1
|
Abudukeyimu Z, Luo J, Liu F, Ma Y, Li J, Wang J, Li X. Early growth response factor 3 may regulate coronary atherosclerosis through the NF-κB signaling pathway and VEGF expression. Am J Med Sci 2024; 368:476-484. [PMID: 38992750 DOI: 10.1016/j.amjms.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
AIM The present study was conducted to measure the expression of early growth response factor 3 (Egr3), inflammatory cytokines (IL-1β, IL-6), vascular endothelial growth factor (VEGF) and NF-κB in patients with coronary artery disease (CAD) to investigate the relationships of these molecules and Egr3 gene expression. METHODS We recruited 132 CAD patients and 63 healthy individuals. The expression levels of Egr3, VEGF, p50 and p65 were measured by reverse transcription quantitative polymerase chain reaction and the levels of Egr3, IL-1β and IL-6 in patients serum and in human coronary artery endothelial cells (HCAECs) were measured by enzyme-linked immunosorbent assay (ELISAs) in CAD patients. HCAECs were treated with ox-LDL to establish an in vitro atherosclerosis model. An oil red O staining assay was used to assess the lipid droplet formation. A colloidal external lumen formed by Matrigel was used to test the migration of HCAECs. The expression of Egr3, VEGF and NF-κB was determined by Western blotting. RESULTS The levels of serum Egr3 and IL-6 in the severe stenosis group were greater than those in the mild stenosis group and controls (p < 0.05). The level of serum IL-1β in the severe stenosis group was greater than that in the control group (p < 0.05). Moreover, Egr3 expression was positively associated with IL-6 levels (r = 0.55, p < 0.001), IL-1β levels (r = 0.21, p = 0.004) and the Gensini score (r = 0.20, p = 0.02). We also found that Egr3 expression was significantly greater in CAD patients than that in controls. And its expression was highest in the mild patients. The expression of VEGF, P50 and P65 was also greater in CAD patients. In the in vitro experiment, we found that the inhibition of Egr3 expression significantly reduced the expression levels of p50, p65, IL-6 and CRP. Moreover, the inhibition of Egr3 expression significantly reduced the lipid droplet formation and decreased capability of lumen formation. CONCLUSIONS In the pathogenesis of atherosclerosis, Egr3 gene expression may induce the expression of inflammatory factors and lipid droplet formation and lumen formation, which could promote the atherosclerosis development.
Collapse
Affiliation(s)
- Zumureti Abudukeyimu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Junyi Luo
- Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Fang Liu
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Yanling Ma
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Jiao Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China
| | - Juan Wang
- Department of Cardiology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| | - Xia Li
- Department of General Practice, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830001, China.
| |
Collapse
|
2
|
Tuleta I, Hanna A, Humeres C, Aguilan JT, Sidoli S, Zhu F, Frangogiannis NG. Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice. Cardiovasc Res 2024:cvae210. [PMID: 39373248 DOI: 10.1093/cvr/cvae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
AIMS Transforming growth factor (TGF)-β is up-regulated in the diabetic myocardium and may mediate fibroblast activation. We aimed at examining the role of TGF-β-induced fibroblast activation in the pathogenesis of diabetic cardiomyopathy. METHODS AND RESULTS We generated lean and obese db/db mice with fibroblast-specific loss of TbR2, the Type 2 receptor-mediating signaling through all three TGF-β isoforms, and mice with fibroblast-specific Smad3 disruption. Systolic and diastolic function, myocardial fibrosis, and hypertrophy were assessed. Transcriptomic studies and in vitro experiments were used to dissect mechanisms of fibroblast activation. Fibroblast-specific TbR2 loss attenuated systolic and diastolic dysfunction in db/db mice. The protective effects of fibroblast TbR2 loss in db/db mice were associated with attenuated fibrosis and reduced cardiomyocyte hypertrophy, suggesting that in addition to their role in fibrous tissue deposition, TGF-β-stimulated fibroblasts may also exert paracrine actions on cardiomyocytes. Fibroblast-specific Smad3 loss phenocopied the protective effects of fibroblast TbR2 loss in db/db mice. Db/db fibroblasts had increased expression of genes associated with oxidative response (such as Fmo2, encoding flavin-containing monooxygenase 2), matricellular genes (such as Thbs4 and Fbln2), and Lox (encoding lysyl oxidase). Ingenuity pathway analysis (IPA) predicted that neurohumoral mediators, cytokines, and growth factors (such as AGT, TGFB1, and TNF) may serve as important upstream regulators of the transcriptomic profile of diabetic mouse fibroblasts. IPA of scRNA-seq data identified TGFB1, p53, MYC, PDGF-BB, EGFR, and WNT3A/CTNNB1 as important upstream regulators underlying fibroblast activation in db/db hearts. Comparison of the transcriptome of fibroblasts from db/db mice with fibroblast-specific Smad3 loss and db/db Smad3 fl/fl controls identified Thbs4 [encoding thrombospondin-4 (TSP-4), a marker of activated fibroblasts] as a candidate diabetes-induced fibrogenic mediator. However, in vitro experiments showed no significant activating effects of matricellular or intracellular TSP-4 on cardiac fibroblasts. CONCLUSION Fibroblast-specific TGF-β/Smad3 signaling mediates ventricular fibrosis, hypertrophy, and dysfunction in Type 2 diabetes.
Collapse
Affiliation(s)
- Izabela Tuleta
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Anis Hanna
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Claudio Humeres
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Fenglan Zhu
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Southard KM, Ardy RC, Tang A, O’Sullivan DD, Metzner E, Guruvayurappan K, Norman TM. Comprehensive transcription factor perturbations recapitulate fibroblast transcriptional states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606073. [PMID: 39131349 PMCID: PMC11312553 DOI: 10.1101/2024.07.31.606073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cell atlas projects have nominated recurrent transcriptional states as drivers of biological processes and disease, but their origins, regulation, and properties remain unclear. To enable complementary functional studies, we developed a scalable approach for recapitulating cell states in vitro using CRISPR activation (CRISPRa) Perturb-seq. Aided by a novel multiplexing method, we activated 1,836 transcription factors in two cell types. Measuring 21,958 perturbations showed that CRISPRa activated targets within physiological ranges, that epigenetic features predicted activatable genes, and that the protospacer seed region drove an off-target effect. Perturbations recapitulated in vivo fibroblast states, including universal and inflammatory states, and identified KLF4 and KLF5 as key regulators of the universal state. Inducing the universal state suppressed disease-associated states, highlighting its therapeutic potential. Our findings cement CRISPRa as a tool for perturbing differentiated cells and indicate that in vivo states can be elicited via perturbation, enabling studies of clinically relevant states ex vivo.
Collapse
Affiliation(s)
- Kaden M. Southard
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rico C. Ardy
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anran Tang
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Deirdre D. O’Sullivan
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Eli Metzner
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Karthik Guruvayurappan
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Thomas M. Norman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Risha KS, Rasal KD, Reang D, Iquebal MA, Sonwane A, Brahmane M, Chaudhari A, Nagpure N. DNA Methylation Profiling in Genetically Selected Clarias magur (Hamilton, 1822) Provides Insights into the Epigenetic Regulation of Growth and Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:776-789. [PMID: 39037491 DOI: 10.1007/s10126-024-10346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation is an epigenetic alteration that impacts gene expression without changing the DNA sequence affecting an organism's phenotype. This study utilized a reduced representation bisulfite sequencing (RRBS) approach to investigate the patterns of DNA methylation in genetically selected Clarias magur stocks. RRBS generated 249.22 million reads, with an average of 490,120 methylation sites detected in various parts of genes, including exons, introns, and intergenic regions. A total of 896 differentially methylated regions (DMRs) were identified; 356 and 540 were detected as hyper-methylated and hypo-methylated regions, respectively. The DMRs and their association with overlapping genes were explored using whole genome data of magur, which revealed 205 genes in exonic, 210 in intronic, and 480 in intergenic regions. The analysis identified the maximum number of genes enriched in biological processes such as RNA biosynthetic process, response to growth factors, nervous system development, neurogenesis, and anatomical structure morphogenesis. Differentially methylated genes (DMGs) such as myrip, mylk3, mafb, egr3, ndnf, meis2a, foxn3, bmp1a, plxna3, fgf6, sipa1l1, mcu, cnot8, trim55b, and myof were associated with growth and development. The selected DMGs were analyzed using real-time PCR, which showed altered mRNA expression levels. This work offers insights into the epigenetic mechanisms governing growth performance regulation in magur stocks. This work provides a valuable resource of epigenetic data that could be integrated into breeding programs to select high-performing individuals.
Collapse
Affiliation(s)
- K Shasti Risha
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Dhalongsaih Reang
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arvind Sonwane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj Brahmane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Naresh Nagpure
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
5
|
da Silva AR, Gunawan F, Boezio GLM, Faure E, Théron A, Avierinos JF, Lim S, Jha SG, Ramadass R, Guenther S, Looso M, Zaffran S, Juan T, Stainier DYR. egr3 is a mechanosensitive transcription factor gene required for cardiac valve morphogenesis. SCIENCE ADVANCES 2024; 10:eadl0633. [PMID: 38748804 PMCID: PMC11095463 DOI: 10.1126/sciadv.adl0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Giulia L. M. Boezio
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Emilie Faure
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Alexis Théron
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005 Marseille, France
| | - SoEun Lim
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Shivam Govind Jha
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Radhan Ramadass
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Stefan Guenther
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stéphane Zaffran
- Aix Marseille Université, INSERM, MMG, U1251, 13005 Marseille, France
| | - Thomas Juan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
6
|
Baumgarten N, Rumpf L, Kessler T, Schulz MH. A statistical approach for identifying single nucleotide variants that affect transcription factor binding. iScience 2024; 27:109765. [PMID: 38736546 PMCID: PMC11088338 DOI: 10.1016/j.isci.2024.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Non-coding variants located within regulatory elements may alter gene expression by modifying transcription factor (TF) binding sites, thereby leading to functional consequences. Different TF models are being used to assess the effect of DNA sequence variants, such as single nucleotide variants (SNVs). Often existing methods are slow and do not assess statistical significance of results. We investigated the distribution of absolute maximal differential TF binding scores for general computational models that affect TF binding. We find that a modified Laplace distribution can adequately approximate the empirical distributions. A benchmark on in vitro and in vivo datasets showed that our approach improves upon an existing method in terms of performance and speed. Applications on eQTLs and on a genome-wide association study illustrate the usefulness of our statistics by highlighting cell type-specific regulators and target genes. An implementation of our approach is freely available on GitHub and as bioconda package.
Collapse
Affiliation(s)
- Nina Baumgarten
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computational Genomic Medicine, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computer Science, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Laura Rumpf
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computational Genomic Medicine, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computer Science, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, School of Medicine and Health, Technical University of Munich, 80636 Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, 80636 Munich, Germany
| | - Marcel H. Schulz
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computational Genomic Medicine, Goethe University, 60590 Frankfurt am Main, Germany
- Institute for Computer Science, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Zhou KY, Deng LJ, Luo SY, Wang QX, Fang S. Expression of Early Growth Response 3 in Skin Cancers. Appl Immunohistochem Mol Morphol 2024; 32:169-175. [PMID: 38478384 DOI: 10.1097/pai.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE To assess the expression of early growth response 3 (EGR3) in normal skin and different types of skin tumors: cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), melanoma (MM), and cutaneous adnexal tumors containing sebaceous carcinoma (SC), trichoepithelioma (TE) and clear cell hidradenoma (CCH). BACKGROUND EGR3, expressed in multiple organs, including skin, plays an important role in cell differentiation and tumor growth. Previous studies have shown that EGR3 suppresses tumor growth and is downregulated in various malignancies. However, its distribution in normal skin and its expression especially in skin tumors have not been studied. MATERIALS AND METHODS Samples of normal cases (n = 4), cSCC (n = 12), BCC (n = 12), MM (n = 12), SC (n = 4), TE (n = 4), and CCH (n = 4) were collected from patients treated in our department between 2018 and 2023. Immunohistochemistry was used to investigate the expression of EGR3. The results were analyzed with the description of the staining pattern and the histochemical score. RESULTS Immunohistochemical staining showed that EGR3 was uniquely expressed in normal skin in the granular layer and upper part of the stratum spinosum, as well as in sebaceous glands and hair follicles, but not in sweat glands. In skin cancers, BCC, SC, and TE showed positive EGR3 staining, whereas cSCC, MM, and CCH were negative. CONCLUSIONS EGR3 has a specific expression pattern in normal skin and in skin tumors, which is important for the differential diagnosis of skin tumors, in particular for cSCC and sebaceous gland carcinoma.
Collapse
Affiliation(s)
- Kai-Yi Zhou
- Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
8
|
Wu K, Liu Y, Xia J, Liu J, Wang K, Liang H, Xu F, Liu D, Nie D, Tang X, Huang A, Chen C, Tang N. Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304408. [PMID: 37957540 PMCID: PMC10787101 DOI: 10.1002/advs.202304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jiale Liu
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Huijun Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Chang Chen
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
9
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Macromolecular crowding regulates matrix composition and gene expression in human gingival fibroblast cultures. Sci Rep 2023; 13:2047. [PMID: 36739306 PMCID: PMC9899282 DOI: 10.1038/s41598-023-29252-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 02/06/2023] Open
Abstract
Standard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Collapse
|
11
|
Zhou Q, Meng D, Li F, Zhang X, Liu L, Zhu Y, Liu S, Xu M, Deng J, Lei Z, Sluijter JP, Xiao J. Inhibition of HIPK2 protects stress-induced pathological cardiac remodeling. EBioMedicine 2022; 85:104274. [PMID: 36182775 PMCID: PMC9526139 DOI: 10.1016/j.ebiom.2022.104274] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
|
12
|
Dawkins JF, Ehdaie A, Rogers R, Soetkamp D, Valle J, Holm K, Sanchez L, Tremmel I, Nawaz A, Shehata M, Wang X, Prakosa A, Yu J, Van Eyk JE, Trayanova N, Marbán E, Cingolani E. Biological substrate modification suppresses ventricular arrhythmias in a porcine model of chronic ischaemic cardiomyopathy. Eur Heart J 2022; 43:2139-2156. [PMID: 35262692 PMCID: PMC9649918 DOI: 10.1093/eurheartj/ehac042] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 08/15/2023] Open
Abstract
AIMS Cardiomyopathy patients are prone to ventricular arrhythmias (VA) and sudden cardiac death. Current therapies to prevent VA include radiofrequency ablation to destroy slowly conducting pathways of viable myocardium which support re-entry. Here, we tested the reverse concept, namely that boosting local tissue viability in zones of slow conduction might eliminate slow conduction and suppress VA in ischaemic cardiomyopathy. METHODS AND RESULTS Exosomes are extracellular vesicles laden with bioactive cargo. Exosomes secreted by cardiosphere-derived cells (CDCEXO) reduce scar and improve heart function after intramyocardial delivery. In a VA-prone porcine model of ischaemic cardiomyopathy, we injected CDCEXO or vehicle into zones of delayed conduction defined by electroanatomic mapping. Up to 1-month post-injection, CDCEXO, but not the vehicle, decreased myocardial scar, suppressed slowly conducting electrical pathways, and inhibited VA induction by programmed electrical stimulation. In silico reconstruction of electrical activity based on magnetic resonance images accurately reproduced the suppression of VA inducibility by CDCEXO. Strong anti-fibrotic effects of CDCEXO, evident histologically and by proteomic analysis from pig hearts, were confirmed in a co-culture assay of cardiomyocytes and fibroblasts. CONCLUSION Biological substrate modification by exosome injection may be worth developing as a non-destructive alternative to conventional ablation for the prevention of recurrent ventricular tachyarrhythmias.
Collapse
Affiliation(s)
- James F. Dawkins
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ashkan Ehdaie
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Russell Rogers
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel Soetkamp
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Jackelyn Valle
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Kevin Holm
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ileana Tremmel
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Asma Nawaz
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Michael Shehata
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Xunzhang Wang
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Yu
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Natalia Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
The circular RNA circNlgnmediates doxorubicin-inducedcardiac remodeling and fibrosis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:175-189. [PMID: 35402068 PMCID: PMC8956965 DOI: 10.1016/j.omtn.2022.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023]
Abstract
Doxorubicin is a chemotherapeutic medication commonly used to treat many types of cancers, but it has side effects including vomiting, rash, hair loss, and bone marrow suppression. The most dangerous side effects are cardiomyopathy, cardiofibrosis, and heart failure, as doxorubicin generates cytotoxicity and stops DNA replication. There is no treatment to block these side effects. We have developed a transgenic mouse line overexpressing the circular RNA circNlgn and shown that circNlgn is a mediator of doxorubicin-induced cardiofibrosis. Increased expression of circNlgn decreased cardiac function and induced cardiofibrosis by upregulating Gadd45b, Sema4C, and RAD50 and activating p38 and pJNK in circNlgn transgenic heart. Silencing circNlgn decreased the effects of doxorubicin on cardiac cell activities and prevented doxorubicin-induced expression of fibrosis-associated molecules. The protein (Nlgn173) translated by circNlgn could bind and activate H2AX, producing γH2AX, resulting in upregulation of IL-1b, IL-2Rb, IL-6, EGR1, and EGR3. We showed that silencing these molecules in the signaling pathway prevented doxorubicin-induced cardiomyocyte apoptosis, increased cardiomyocyte viability, decreased cardiac fibroblast proliferation, and inhibited collagen production. This mechanism may hold therapeutic implications for mitigating the side effects of doxorubicin therapy in cancer patients.
Collapse
|
14
|
de Almeida RMC, Thomas GL, Glazier JA. Transcriptogram analysis reveals relationship between viral titer and gene sets responses during Corona-virus infection. NAR Genom Bioinform 2022; 4:lqac020. [PMID: 35300459 PMCID: PMC8923009 DOI: 10.1093/nargab/lqac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
To understand the difference between benign and severe outcomes after Coronavirus infection, we urgently need ways to clarify and quantify the time course of tissue and immune responses. Here we re-analyze 72-hour time-series microarrays generated in 2013 by Sims and collaborators for SARS-CoV-1 in vitro infection of a human lung epithelial cell line. Transcriptograms, a Bioinformatics tool to analyze genome-wide gene expression data, allow us to define an appropriate context-dependent threshold for mechanistic relevance of gene differential expression. Without knowing in advance which genes are relevant, classical analyses detect every gene with statistically-significant differential expression, leaving us with too many genes and hypotheses to be useful. Using a Transcriptogram-based top-down approach, we identified three major, differentially-expressed gene sets comprising 219 mainly immune-response-related genes. We identified timescales for alterations in mitochondrial activity, signaling and transcription regulation of the innate and adaptive immune systems and their relationship to viral titer. The methods can be applied to RNA data sets for SARS-CoV-2 to investigate the origin of differential responses in different tissue types, or due to immune or preexisting conditions or to compare cell culture, organoid culture, animal models and human-derived samples.
Collapse
Affiliation(s)
- Rita M C de Almeida
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gilberto L Thomas
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
15
|
Tsou PS, Palisoc PJ, Ali M, Khanna D, Sawalha AH. Genome-Wide Reduction in Chromatin Accessibility and Unique Transcription Factor Footprints in Endothelial Cells and Fibroblasts in Scleroderma Skin. Arthritis Rheumatol 2021; 73:1501-1513. [PMID: 33586346 DOI: 10.1002/art.41694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by widespread fibrosis and vascular complications. This study was undertaken to examine the chromatin landscape and transcription factor footprints in SSc, using an assay for genome-wide chromatin accessibility. METHODS Dermal endothelial cells (ECs) and fibroblasts were isolated from healthy controls and patients with diffuse cutaneous SSc (dcSSc). Assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed to assess genome-wide chromatin accessibility at a read depth of ~150 million reads per sample. Transcription factor footprinting and motif binding analysis were performed, followed by functional experiments. RESULTS Chromatin accessibility was significantly reduced in dcSSc patients compared to healthy controls. Differentially accessible chromatin loci were enriched in pathways and gene ontologies involved in the nervous system, cell membrane projections and cilia motility, nuclear and steroid receptors, and nitric oxide. In addition, chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. We found significant down-regulation of the neuronal gene NRXN1 and up-regulation of SNAI2 and ETV2 in dcSSc ECs. In dcSSc fibroblasts, down-regulation of the neuronal gene ENTPD1 and up-regulation of RUNX2 were confirmed. Further functional analysis revealed that ETV2 and NRXN1 dysregulation affected angiogenesis in ECs, while ENTPD1 enhanced profibrotic properties in dcSSc fibroblasts. CONCLUSION Our data identify the chromatin blueprint of dcSSc, and suggest that neuronal-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting the key pathways and transcription factors identified might present novel therapeutic approaches in SSc.
Collapse
|
16
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
17
|
Yoon T, Ahn SS, Pyo JY, Lee LE, Song JJ, Park YB, Lee SW. Correlation between serum cysteine-rich protein 61 and disease activity of antineutrophil cytoplasmic antibody-associated vasculitis. Clin Rheumatol 2021; 40:3703-3710. [PMID: 33755835 DOI: 10.1007/s10067-021-05701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Cysteine-rich protein 61 (CYR61) stimulates protein kinase B (Akt)-mediated nuclear factor-kappa B (NF-κB) signalling leading to an increase in pro-inflammatory cytokines, which play important roles in the pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Hence, we investigated whether serum CYR61 was correlated with disease activity of AAV in a single-centre prospective cohort. METHODS Seventy-two patients with AAV were randomly selected and included. Serum CYR61, interleukin (IL)-6 and IL-8 levels were quantified with the patients' stored sera, and clinical and laboratory data at the time of blood sampling were collected. Spearman's correlation and linear regression analysis was conducted to analyse the correlation between continuous variables. The optimal cut-off of serum CYR61 for predicting high disease activity was identified using the receiver operator characteristic curve. Birmingham vasculitis activity score (BVAS) was used as a measure to assess disease activity, and high disease activity was defined as BVAS ≥ 12. RESULTS Serum CYR61 significantly correlated with BVAS (r = 0.249), erythrocyte sedimentation rate (r = 0.283), C-reactive protein (r = 0.298) and serum IL-6 (r = 0.319). However, a linear association was not found between CYR61 and BVAS (β = 0.102, P = 0.304). The relative risk (RR) for high disease activity in AAV patients with serum CYR61 ≥ 236.2 pg/mL was higher than those with serum CYR61 < 236.2 pg/mL (RR 3.316, P = 0.018). CONCLUSION Even though serum CYR61 was not directly proportional to the increase of BVAS, it could be predictive of high disease activity in AAV. Key Points • Serum CYR61 was significantly correlated with BVAS along with ESR, CRP and serum IL-6. • The cut-off of serum CYR61 for high disease activity of AAV was obtained as 236.2 pg/mL. • AAV patients with serum CYR61 ≥ 236.2 pg/mL had increased risk of having higher disease activity than those with serum CYR61 < 236.2 pg/mL (RR 3.316, P = 0.018).
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Lucy Eunju Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
18
|
de Almeida RMC, Thomas GL, Glazier JA. Transcriptogram analysis reveals relationship between viral titer and gene sets responses during Corona-virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 32587961 PMCID: PMC7310616 DOI: 10.1101/2020.06.16.155267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To understand the difference between benign and severe outcomes after Coronavirus infection, we urgently need ways to clarify and quantify the time course of tissue and immune responses. Here we re-analyze 72-hour time-series microarrays generated in 2013 by Sims and collaborators for SARS-CoV-1 in vitro infection of a human lung epithelial cell line. Transcriptograms, a Bioinformatics tool to analyze genome-wide gene expression data, allow us to define an appropriate context-dependent threshold for mechanistic relevance of gene differential expression. Without knowing in advance which genes are relevant, classical analyses detect every gene with statistically-significant differential expression, leaving us with too many genes and hypotheses to be useful. Using a Transcriptogram-based top-down approach, we identified three major, differentially-expressed gene sets comprising 219 mainly immune-response-related genes. We identified timescales for alterations in mitochondrial activity, signaling and transcription regulation of the innate and adaptive immune systems and their relationship to viral titer. At the individual-gene level, EGR3 was significantly upregulated in infected cells. Similar activation in T-cells and fibroblasts in infected lung could explain the T-cell anergy and eventual fibrosis seen in SARS-CoV-1 infection. The methods can be applied to RNA data sets for SARS-CoV-2 to investigate the origin of differential responses in different tissue types, or due to immune or preexisting conditions or to compare cell culture, organoid culture, animal models, and human-derived samples.
Collapse
Affiliation(s)
- Rita M C de Almeida
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Instituto Nacional de Ciência e Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gilberto L Thomas
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
19
|
Amjad E, Sokouti B, Asnaashari S. A hybrid systems biology and systems pharmacology investigation of Zingerone's effects on reconstructed human epidermal tissues. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021; 22:90. [PMID: 36820091 PMCID: PMC8666180 DOI: 10.1186/s43042-021-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Background As individuals live longer, elderly populations can be expected to face issues. This pattern urges researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach. Methods For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontology, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin disorders), constructing the gene-chemicals network, analyzing gene-disease relationships, and validating significant genes through the evidence presented in the literature. Results The post-processing of the microarray dataset identified thirteen essential genes among control and Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-related diseases and validated their direct connections with skin disorders the evidence available in the literature. Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines family on skin aging progress. Conclusions Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functionality), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects of Zingerone should be assessed in other models (i.e., human or animal) in future studies.
Collapse
Affiliation(s)
- Elham Amjad
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Choi C, Jeong W, Ghang B, Park Y, Hyun C, Cho M, Kim J. Cyr61 synthesis is induced by interleukin-6 and promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res Ther 2020; 22:275. [PMID: 33228785 PMCID: PMC7685583 DOI: 10.1186/s13075-020-02369-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/05/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interleukin-6 (IL-6) is involved in fibroblast-like synoviocyte (FLS) activation and promotes pannus formation and bone and cartilage destruction in rheumatoid arthritis (RA). Cysteine-rich 61 (Cyr61) protein regulates cell proliferation, migration, and differentiation. The aim of this study was to investigate the role of Cyr61 in RA-FLS migration and invasion after IL-6 stimulation. Methods Western blotting, immunohistochemistry, reverse transcription-polymerase chain reaction, and real time-polymerase chain reaction were used to examine protein and mRNA levels of Cyr61, matrix metalloproteinases (MMPs), and other signalling proteins. Knockdown of gene expression was performed with siRNA, and RNA sequencing was performed for differential gene analysis. Migration and invasion were assessed by wound healing and Boyden chamber assays. Results Cyr61 levels were elevated in FLSs from RA patients compared to those in osteoarthritis patients. Control and IL-6-treated FLSs showed differential gene expression. IL-6 stimulated protein synthesis of Cyr61, which was attenuated by the extracellular signal-related kinase 1/2 (ERK 1/2) inhibitor, PD98059, and knockdown of early growth response 3 (EGR3), but not of JUN. IL-6-induced Cyr61 protein synthesis increased expression of MMP2. Cyr61 promoted FLS migration and invasion in an autocrine manner. Knockdown of CYR61 and a neutralising antibody attenuated Cyr61 synthesis and IL-6-induced FLS migration. Conclusions By modulating the ERK/EGR3 pathway, IL-6 stimulated Cyr61 production and in turn increased invasiveness of FLS. Our data suggest that Cyr61 might be a potential target to prevent the progression of joint damage in RA.
Collapse
Affiliation(s)
- Changmin Choi
- Department of Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Wooseong Jeong
- Department of Internal Medicine, Division of Rheumatology, Jeju National University Hospital, Aran 13gil, Jeju, 690-797, Republic of Korea
| | - Byeongzu Ghang
- Department of Internal Medicine, Division of Rheumatology, Jeju National University Hospital, Aran 13gil, Jeju, 690-797, Republic of Korea
| | - Yonggeun Park
- Department of Orthopaedic Surgery, Jeju National University Hospital, Jeju, Republic of Korea
| | - Changlim Hyun
- Department of Pathology, Jeju National University Hospital, Jeju, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Aran 13gil, Jeju, 690-797, Republic of Korea.
| | - Jinseok Kim
- Department of Internal Medicine, Division of Rheumatology, Jeju National University Hospital, Aran 13gil, Jeju, 690-797, Republic of Korea.
| |
Collapse
|
21
|
Teng L, Huang Y, Guo J, Li B, Lin J, Ma L, Wang Y, Ye C, Chen Q. Cardiac fibroblast miR-27a may function as an endogenous anti-fibrotic by negatively regulating Early Growth Response Protein 3 (EGR3). J Cell Mol Med 2020; 25:73-83. [PMID: 33215816 PMCID: PMC7810947 DOI: 10.1111/jcmm.15814] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
Pathological myocardial fibrosis and hypertrophy occur due to chronic cardiac stress. The microRNA‐27a (miR‐27a) regulates collagen production across diverse cell types and organs to inhibit fibrosis and could constitute an important therapeutic avenue. However, its impact on hypertrophy and cardiac remodelling is less well‐known. We employed a transverse aortic constriction (TAC) murine model of left ventricular pressure overload to investigate the in vivo effects of genetic miR‐27a knockout, antisense inhibition of miR‐27a‐5p and fibroblast‐specific miR‐27a knockdown or overexpression. In silico Venn analysis and reporter assays were used to identify miR‐27a‐5p's targeting of Early Growth Response Protein 3 (Egr3). We evaluated the effects of miR‐27a‐5p and Egr3 upon transforming growth factor‐beta (Tgf‐β) signalling and secretome of cardiac fibroblasts in vitro. miR‐27a‐5p attenuated TAC‐induced cardiac fibrosis and myofibroblast activation in vivo, without a discernible effect on cardiac myocytes. Molecularly, miR‐27a‐5p inhibited transforming growth factor‐beta (Tgf‐β) signalling and pro‐fibrotic protein secretion in cardiac fibroblasts in vitro through suppressing the pro‐fibrotic transcription factor Early Growth Response Protein 3 (Egr3). This body of work suggests that cardiac fibroblast miR‐27a may function as an endogenous anti‐fibrotic by negatively regulating Egr3 expression.
Collapse
Affiliation(s)
- Lifeng Teng
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Yubing Huang
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, GuangZhou, China
| | - Bin Li
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Jin Lin
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Lining Ma
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Yudai Wang
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Cong Ye
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Qianqian Chen
- Nursing Department, Hainan Maternal and Child Health Hospital, Haikou, China
| |
Collapse
|
22
|
Zaffaroni G, Okawa S, Morales-Ruiz M, del Sol A. An integrative method to predict signalling perturbations for cellular transitions. Nucleic Acids Res 2020; 47:e72. [PMID: 30949696 PMCID: PMC6614844 DOI: 10.1093/nar/gkz232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of specific cellular transitions is of clinical importance, as it allows to revert disease cellular phenotype, or induce cellular reprogramming and differentiation for regenerative medicine. Signalling is a convenient way to accomplish such transitions without transfer of genetic material. Here we present the first general computational method that systematically predicts signalling molecules, whose perturbations induce desired cellular transitions. This probabilistic method integrates gene regulatory networks (GRNs) with manually-curated signalling pathways obtained from MetaCore from Clarivate Analytics, to model how signalling cues are received and processed in the GRN. The method was applied to 219 cellular transition examples, including cell type transitions, and overall correctly predicted experimentally validated signalling molecules, consistently outperforming other well-established approaches, such as differential gene expression and pathway enrichment analyses. Further, we validated our method predictions in the case of rat cirrhotic liver, and identified the activation of angiopoietins receptor Tie2 as a potential target for reverting the disease phenotype. Experimental results indicated that this perturbation induced desired changes in the gene expression of key TFs involved in fibrosis and angiogenesis. Importantly, this method only requires gene expression data of the initial and desired cell states, and therefore is suited for the discovery of signalling interventions for disease treatments and cellular therapies.
Collapse
Affiliation(s)
- Gaia Zaffaroni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Satoshi Okawa
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Integrated BioBank of Luxembourg, Dudelange L-3555, Luxembourg
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department-Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona 08036, Spain
- Working group for the biochemical assessment of hepatic disease-SEQC, Barcelona 08036, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine-University of Barcelona, Barcelona 08036, Spain
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- CIC bioGUNE, Bizkaia Technology Park, Derio 48160, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
- To whom correspondence should be addressed. Tel: +352 46 66 44 6982; Fax: +352 46 66 44 6949;
| |
Collapse
|
23
|
Zhang P, Yang X, Wang L, Zhang D, Luo Q, Wang B. Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer. Int J Oncol 2019; 54:1981-1994. [PMID: 31081063 PMCID: PMC6521937 DOI: 10.3892/ijo.2019.4778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022] Open
Abstract
MicroRNA-335 (miR-335) was reported to suppress cell proliferation in prostate cancer (PC), a common malignancy in males. The expression of early growth response 3 (EGR3) was determined to be elevated in human PC tissues; however, the possible effects and underlying mechanism of miR-335 on PC remains unknown. In the present study, miR-335 mimics and miR-335 inhibitors were respectively transfected into DU145 cells. Stable silencing of EGR3 was observed in DU145 cells following transfection with small interfering RNA. We also used Cell Counting Kit-8 and in vitro angiogenesis assays to determine the viability and revascularization potential of DU145 cells. The expression levels of EGR and caspase-3 activity were analyzed by immunohistochemistry and immunocytochemistry, respectively. We predicted the target of miR-335 by bioinformatics analysis and a dual-luciferase reporter gene assay. Western blot and quantitative real-time polymerase chain reaction analyses were performed to determine the protein and mRNA expression of molecules. miR-335 expression was downregulated in PC tissues and cell lines. Overexpression of miR-335 significantly reduced the viability and the formation of regenerative tubes of DU145 cells, and inhibited the expression of inflammatory factors. EGR3 was proposed as a possible target of miR-335, and was negatively regulated by miR-335. Silencing EGR3 suppressed the viability and angiogenesis of DU145 cells, and reduced the activity of caspase-3 and inflammatory factor expression. miR-335 inhibition along with EGR3 silencing EGR3 inhibited the cell proliferation. Furthermore, miR-335 inhibited the formation of a PC solid tumor xenograft in vivo. Thus, miR-335 may exert an antitumor effect on DU145 cells by regulating the expression of EGR3. The findings of the present study may provide insight into a novel therapeutic strategy for the treatment of prostatic carcinoma.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Xiaojie Yang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Li Wang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Dong Zhang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Qidong Luo
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| | - Binxian Wang
- Department of Urinary Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710004, P.R. China
| |
Collapse
|
24
|
Guo NL, Dowlati A, Raese RA, Dong C, Chen G, Beer DG, Shaffer J, Singh S, Bokhary U, Liu L, Howington J, Hensing T, Qian Y. A Predictive 7-Gene Assay and Prognostic Protein Biomarkers for Non-small Cell Lung Cancer. EBioMedicine 2018; 32:102-110. [PMID: 29861409 PMCID: PMC6020749 DOI: 10.1016/j.ebiom.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study aims to develop a multi-gene assay predictive of the clinical benefits of chemotherapy in non-small cell lung cancer (NSCLC) patients, and substantiate their protein expression as potential therapeutic targets. PATIENTS AND METHODS The mRNA expression of 160 genes identified from microarray was analyzed in qRT-PCR assays of independent 337 snap-frozen NSCLC tumors to develop a predictive signature. A clinical trial JBR.10 was included in the validation. Hazard ratio was used to select genes, and decision-trees were used to construct the predictive model. Protein expression was quantified with AQUA in 500 FFPE NSCLC samples. RESULTS A 7-gene signature was identified from training cohort (n = 83) with accurate patient stratification (P = 0.0043) and was validated in independent patient cohorts (n = 248, P < 0.0001) in Kaplan-Meier analyses. In the predicted benefit group, there was a significantly better disease-specific survival in patients receiving adjuvant chemotherapy in both training (P = 0.035) and validation (P = 0.0049) sets. In the predicted non-benefit group, there was no survival benefit in patients receiving chemotherapy in either set. The protein expression of ZNF71 quantified with AQUA scores produced robust patient stratification in separate training (P = 0.021) and validation (P = 0.047) NSCLC cohorts. The protein expression of CD27 quantified with ELISA had a strong correlation with its mRNA expression in NSCLC tumors (Spearman coefficient = 0.494, P < 0.0088). Multiple signature genes had concordant DNA copy number variation, mRNA and protein expression in NSCLC progression. CONCLUSIONS This study presents a predictive multi-gene assay and prognostic protein biomarkers clinically applicable for improving NSCLC treatment, with important implications in lung cancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Nancy Lan Guo
- West Virginia University Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, United States.
| | - Afshin Dowlati
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Rebecca A Raese
- West Virginia University Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, United States
| | - Chunlin Dong
- West Virginia University Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, United States
| | - Guoan Chen
- Comprehensive Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0944, United States
| | - David G Beer
- Comprehensive Cancer Center, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0944, United States
| | - Justine Shaffer
- West Virginia University Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, United States
| | - Salvi Singh
- West Virginia University Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300, United States
| | - Ujala Bokhary
- Kellogg Cancer Center, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201, United States
| | - Lin Liu
- Kellogg Cancer Center, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201, United States
| | - John Howington
- Kellogg Cancer Center, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201, United States
| | - Thomas Hensing
- Kellogg Cancer Center, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, IL 60201, United States
| | - Yong Qian
- National Institute of Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, United States
| |
Collapse
|
25
|
Kudryavtseva A, Krasnov G, Lipatova A, Alekseev B, Maganova F, Shaposhnikov M, Fedorova M, Snezhkina A, Moskalev A. Effects of Abies sibirica terpenes on cancer- and aging-associated pathways in human cells. Oncotarget 2018; 7:83744-83754. [PMID: 27888805 PMCID: PMC5347801 DOI: 10.18632/oncotarget.13467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
A large number of terpenoids exhibit potential geroprotector and anti-cancer properties. Here, we studied whole transcriptomic effects of Abisil, the extract of fir (Abies sibirica) terpenes, on normal and cancer cell lines. We used early passaged and senescent none-immortalized fibroblasts as cellular aging models. It was revealed that in normal fibroblasts, terpenes induced genes of stress response, apoptosis regulation and tissue regeneration. The restoration of the expression level of some prolongevity genes after fir extract treatment was shown in old cells. In Caco-2 and AsPC-1 cancer cell lines, Abisil induced expression of both onco-suppressors (members of GADD45, DUSP, and DDIT gene families), and proto-oncogenes (c-Myc, c-Jun, EGR and others). Thus, the study demonstrates the potential anti-aging and anti-cancer effects of Abisil on senescent and cancer cell lines.
Collapse
Affiliation(s)
- Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boris Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
| | | | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasiya Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| |
Collapse
|
26
|
Kim HR, Kim YS, Yoon JA, Yang SC, Park M, Seol DW, Lyu SW, Jun JH, Lim HJ, Lee DR, Song H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation. FASEB J 2018; 32:1184-1195. [PMID: 29092905 DOI: 10.1096/fj.201700854rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The harmonized actions of ovarian E2 and progesterone (P4) regulate the proliferation and differentiation of uterine cells in a spatiotemporal manner. Imbalances between these hormones often lead to infertility and gynecologic diseases. Whereas numerous factors that are involved in P4 signaling have been identified, few local factors that mediate E2 actions in the uterus have been revealed. Here, we demonstrate that estrogen induces the transcription factor, early growth response 1 ( Egr1), to fine-tune its actions in uterine epithelial cells (ECs) that are responsible for uterine receptivity for embryo implantation. In the presence of exogenous gonadotrophins, ovulation, fertilization, and embryonic development normally occur in Egr1-/- mice, but these animals experience the complete failure of embryo implantation with reduced artificial decidualization. Although serum levels of E2 and P4 were comparable between Egr1+/+ and Egr1-/- mice on d 4 of pregnancy, aberrantly reduced levels of progesterone receptor in Egr1-/- uterine ECs caused enhanced E2 activity and impaired P4 response. Ultrastructural analyses revealed that Egr1-/- ECs are not fully able to provide proper uterine receptivity. Uterine mRNA landscapes in Egr1-/- mice revealed that EGR1 controls the expression of a subset of E2-regulated genes. In addition, P4 signaling was unable to modulate estrogen actions, including those that are involved in cell-cycle progression, in ECs that were deficient in EGR1. Furthermore, primary coculture of Egr1-/- ECs with Egr1+/+ stromal cells, and vice versa, supported the notion that Egr1 is required to modulate E2 actions on ECs to prepare the uterine environment for embryo implantation. In contrast to its role in ECs, loss of Egr1 in stroma significantly reduced stromal cell proliferation. Collectively, our results demonstrate that E2 induces EGR1 to streamline its actions for the preparation of uterine receptivity for embryo implantation in mice.-Kim, H.-R., Kim, Y. S., Yoon, J. A., Yang, S. C., Park, M., Seol, D.-W., Lyu, S. W., Jun, J. H., Lim, H. J., Lee, D. R., Song, H. Estrogen induces EGR1 to fine-tune its actions on uterine epithelium by controlling PR signaling for successful embryo implantation.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Graduate School of Health Science, Eulji University, Seongnam, Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
27
|
Wei W, Chen Y, Xu J, Zhou Y, Bai X, Yang M, Zhu J. Identification of Biomarker for Cutaneous Squamous Cell Carcinoma Using Microarray Data Analysis. J Cancer 2018; 9:400-406. [PMID: 29344286 PMCID: PMC5771347 DOI: 10.7150/jca.21381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/24/2017] [Indexed: 11/05/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most malignant tumors worldwide. We aimed to explore the molecular mechanism of this CSCC and screen feature genes that can function as the biomarker of CSCC and thus provide a theoretical basis for the pathogenesis research and development of medicine. The method of microarray data analysis was used in this study to explore the differentially expressed genes between tissues of normal specimens and tissues of patients with CSCC. Besides, functional enrichment analysis and signal pathway were performed on these genes to screen the feature genes that are closely associated with CSCC can function as the potential biomarkers of CSCC.A total of 53 samples from two datasets, GSE45216 and GSE45164, were used in the differentially expressed analysis. And as a result, a total of 833 genes were screened out, including 465 up-regulated genes and 215 down-regulated genes. Candidate genes, including up-regulated genes like S100A12, MMP1, DEFB4B/DEFB4A, KRT16 and PI3, and down-regulated genes like EGR3, LRP4, C14orf132, PAMR1, CCL27, and KRT2 were screened out. All these genes were testified in the dataset of GSE66359. The result showed that only three genes, KRT16, PI3 and EGR3, were mostly differentially expressed and only EGR3 had the same expression pattern with both datasets, GSE45216 and GSE45164.Of note, EGR3 gene was found to be the most differentially expressed gene in cutaneous squamous cell carcinoma, which had the potential to function as the candidate genes and help in the diagnosis and prognostic treatments of CSCC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Chen
- Oncology Department, Huai'an Second People's Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an, China
| | - Jie Xu
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinping Bai
- Department of Plastic Surgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Plastic Surgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju Zhu
- Department of Plastic Surgery, The Central hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Han P, Guerrero-Netro H, Estienne A, Cao B, Price CA. Regulation and action of early growth response 1 in bovine granulosa cells. Reproduction 2017; 154:547-557. [PMID: 28733346 DOI: 10.1530/rep-17-0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/26/2017] [Accepted: 07/21/2017] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factors (FGF) modify cell proliferation and differentiation through receptor tyrosine kinases, which stimulate the expression of transcription factors including members of the early growth response (EGR) family. In ovarian granulosa cells, most FGFs activate typical response genes, although the role of EGR proteins has not been described. In the present study, we determined the regulation of EGR mRNA by FGFs and explored the role of EGR1 in the regulation of FGF-response genes. Addition of FGF1, FGF2, FGF4 or FGF8b increased EGR1 and EGR3 mRNA levels, whereas FGF18 increased only EGR1 mRNA abundance. No mRNA encoding EGR2 or EGR4 was detected. Overexpression of EGR1 increased EGR3 mRNA levels as well as the FGF-response genes SPRY2, NR4A1 and FOSL1 and also increased the phosphorylation of MAPK3/1. Knockdown of EGR3 did not alter the ability of FGF8b to stimulate SPRY2 mRNA levels. These data demonstrate the regulation of EGR1 and EGR3 mRNA abundance by FGFs in granulosa cells and suggest that EGR1 is likely an upstream component of FGF signaling in granulosa cells.
Collapse
Affiliation(s)
- Peng Han
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, Shaanxi, China.,Centre de Recherche en Reproduction et Fertilité (CRRF)Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Hilda Guerrero-Netro
- Centre de Recherche en Reproduction et Fertilité (CRRF)Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Anthony Estienne
- Centre de Recherche en Reproduction et Fertilité (CRRF)Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Binyun Cao
- College of Animal Science and TechnologyNorthwest A&F University, Yangling, Shaanxi, China
| | - Christopher A Price
- Centre de Recherche en Reproduction et Fertilité (CRRF)Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
30
|
Wang ZD, Qu FY, Chen YY, Ran ZS, Liu HY, Zhang HD. Involvement of microRNA-718, a new regulator of EGR3, in regulation of malignant phenotype of HCC cells. J Zhejiang Univ Sci B 2017; 18:27-36. [PMID: 28070994 DOI: 10.1631/jzus.b1600205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is still one of the most common death-related malignancies worldwide. Because the way onset and progression are hidden most, HCC diagnoses are made at an advanced stage, when they are unsuitable for surgical resection. MicroRNAs are a class of small non-coding RNAs, participating in many aspects of cancers. In this study, we tried to establish the role of microRNA-718 (miR-718) in the malignant phenotype of HCC cells and its possible role in HCC diagnosis. METHODS Here we first used a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, Transwell migration and invasion assays, and colony formation assay to evaluate the impact of miR-718 on the malignant phenotypes of HCC cells. Then, we used bioinformatic methods to predict the target gene of miR-718 and used green fluorescence protein (GFP) reporter assay, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) to validate the regulation relationship. Finally, we determined the role of the target gene in the HCC phenotype. RESULTS We found that the expression of miR-718 was significantly reduced in various HCC cell lines and HCC tissues. Re-expression of miR-718 significantly reduced the cellular viability and colony formation ability as well as inhibited the migration and invasion abilities of HCC cell lines. Early growth response protein 3 (EGR3) is a direct target of miR-718 and is negatively regulated by miR-718. EGR3 could increase the viability and proliferation of HCC cells, and promot the migration and invasion of HCC cells. CONCLUSIONS miR-718 acts as a tumor suppressive microRNA in HCC via regulating the expression of EGR3, which may provide a new diagnostic marker and treatment target for HCC.
Collapse
Affiliation(s)
- Zhong-Dong Wang
- Clinical Laboratory of Taishan Sanatorium of Shandong Province, Tai'an 271001, China
| | - Fan-Yong Qu
- Interventional Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Yuan-Yuan Chen
- Center of Health Examination, Affiliated Hospital of Taishan Medical University, Tai'an 271001, China
| | - Zhang-Shen Ran
- Center of Health Examination, Affiliated Hospital of Taishan Medical University, Tai'an 271001, China
| | - Hai-Yan Liu
- Department of Oncology, Affiliated Hospital of Taishan Medical University, Tai'an 271001, China
| | - Hai-Dong Zhang
- Department of Basic Medicine, Taishan Medical University, Tai'an 271001, China
| |
Collapse
|
31
|
Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P. Brain Transforming Growth Factor-β Resists Hypertension Via Regulating Microglial Activation. Stroke 2017; 48:2557-2564. [PMID: 28698257 DOI: 10.1161/strokeaha.117.017370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hypertension is the major risk factor for stroke. Recent work unveiled that hypertension is associated with chronic neuroinflammation; microglia are the major players in neuroinflammation, and the activated microglia elevate sympathetic nerve activity and blood pressure. This study is to understand how brain homeostasis is kept from hypertensive disturbance and microglial activation at the onset of hypertension. METHODS Hypertension was induced by subcutaneous delivery of angiotensin II, and blood pressure was monitored in conscious animals. Microglial activity was analyzed by flow cytometry and immunohistochemistry. Antibody, pharmacological chemical, and recombinant cytokine were administered to the brain through intracerebroventricular infusion. Microglial depletion was performed by intracerebroventricular delivering diphtheria toxin to CD11b-diphtheria toxin receptor mice. Gene expression profile in sympathetic controlling nucleus was analyzed by customized qRT-PCR array. RESULTS Transforming growth factor-β (TGF-β) is constitutively expressed in the brains of normotensive mice. Removal of TGF-β or blocking its signaling before hypertension induction accelerated hypertension progression, whereas supplementation of TGF-β1 substantially suppressed neuroinflammation, kidney norepinephrine level, and blood pressure. By means of microglial depletion and adoptive transfer, we showed that the effects of TGF-β on hypertension are mediated through microglia. In contrast to the activated microglia in established hypertension, the resting microglia are immunosuppressive and important in maintaining neural homeostasis at the onset of hypertension. Further, we profiled the signature molecules of neuroinflammation and neuroplasticity associated with hypertension and TGF-β by qRT-PCR array. CONCLUSIONS Our results identify that TGF-β-modulated microglia are critical to keeping brain homeostasis responding to hypertensive disturbance.
Collapse
Affiliation(s)
- You Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Xiao Z Shen
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Liang Li
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Tuantuan V Zhao
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Kenneth E Bernstein
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Alan K Johnson
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Patrick Lyden
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Jianmin Fang
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.)
| | - Peng Shi
- From the School of Life Science and Technology, Tongji University, Shanghai, China (Y.L., T.V.Z., J.F.); The Second Affiliated Hospital of Zhejiang University (P.S.), Institute of Translational Medicine (P.S.), and Department of Physiology (X.Z.S.), Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology (Y.L., L.L., P.L., P.S.) and Department of Biomedical Science (T.V.Z., K.E.B.), Cedars-Sinai Medical Center, Los Angeles, CA; and Pharmacological and Brain Sciences, University of Iowa (A.K.J.).
| |
Collapse
|
32
|
Mah W, Jiang G, Olver D, Gallant-Behm C, Wiebe C, Hart DA, Koivisto L, Larjava H, Häkkinen L. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28641076 DOI: 10.1016/j.ajpath.2017.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-β signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring.
Collapse
Affiliation(s)
- Wesley Mah
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Olver
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Colin Wiebe
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Hart
- Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Leeni Koivisto
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Santino P, Martignani E, Miretti S, Baratta M, Accornero P. Mechanisms of modulation of the Egr gene family in mammary epithelial cells of different species. Gen Comp Endocrinol 2017; 247:87-96. [PMID: 28118985 DOI: 10.1016/j.ygcen.2017.01.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
In the adult female, within the estrous cycle, the mammary gland undergoes multiple rounds of growth, with increased cellular proliferation, and involution, with increased apoptosis. The increase in proliferation is elicited by endocrine (Estrogen, Progesterone), as well as locally produced (epidermal growth factor, insulin-like growth factor, etc) growth factors. Among the genes that are modulated during cellular proliferation, immediate early genes play a fundamental role, being rapidly upregulated and then downregulated within the G0/G1 phase of the cell cycle, allowing the progression to the subsequent phases. Egrs (1-4) are immediate early genes that encode for transcription factors that promote, within different cell types and depending on the strength and duration of the stimuli, several different responses like mitogenesis, differentiation, apoptosis or even anti-apoptosis. In this work we have studied the mechanisms of modulation of the Egr family, in mammary epithelial cells of different origin (bovine, canine, feline, murine). Following stimulation with growth medium, Egr mRNA expression showed a strong upregulation reaching a peak at 45-60min, that rapidly declined. Among several cytokines, particularly important for mammary morphogenesis, that we have tested (EGF, IGF-I, insulin, estrogen, progesterone), only EGF upregulated Egrs to levels close to those elicited by growth medium. In order to understand how the Egr transcription factors were regulated, we have inhibited Erk 1/2 and PI3K, molecules that drive two major intracellular signaling pathways. Inhibition of the Erk 1/2 pathway totally abolished Egr upregulation mediated by growth medium or EGF. On the other hand, the PI3K-Akt pathway played a minor role on Egr levels, with a strong inhibitory effect on cat GH2 cells only, that could be ascribed to reduced Erk phosphorylation following PI3K inhibition. Finally we showed that addition of growth medium also upregulated that the mammary luminal marker cytokeratin 18, but only in the murine NMuMG cell line. This is the first manuscript describing how the Egr transcription factors are expressed in mammary epithelial cells of domestic animals and which growth factors and signaling pathways modulate their expression.
Collapse
Affiliation(s)
- P Santino
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - E Martignani
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - S Miretti
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - M Baratta
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - P Accornero
- Dipartimento di Scienze Veterinarie, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
34
|
Xiang L, Xin N, Yuan Y, Hou X, Chen J, Wei N, Gong P. Effect of follicular dendritic cell secreted protein on gene expression of human periodontal ligament cells. Arch Oral Biol 2017; 81:151-159. [PMID: 28544936 DOI: 10.1016/j.archoralbio.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/27/2017] [Accepted: 05/14/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the specific roles of follicular dendritic cell secreted protein (FDC-SP), a protein exists in saliva, in the inhibition of calcium precipitation during periodontal regeneration, as well as affect phenotype expression of human periodontal ligament cells (hPDLCs) during the differentiation process. DESIGN To investigate this, we applied microarray technology to identify gene expression changes in hPDLCs transfected with FDC-SP and then clustered them according to their biological functions. RESULTS One hundred seventy-one genes were found differentially expressed by at least two-fold between FDC-SP -transfected and empty vector-transfected cells. Besides, genes encoding cell-cycle proteins, blood-related and cell differentiation-related proteins tended to be up-regulated after FDC-SP transfection, whereas cytokine/growth factors, signal transduction and metabolism-related genes tended to be down-regulated in hPDLCs overexpression FDC-SP. CONCLUSIONS The present study investigated FDC-SP's roles in hPDLCs' phenotype expression, via comparing the gene expression profiles between FDC-SP -transfected hPDLCs and empty vector-transfected cells upon microarray analysis. hPDLCs overexpression FDC-SP appear to display different gene expression patterns. In all, these observations showed a potential of FDC-SP in the maintenance of PDL homeostasis and its ultimate contribution to periodontal would-healing processes.
Collapse
Affiliation(s)
- Lin Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Na Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaogang Hou
- College of Hydraulic and Hydroelectric Engineering, Sichuan University, Chengdu 610041, China.
| | - Junwei Chen
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100000, China.
| | - Na Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Abstract
Fibrotic diseases contribute to 45% of deaths in the industrialized world, and therefore a better understanding of the pathophysiological mechanisms underlying tissue fibrosis is sorely needed. We aimed to identify novel modifiers of tissue fibrosis expressed by myofibroblasts and their progenitors in their disease microenvironment through RNA silencing in vivo. We leveraged novel biology, targeting genes upregulated during liver and kidney fibrosis in this cell lineage, and employed small interfering RNA (siRNA)-formulated lipid nanoparticles technology to silence these genes in carbon-tetrachloride-induced liver fibrosis in mice. We identified five genes, Egr2, Atp1a2, Fkbp10, Fstl1, and Has2, which modified fibrogenesis based on their silencing, resulting in reduced Col1a1 mRNA levels and collagen accumulation in the liver. These genes fell into different groups based on the effects of their silencing on a transcriptional mini-array and histological outcomes. Silencing of Egr2 had the broadest effects in vivo and also reduced fibrogenic gene expression in a human fibroblast cell line. Prior to our study, Egr2, Atp1a2, and Fkbp10 had not been functionally validated in fibrosis in vivo. Thus, our results provide a major advance over the existing knowledge of fibrogenic pathways. Our study is the first example of a targeted siRNA assay to identify novel fibrosis modifiers in vivo.
Collapse
|
36
|
Talkhabi M, Zonooz ER, Baharvand H. Boosters and barriers for direct cardiac reprogramming. Life Sci 2017; 178:70-86. [PMID: 28427897 DOI: 10.1016/j.lfs.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/08/2017] [Accepted: 04/16/2017] [Indexed: 12/16/2022]
Abstract
Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming.
Collapse
Affiliation(s)
- Mahmood Talkhabi
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Elmira Rezaei Zonooz
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
37
|
Shin H, Seol DW, Nam M, Song H, Lee DR, Lim HJ. Expression of Egr3 in mouse gonads and its localization and function in oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:781-787. [PMID: 28002932 PMCID: PMC5411840 DOI: 10.5713/ajas.16.0798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 12/02/2022]
Abstract
Objective The early growth response (Egr) family consists of four members (Egr1, Egr2, Egr3, and Egr4) that are zinc finger transcription factors. Among them, Egr3 is involved in transcriptional regulation of target genes during muscle spindle formation and neurite outgrowth. We previously showed that the immunoreactive Egr3 is localized on oocyte spindle and accumulate near the microtubule organizing center during meiosis I in mice. Egr3 was also shown to be localized on spermatocytes. We herein investigated if Egr3 is expressed in mouse gonads and if Egr3 blockade results in any defect in oocyte maturation. Methods Expression of Egr3 in mouse gonads was examined by reverse transcription-polymerase chain reaction. Full-length Egr3 and truncated Egr3 (ΔEgr3) complementary RNAs (cRNAs) with Xpress tag at N-terminus and DsRed2 at C-terminus, and small interfering RNA (siRNA) targeting Egr3 were microinjected into mouse oocytes at germinal vesicle stage. Localization of microinjected Egr3 was examined by confocal live imaging and immunofluorescence staining. Results Egr3 mRNA was detected in mouse ovaries and testes from 1 to 4 week-old mice. An uncharacterized longer transcript containing 5′untranslated region was also detected in 3 and 4 week-old gonads. Microinjected Xpress-Egr3-DsRed2 or Xpress-ΔEgr3-DsRed2 localized to nuclei and chromosomes during meiotic progression. Microinjection of these cRNAs or Egr3 siRNA in oocytes did not affect meiotic maturation. Immunofluorescence staining of Egr3 in Xpress-ΔEgr3-DsRed2-injected oocytes showed a positive signal only on meiotic spindle, suggesting that this antibody does not detect endogenous or exogenous Egr3 in mouse oocytes. Conclusion The results show that Egr3 localizes to chromosomes during meiotic progression and that certain antibodies may not faithfully represent localization of target proteins in oocytes. Egr3 seems to be dispensable during oocyte maturation in mice.
Collapse
Affiliation(s)
- Hyejin Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Minyeong Nam
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam 13884, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea.,Department of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
38
|
Fang F, Marangoni RG, Zhou X, Yang Y, Ye B, Shangguang A, Qin W, Wang W, Bhattacharyya S, Wei J, Tourtellotte WG, Varga J. Toll-like Receptor 9 Signaling Is Augmented in Systemic Sclerosis and Elicits Transforming Growth Factor β-Dependent Fibroblast Activation. Arthritis Rheumatol 2016; 68:1989-2002. [PMID: 26946325 PMCID: PMC9993331 DOI: 10.1002/art.39655] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although transforming growth factor β (TGFβ) is recognized as being a key trigger of fibroblast activation in systemic sclerosis (SSc), prominent innate immunity suggests that additional pathways contribute to disease persistence. Toll-like receptor 9 (TLR9) is implicated in autoimmunity and fibrosis; however, the expression, mechanism of action, and pathogenic role of TLR9 signaling in SSc remain uncharacterized. The aim of this study was to explore the expression, activity, and potential pathogenic role of TLR9 in the context of skin fibrosis in SSc and in mouse models of experimental fibrosis. METHODS Expression and localization of TLR9 were evaluated in SSc skin biopsy specimens and explanted skin fibroblasts. Fibrotic responses elicited by type A CpG oligonucleotide and mitochondrial DNA (mtDNA) were examined in human skin fibroblasts by a combination of real-time quantitative polymerase chain reaction, Western blot analysis, transient transfection, immunofluorescence microscopy, and functional assays. Expression of TLR9 was examined in 2 distinct mouse models of experimental fibrosis. RESULTS Skin biopsy specimens obtained from 2 independent cohorts of SSc patients showed up-regulation of TLR9, and myofibroblasts were the major cellular source. Moreover, SSc skin biopsy specimens showed evidence of TLR9 pathway activation. CpG induced robust TLR9-dependent fibrotic responses in explanted normal fibroblasts that could be blocked by bortezomib and were mediated through the action of endogenous TGFβ. Mice with experimental fibrosis showed a time-dependent increase in TLR9 localized primarily to myofibroblasts in the dermis. CONCLUSION In isolated fibroblasts, TLR9 elicits fibrotic responses mediated via endogenous TGFβ. In patients with SSc, mtDNA and other damage-associated TLR9 ligands in the skin might trigger localized activation of TLR9 signaling, TGFβ production, and consequent fibroblast activation. Disrupting this fibrotic process with inhibitors targeting TLR9 or its downstream signaling pathways might therefore represent a novel approach to SSc therapy.
Collapse
Affiliation(s)
- Feng Fang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Yang Yang
- China Pharmaceutical University, Nanjing, China
| | - Boping Ye
- China Pharmaceutical University, Nanjing, China
| | - Anna Shangguang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wenyi Qin
- University of Illinois at Chicago, Chicago, Illinois
| | - Wenxia Wang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jun Wei
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - John Varga
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
39
|
Khachigian LM. Early growth response-1 in the pathogenesis of cardiovascular disease. J Mol Med (Berl) 2016; 94:747-53. [PMID: 27251707 DOI: 10.1007/s00109-016-1428-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
This article reviews the regulatory roles of the immediate-early gene product and prototypic zinc finger transcription factor, early growth response-1 in models of cardiovascular pathobiology, focusing on insights using microRNA, DNAzymes, small hairpin RNA, small interfering RNA, oligonucleotide decoy strategies and mice deficient in early growth response-1.
Collapse
Affiliation(s)
- Levon M Khachigian
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
40
|
Liu Z, Chen O, Zheng M, Wang L, Zhou Y, Yin C, Liu J, Qian L. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Res 2016; 16:507-18. [PMID: 26957038 DOI: 10.1016/j.scr.2016.02.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/14/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Direct conversion of fibroblasts into induced cardiomyocytes (iCMs) offers an alternative strategy for cardiac disease modeling and regeneration. During iCM reprogramming, the starting fibroblasts must overcome existing epigenetic barriers to acquire the CM-like chromatin pattern. However, epigenetic dynamics along this reprogramming process have not been studied. Here, we took advantage of our recently generated polycistronic system and determined the dynamics of two critical histone marks, H3K27me3 and H3K4me3, in parallel with gene expression at a set of carefully selected cardiac and fibroblast loci during iCM reprogramming. We observed reduced H3K27me3 and increased H3K4me3 at cardiac promoters as early as day 3, paralleled by a rapid significant increase in their mRNA expression. In contrast, H3K27me3 at loci encoding fibroblast marker genes did not increase until day 10 and H3K4me3 progressively decreased along the reprogramming process; these changes were accompanied by a gradual decrease in the mRNA expression of fibroblast marker genes. Further analyses of fibroblast-enriched transcription factors revealed a similarly late deposition of H3K27me3 and decreased mRNA expression of Sox9, Twist1 and Twist2, three important players in epithelial-mesenchymal transition. Our data suggest early rapid activation of the cardiac program and later progressive suppression of fibroblast fate at both epigenetic and transcriptional levels. Additionally, we determined the DNA methylation states of representative cardiac promoters and found that not every single CpG was equally demethylated during early stages of iCM reprogramming. Rather, there are specific CpGs, whose demethylation states correlated tightly with transcription activation, that we propose are the major contributing CpGs. Our work thus reveals a differential re-patterning of H3K27me3, H3K4me3 at cardiac and fibroblast loci during iCM reprogramming and could provide future genome-wide epigenetic studies with important guidance such as the appropriate time window and loci to be utilized as positive and negative controls.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Olivia Chen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Michael Zheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Li Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Chaoying Yin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
41
|
Bi J, Koivisto L, Owen G, Huang P, Wang Z, Shen Y, Bi L, Rokka A, Haapasalo M, Heino J, Häkkinen L, Larjava H. Epithelial Microvesicles Promote an Inflammatory Phenotype in Fibroblasts. J Dent Res 2016; 95:680-8. [DOI: 10.1177/0022034516633172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microvesicles (MVs) are extracellular vesicles secreted by various cell types that are involved in intercellular communication. We hypothesized that in human periodontal disease, the pocket epithelium releases MVs, which then modulate gene expression in the underlying fibroblasts to control periodontal inflammation. MVs were isolated from culture medium of gingival epithelial cells (GECs) treated with oral bacterial biofilm extract or left untreated. Biofilm treatment significantly increased MV release from the GECs. Mass spectrometry of GEC-MVs identified a total of 2,173 proteins, of which about 80% were detected in MVs from both control and biofilm-treated GECs. Among 80 signature genes of human gingival fibroblasts, 20 were significantly regulated ( P < 0.05) by MVs from control and biofilm-treated GECs in a similar manner. Matrix metalloproteinase 1 and 3 and interleukin 6 and 8 showed the strongest regulation at the mRNA and protein levels. Several cellular signaling pathways were activated by GEC-MVs in human gingival fibroblasts, including Smad and mitogen-activated protein kinase–associated pathways ERK1/2, JNK, and p38. However, ERK1/2 signaling dominated in the MV-induced gene expression changes. The results demonstrate that GEC-MVs have a strong regulatory effect on the expression of fibroblast genes associated with inflammation and matrix degradation and that bacterial biofilm stimulates the generation of GEC-MVs. This suggests that bacterial biofilms can contribute to the initiation and progression of periodontal disease by promoting a tissue-destructive phenotype in gingival fibroblasts via the enhanced secretion of epithelial MVs.
Collapse
Affiliation(s)
- J. Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - L. Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - G. Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - P. Huang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z. Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - Y. Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - L. Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - A. Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - M. Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - J. Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - L. Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - H.S. Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Udoko AN, Johnson CA, Dykan A, Rachakonda G, Villalta F, Mandape SN, Lima MF, Pratap S, Nde PN. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi. PLoS Negl Trop Dis 2016; 10:e0003747. [PMID: 26771187 PMCID: PMC4714843 DOI: 10.1371/journal.pntd.0003747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy. Examining the very early molecular events of T. cruzi cellular infection may provide disease biomarkers which will aid clinicians in patient assessment and identification of patient subpopulation at risk of developing Chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Aniekanabassi N. Udoko
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Candice A. Johnson
- Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Andrey Dykan
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sammed N. Mandape
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- School of Graduate Studies and Research, Bioinformatics and Molecular Biology Core, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- School of Graduate Studies and Research, Bioinformatics and Molecular Biology Core, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Pius N. Nde
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
44
|
Ruzehaji N, Avouac J, Elhai M, Frechet M, Frantz C, Ruiz B, Distler JH, Allanore Y. Combined effect of genetic background and gender in a mouse model of bleomycin-induced skin fibrosis. Arthritis Res Ther 2015; 17:145. [PMID: 26025306 PMCID: PMC4461998 DOI: 10.1186/s13075-015-0659-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/21/2015] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a connective tissue disorder characterised by the development of skin fibrosis. Our current understanding of the disease pathogenesis is incomplete and the study of SSc is hindered, at least partially, by a lack of animal models that fully replicate the complex state of human disease. Murine model of bleomycin-induced dermal fibrosis encapsulates important events that take place early in the disease course. METHODS To characterise the optimum in vivo parameters required for the successful induction of dermal fibrosis we subjected three commonly used mouse strains to repeated subcutaneous bleomycin injections. We aimed to identify the effects of genetic background and gender on the severity of skin fibrosis. We used male and female Balb/C, C57BL/6, and DBA/2 strains and assessed their susceptibility to bleomycin-induced fibrosis by measuring dermal thickness, hydroxyproline/collagen content and number of resident myofibroblasts, all of which are important indicators of the severity of skin fibrosis. All data are expressed as mean values ± SEM. The Mann-Whitney U test was used for statistical analysis with GraphPad Prism 6.04 software. RESULTS Dermal fibrosis was most severe in Balb/C mice compared to C57BL/6 and DBA/2 suggesting that Balb/C mice are more susceptible to bleomycin-induced fibrosis. Analysis of the effect of gender on the severity of fibrosis showed that male Balb/C, C57BL/6, DBA/2 mice had a tendency to develop more pronounced fibrosis phenotype than female mice. Of potential importance, male Balb/C mice developed the most severe fibrosis phenotype compared to male C57BL/6 and male DBA/2 as indicated by significantly increased number of dermal myofibroblasts. CONCLUSION Our study highlights the importance of genetic background and gender in the induction of murine dermal fibrosis. Robust and reproducible animal models of fibrosis are important research tools used in pharmacological studies which may lead to better understanding of the pathogenesis of fibrotic diseases and assist in identification of new drugs.
Collapse
Affiliation(s)
- Nadira Ruzehaji
- INSERM U1016/UMR 8104, Cochin Institute, Paris, France.
- Institut Cochin, INSERM U1016, Bâtiment Gustave Roussy, 27 rue du Faubourg Saint Jacques 75014, Paris, France.
| | - Jerome Avouac
- INSERM U1016/UMR 8104, Cochin Institute, Paris, France.
- Rheumatology A Department, Paris Descartes University, Paris, France.
| | - Muriel Elhai
- INSERM U1016/UMR 8104, Cochin Institute, Paris, France.
- Rheumatology A Department, Paris Descartes University, Paris, France.
| | | | | | - Barbara Ruiz
- INSERM U1016/UMR 8104, Cochin Institute, Paris, France.
| | - Joerg H Distler
- Department of Internal Medicine and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Yannick Allanore
- INSERM U1016/UMR 8104, Cochin Institute, Paris, France.
- Rheumatology A Department, Paris Descartes University, Paris, France.
| |
Collapse
|
45
|
Abstract
Fibrosis is defined as an excessive accumulation of extracellular matrix components that lead to the destruction of organ architecture and impairment of organ function. Moreover, fibrosis is an intricate process attributable to a variety of interlaced fibrogenic signals and intrinsic mechanisms of activation of myofibroblasts. Being the dominant matrix-producing cells in organ fibrosis, myofibroblasts may be differentiated from various types of precursor cells. Identification of the signal pathways that play a key role in the pathogenesis of fibrotic diseases may suggest potential therapeutic targets. Here, we emphasize several intracellular signaling pathways that control the activation of myofibroblasts and matrix production.
Collapse
Affiliation(s)
- Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, 210003 China
| |
Collapse
|
46
|
Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am J Physiol Cell Physiol 2014; 307:C2-13. [PMID: 24740541 DOI: 10.1152/ajpcell.00060.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue fibrosis occurs with excessive extracellular matrix deposition from myofibroblasts, resulting in tissue scarring and inflammation. It is driven by multiple mediators, such as the G protein-coupled receptor ligands lysophosphatidic acid and endothelin, as well as signaling by transforming growth factor-β, connective tissue growth factor, and integrins. Fibrosis contributes to 45% of deaths in the developed world. As current therapeutic options for tissue fibrosis are limited and organ transplantation is the only effective treatment for end-stage disease, there is an imminent need for efficacious antifibrotic therapies. This review discusses the various molecular pathways involved in fibrosis. It highlights the Rho GTPase signaling pathway and its downstream gene transcription output through myocardin-related transcription factor and serum response factor as a convergence point for targeting this complex set of diseases.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Andrew J Haak
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
47
|
Human gingival fibroblasts display a non-fibrotic phenotype distinct from skin fibroblasts in three-dimensional cultures. PLoS One 2014; 9:e90715. [PMID: 24608113 PMCID: PMC3946595 DOI: 10.1371/journal.pone.0090715] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/05/2014] [Indexed: 11/23/2022] Open
Abstract
Scar formation following skin injury can be a major psychosocial and physiological problem. However, the mechanisms of scar formation are still not completely understood. Previous studies have shown that wound healing in oral mucosa is faster, associates with a reduced inflammatory response and results to significantly reduced scar formation compared with skin wounds. In the present study, we hypothesized that oral mucosal fibroblasts from human gingiva are inherently distinct from fibroblasts from breast and abdominal skin, two areas prone to excessive scar formation, which may contribute to the preferential wound healing outcome in gingiva. To this end, we compared the phenotype of human gingival and skin fibroblasts cultured in in vivo-like three-dimensional (3D) cultures that mimic the cells' natural extracellular matrix (ECM) niche. To establish 3D cultures, five parallel fibroblast lines from human gingiva (GFBLs) and breast skin (SFBLs) were seeded in high density, and cultured for up to 21 days in serum and ascorbic acid containing medium to induce expression of wound-healing transcriptome and ECM deposition. Cell proliferation, morphology, phenotype and expression of wound healing and scar related genes were analyzed by real-time RT-PCR, Western blotting and immunocytochemical methods. The expression of a set of genes was also studied in three parallel lines of human abdominal SFBLs. Findings showed that GFBLs displayed morphologically distinct organization of the 3D cultures and proliferated faster than SFBLs. GFBLs expressed elevated levels of molecules involved in regulation of inflammation and ECM remodeling (MMPs) while SFBLs showed significantly higher expression of TGF-β signaling, ECM and myofibroblast and cell contractility-related genes. Thus, GFBLs display an inherent phenotype conducive for fast resolution of inflammation and ECM remodeling, characteristic for scar-free wound healing, while SFBLs have a profibrotic, scar-prone phenotype.
Collapse
|
48
|
Arno AI, Gauglitz GG, Barret JP, Jeschke MG. New molecular medicine-based scar management strategies. Burns 2014; 40:539-51. [PMID: 24438742 DOI: 10.1016/j.burns.2013.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/21/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Keloids and hypertrophic scars are prevalent disabling conditions with still suboptimal treatments. Basic science and molecular-based medicine research have contributed to unravel new bench-to-bedside scar therapies and to dissect the complex signalling pathways involved. Peptides such as the transforming growth factor beta (TGF-β) superfamily, with Smads, Ski, SnoN, Fussels, endoglin, DS-Sily, Cav-1p, AZX100, thymosin-β4 and other related molecules may emerge as targets to prevent and treat keloids and hypertrophic scars. The aim of this review is to describe the basic complexity of these new molecular scar management strategies and point out new fibrosis research lines.
Collapse
Affiliation(s)
- Anna I Arno
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gerd G Gauglitz
- Department of Dermatology and Allergology, Ludwig Maximilians University, Munich, Germany
| | - Juan P Barret
- Plastic Surgery Department and Burn Unit, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc G Jeschke
- Ross Tilley Burn Centre and Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|