesting a more effective mTOR pathway inhibition. These findings provide a proof of concept for the use of rapamycin or WYE-354 as potentially good candidates to be studied in clinical trials in GBC patients.
Collapse
Affiliation(s)
- Helga Weber
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Pamela Leal
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Stefan Stein
- Gene Therapy Unit, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Hana Kunkel
- Gene Therapy Unit, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Patricia García
- Department of Pathology, UC-Center for Investigational Oncology (CITO), Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, UC-Center for Investigational Oncology (CITO), Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime A Espinoza
- Department of Pathology, UC-Center for Investigational Oncology (CITO), Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ismael Riquelme
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Bruno Nervi
- Department of Hematology Oncology, UC-Center for Investigation in Translational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Araya
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Manuel Grez
- Gene Therapy Unit, Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Juan C Roa
- Department of Pathology, UC-Center for Investigational Oncology (CITO), Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Anwar SL, Wahyono A, Aryandono T, Haryono SJ. Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways. Asian Pac J Cancer Prev 2016; 16:6803-12. [PMID: 26514450 DOI: 10.7314/apjcp.2015.16.16.6803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, TGFβ, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia E-mail :
| | | | | | | |
Collapse
|
39
|
Leontieva OV, Demidenko ZN, Blagosklonny MV. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget 2016; 6:23238-48. [PMID: 26177051 PMCID: PMC4695114 DOI: 10.18632/oncotarget.4836] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/24/2015] [Indexed: 11/30/2022] Open
Abstract
In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
40
|
Woo JK, Kang JH, Kim B, Park BH, Shin KJ, Song SW, Kim JJ, Kim HM, Lee SJ, Oh SH. Humanized anti-hepatocyte growth factor (HGF) antibody suppresses innate irinotecan (CPT-11) resistance induced by fibroblast-derived HGF. Oncotarget 2016; 6:24047-60. [PMID: 26090722 PMCID: PMC4695169 DOI: 10.18632/oncotarget.4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/30/2015] [Indexed: 12/19/2022] Open
Abstract
The growth factors derived from the microenvironment create an environment conducive to tumor growth and survival. HGF deprivation using neutralizing antibody enhanced chemosensitivity in colorectal cancer cells (CRC). We determined secreted HGF in fibroblast conditioned medium (CM). Combination treatment of anti-HGF antibody and irinotecan (CPT-11) directly enhanced CPT-11 sensitivity in CRC. We generated xenograft in NOD/SCID mice inoculating HCT-116 human colorectal cancer cells subcutaneously with or without fibroblast. We found that the combination of CPT-11 and anti-HGF antibody induced marked suppression of tumor development. These results suggest that HGF produced by fibroblast induce CPT-11 resistance, and that anti-HGF antibody abrogate such resistance in vivo. fibroblast-derived HGF is important determinant of chemoresistance. Anti-HGF monoclonal antibody treatment confirmed the importance of this growth factor for chemoresistance in CRC. These results present new options toward the early diagnosis of chemoresistance and suggest novel combinations of chemotherapy and anti-HGF agents to prevent or significantly delay the onset of therapy resistance.
Collapse
Affiliation(s)
- Jong Kyu Woo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang, Republic of Korea
| | - BoRa Kim
- National Cancer Center, Goyang, Republic of Korea
| | - Byung Hee Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | | | | | - Jung Ju Kim
- Yooyoung Pharmaceutical Co., Seoul, Republic of Korea
| | - Hwan-Mook Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sang-Jin Lee
- National Cancer Center, Goyang, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
41
|
Chen HM, Tsai CH, Hung WC. Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget 2016; 6:14940-52. [PMID: 25909285 PMCID: PMC4558127 DOI: 10.18632/oncotarget.3613] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
Foretinib, a multiple kinase inhibitor undergoing clinical trials, could suppress the activity of hepatocyte growth factor (HGF) receptor c-MET and vascular endothelial growth factor receptor-2 (VEGFR-2). In addition, Foretinib may inhibit two critical lymphangiogenic signaling receptors VEGFR-3 and TIE-2. However, the effect of Foretinib on lymphatic endothelial cells (LECs) in vitro and lymphangiogenesis in vivo is still unknown. We found Foretinib decreased basal- and HGF-induced c-MET activity at low concentrations. However, Foretinib only reduced the proliferation of pancreatic cancer cells at high concentration reflecting the intrinsic chemoresistance of pancreatic cancer cells. Foretinib inhibited VEGF-A, VEGF-C and Angiopoetin-2 (ANG-2)-stimulated tube formation and sprouting of LECs by reducing VEGFR-2, VEGFR-3 and TIE-2 activation and increased apoptosis of LECs. In xenograft animal study, Foretinib suppressed tumor growth by inhibiting proliferation, angiogenesis and lymphangiogenesis. Additionally, Foretinib inhibited angiogenesis and lymphangiogenesis more significantly and exhibited low detrimental effect in orthotopic animal study. Collectively, we suggested that Foretinib simultaneously inhibits cancer cells and LECs to reduce pancreatic tumor growth in vivo and demonstrated for the first time that Foretinib suppresses angiogenesis and lymphangiogenesis by blocking VEGFR-2/3 and TIE-2 signaling.
Collapse
Affiliation(s)
- Hsiu-Mei Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan, Republic of China
| |
Collapse
|
42
|
Lykholat T, Lykholat O, Antonyuk S. Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Zang C, Eucker J, Habbel P, Neumann C, Schulz CO, Bangemann N, Kissner L, Riess H, Liu H. Targeting multiple tyrosine kinase receptors with Dovitinib blocks invasion and the interaction between tumor cells and cancer-associated fibroblasts in breast cancer. Cell Cycle 2016; 14:1291-9. [PMID: 25714853 DOI: 10.4161/15384101.2014.995050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.
Collapse
Affiliation(s)
- Chuanbing Zang
- a Division of Hematology and Oncology ; Charité-University Medicine; Charitéplatz 1 ; Berlin , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lamb R, Harrison H, Smith DL, Townsend PA, Jackson T, Ozsvari B, Martinez-Outschoorn UE, Pestell RG, Howell A, Lisanti MP, Sotgia F. Targeting tumor-initiating cells: eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget 2016; 6:4585-601. [PMID: 25671304 PMCID: PMC4467101 DOI: 10.18632/oncotarget.3278] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/21/2015] [Indexed: 01/03/2023] Open
Abstract
We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to the inhibition of protein synthesis, using multiple independent approaches. Our findings have important clinical implications, since they may also explain the positive therapeutic effects of PI3-kinase inhibitors and AKT inhibitors, as they ultimately converge on mTOR signaling and would block protein synthesis. We conclude that inhibition of mRNA translation by pharmacological or protein/methionine restriction may be effective strategies for eliminating TICs. Our data also indicate a novel mechanism by which caloric/protein restriction may reduce tumor growth, by targeting protein synthesis in anabolic tumor-initiating cancer cells.
Collapse
Affiliation(s)
- Rebecca Lamb
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| | - Hannah Harrison
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| | - Duncan L Smith
- The Cancer Research UK Manchester Institute, University of Manchester, UK
| | - Paul A Townsend
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Thomas Jackson
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK
| | - Bela Ozsvari
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| | | | | | - Anthony Howell
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| | - Michael P Lisanti
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| | - Federica Sotgia
- The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, UK.,The Breakthrough Breast Cancer Research Unit, Institute of Cancer Sciences, University of Manchester, UK
| |
Collapse
|
45
|
Hsueh YS, Chang HH, Chiang NJ, Yen CC, Li CF, Chen LT. MTOR inhibition enhances NVP-AUY922-induced autophagy-mediated KIT degradation and cytotoxicity in imatinib-resistant gastrointestinal stromal tumors. Oncotarget 2015; 5:11723-36. [PMID: 25375091 PMCID: PMC4294368 DOI: 10.18632/oncotarget.2607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023] Open
Abstract
Our previous study demonstrated NVP-AUY922, a HSP90AA1 inhibitor, could enhance mutant KIT degradation in gastrointestinal stromal tumor (GIST) cells through both proteasome- and autophagy-mediated pathways. Herein, we showed rapamycin, a MTOR inhibitor and autophagy inducer, could reduce total and phospho-KIT expression levels and enhance apoptosis in imatinib-resistant GIST cells. The involvement of autophagy in rapamycin-induced KIT downregulation was further confirmed by co-localization of KIT and autophagosome, and partial recovery of KIT expression level by either siRNA-mediated BECN1 and ATG5 silencing or autophagy inhibitors after rapamycin. Rapamycin and NVP-AUY922 synergistically inhibited GIST cells growth in vitro. The combination of low-dose NVP-AUY922 with rapamycin had comparable effects on reducing KIT expression, increasing MAP1LC3B puncta and tumor necrosis, and inhibiting tumor growth as high-dose NVP-AUY922 did in GIST430 xenograft model. Our results suggest the addition of a MTOR inhibitor may reduce NVP-AUY922 dose requirement and potentially improve its therapeutic index in mutant KIT-expressing GISTs.
Collapse
Affiliation(s)
- Yuan-Shuo Hsueh
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Pathology, Chi-Mei Foundation Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan. Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwann
| |
Collapse
|
46
|
Elkhattouti A, Hassan M, Gomez CR. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target. Front Oncol 2015; 5:158. [PMID: 26284191 PMCID: PMC4515566 DOI: 10.3389/fonc.2015.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/02/2015] [Indexed: 12/28/2022] Open
Abstract
Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly.
Collapse
Affiliation(s)
| | - Mohamed Hassan
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA
| | - Christian R Gomez
- Cancer Institute, University of Mississippi Medical Center , Jackson, MS , USA ; Department of Pathology, University of Mississippi Medical Center , Jackson, MS , USA ; Department of Radiation Oncology, University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
47
|
Abstract
The most physiological type of cell cycle arrest - namely, contact inhibition in dense culture - is the least densely studied. Despite cell cycle arrest, confluent cells do not become senescent. We recently described that mTOR (target of rapamycin) is inactive in contact-inhibited cells. Therefore, conversion from reversible arrest to senescence (geroconversion) is suppressed. I this Perspective, we further extended the gerosuppression model. While causing senescence in regular cell density, etoposide failed to cause senescence in contact-inhibited cells. A transient reactivation of mTOR favored geroconversion in etoposide-treated confluent cells. Like p21, p16 did not cause senescence in high cell density. We discuss that suppression of geroconversion in confluent and contact-inhibited cultures mimics gerosuppression in the organism. We confirmed that levels of p-S6 were low in murine tissues in the organism compared with mouse embryonic fibroblasts in cell culture, whereas p-Akt was reciprocally high in the organism.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| | - Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elms and Carlson Streets, Buffalo, NY 14263, USA
| |
Collapse
|
48
|
Leontieva OV, Paszkiewicz GM, Blagosklonny MV. Comparison of rapamycin schedules in mice on high-fat diet. Cell Cycle 2015; 13:3350-6. [PMID: 25485580 DOI: 10.4161/15384101.2014.970491] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
At a wide range of doses, rapamycin extends life span in mice. It was shown that intraperitoneal injections (i.p.) of rapamycin prevent weight gain in mice on high-fat diet (HFD). We further investigated the effect of rapamycin on weight gain in female C57BL/6 mice on HFD started at the age of 7.5 months. By the age of 16 and 23 months, mice on HFD weighed significantly more (52 vs 33 g; p = 0.0001 and 70 vs 38 g; p < 0.0001, respectively) than mice on low fat diet (LFD). The i.p. administration of 1.5 mg/kg rapamycin, 3 times a week every other week, completely prevented weight gain, whereas administration of rapamycin by oral gavash did not. Rapamycin given in the drinking water slightly decreased weight gain by the age of 23 months. In addition, metabolic parameters were evaluated at the age of 16 and 23 months, 6 and 13 days after last rapamycin administration, respectively. Plasma leptin levels strongly correlated with body weight, (P < 0.0001, r=0.86), suggesting that the difference in weight was due to fat tissue mass. Levels of insulin, glucose, triglycerides and IGF1 were not statistically different in all groups, indicating that these courses of rapamycin treatment did not impair metabolic parameters at least after rapamycin discontinuation. Despite rapamycin discontinuation, cardiac levels of phospho-S6 and pAKT(S473) were low in the i.p.-treated group. This continuous effect of rapamycin can be explained by prevention of obesity in the i.p. group. We conclude that intermittent i.p. administration of rapamycin prevents weight gain without causing gross metabolic abnormalities. Intermittent gavash administration minimally affected weight gain. Potential clinical applications are discussed.
Collapse
Affiliation(s)
- Olga V Leontieva
- a Cell Stress Biology; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | |
Collapse
|
49
|
Abstract
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Collapse
Affiliation(s)
- Gyanesh Singh
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - U C Pachouri
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devika Chanu Khaidem
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Aman Kundu
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushplata Singh
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, Punjab, India
| |
Collapse
|
50
|
Hassan B, Akcakanat A, Sangai T, Evans KW, Adkins F, Eterovic AK, Zhao H, Chen K, Chen H, Do KA, Xie SM, Holder AM, Naing A, Mills GB, Meric-Bernstam F. Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget 2015; 5:8544-57. [PMID: 25261369 PMCID: PMC4226703 DOI: 10.18632/oncotarget.2337] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We tested the antitumor efficacy of mTOR catalytic site inhibitor MLN0128 in models with intrinsic or acquired rapamycin-resistance. Cell lines that were intrinsically rapamycin-resistant as well as those that were intrinsically rapamycinsensitive were sensitive to MLN0128 in vitro. MLN0128 inhibited both mTORC1 and mTORC2 signaling, with more robust inhibition of downstream 4E-BP1 phosphorylation and cap-dependent translation compared to rapamycin in vitro. Rapamycin-sensitive BT474 cell line acquired rapamycin resistance (BT474 RR) with prolonged rapamycin treatment in vitro. This cell line acquired an mTOR mutation (S2035F) in the FKBP12-rapamycin binding domain; mTORC1 signaling was not inhibited by rapalogs but was inhibited by MLN0128. In BT474 RR cells, MLN0128 had significantly higher growth inhibition compared to rapamycin in vitro and in vivo. Our results demonstrate that MLN0128 may be effective in tumors with intrinsic as well as acquired rapalog resistance. mTOR mutations are a mechanism of acquired resistance in vitro; the clinical relevance of this observation needs to be further evaluated.
Collapse
Affiliation(s)
- Burhan Hassan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Takafumi Sangai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farrell Adkins
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Agda Karina Eterovic
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shelly M Xie
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ashley M Holder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX. Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|