1
|
Zhang FL, Chen YL, Luo ZY, Song ZB, Chen Z, Zhang JX, Zheng ZZ, Tan XM. Huashi baidu granule alleviates inflammation and lung edema by suppressing the NLRP3/caspase-1/GSDMD-N pathway and promoting fluid clearance in a porcine reproductive and respiratory syndrome (PRRS) model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119207. [PMID: 39653102 DOI: 10.1016/j.jep.2024.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huashi Baidu Granule (HSBDG), a traditional Chinese medicine (TCM), is used for treating coronavirus disease 2019 (COVID-19). Porcine reproductive and respiratory syndrome (PRRS) is considered the "COVID-19" for swine. According to the TCM theory, "dampness" is the main pathogenic factor in COVID-19 and PRRS, and "Huashi" means that this formula is good at removing "dampness". Studies have demonstrated that HSBDG's effect in COVID-19; but the mechanism of removing "dampness" remains elusive. AIM OF THE STUDY We aimed to assess the effect of HSBDG on PRRS, and elucidate its potential mechanism in removing "dampness". MATERIALS AND METHODS We established a PRRS-virus (PRRSV)-infected Marc-145 cells model, and performed qRT-PCR, Western blot analysis, and indirect immunofluorescence assay to examine the anti-PRRSV effects of HSBDG in vitro. PRRSV-infected pig model was established and used to investigate HSBDG's effect in PRRS and explore underlying mechanisms in removing "dampness" using ELISA and immunohistochemistry assay methods. RESULTS HSBDG exhibited anti-PRRSV activity and suppressed the viral replication and release phases. HSBDG treatment alleviated PRRS, lowered rectal temperature, reduced histopathological changes and viral load in lung tissues, and ameliorated organ lesions. Moreover, IL-1β, IL-6, IL-8, and TNF-α expressions were decreased in lung tissues. Mechanistically, HSBDG inhibited the NLRP3/Caspase-1/GSDMD-N pathway to reduce the inflammatory response and upregulated AQP1, AQP5, α-ENaC, and Na-K-ATPase expressions to promote lung fluid clearance. CONCLUSION HSBDG exerted anti-PRRSV effects and could attenuate PRRS. HSBDG potentially removes "dampness" by attenuating inflammation by suppressing the NLRP3/Caspase-1/GSDMD-N pathway and inhibiting pulmonary edema by upregulating the expression of AQP1, AQP5, α-ENaC, and Na-K-ATPase.
Collapse
Affiliation(s)
- Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Yi-Lin Chen
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Bu Song
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhe Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Jia-Xuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Zhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Zhao T, Zhou ZR, Wan HQ, Feng T, Hu XH, Li XQ, Zhao SM, Li HL, Hou JW, Li W, Lu DY, Qian MY, Shen X. Otilonium bromide ameliorates pulmonary fibrosis in mice through activating phosphatase PPM1A. Acta Pharmacol Sin 2025; 46:107-121. [PMID: 39160244 PMCID: PMC11695943 DOI: 10.1038/s41401-024-01368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease characterized by unremitting pulmonary myofibroblasts activation, extracellular matrix (ECM) deposition and inflammatory recruitment. PF has no curable medication yet. In this study we investigated the molecular pathogenesis and potential therapeutic targets of PF and discovered drug lead compounds for PF therapy. A murine PF model was established in mice by intratracheal instillation of bleomycin (BLM, 5 mg/kg). We showed that the protein level of pulmonary protein phosphatase magnesium-dependent 1A (PPM1A, also known as PP2Cα) was significantly downregulated in PF patients and BLM-induced PF mice. We demonstrated that TRIM47 promoted ubiquitination and decreased PPM1A protein in PF progression. By screening the lab in-house compound library, we discovered otilonium bromide (OB, clinically used for treating irritable bowel syndrome) as a PPM1A enzymatic activator with an EC50 value of 4.23 μM. Treatment with OB (2.5, 5 mg·kg-1·d-1, i.p., for 20 days) significantly ameliorated PF-like pathology in mice. We constructed PF mice with PPM1A-specific knockdown in the lung tissues, and determined that by targeting PPM1A, OB treatment suppressed ECM deposition through TGF-β/SMAD3 pathway in fibroblasts, repressed inflammatory responses through NF-κB/NLRP3 pathway in alveolar epithelial cells, and blunted the crosstalk between inflammation in alveolar epithelial cells and ECM deposition in fibroblasts. Together, our results demonstrate that pulmonary PPM1A activation is a promising therapeutic strategy for PF and highlighted the potential of OB in the treatment of the disease.
Collapse
Affiliation(s)
- Tong Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi-Ruo Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hui-Qi Wan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tian Feng
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu-Hui Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Qian Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi-Mei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Lin Li
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ji-Wei Hou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Da-Yun Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min-Yi Qian
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Morikka J, Federico A, Möbus L, Inkala S, Pavel A, Sani S, Vaani M, Peltola S, Serra A, Greco D. Toxicogenomic assessment of in vitro macrophages exposed to profibrotic challenge reveals a sustained transcriptomic immune signature. Comput Struct Biotechnol J 2024; 25:194-204. [PMID: 39430886 PMCID: PMC11490883 DOI: 10.1016/j.csbj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Immune signalling is a crucial component in the progression of fibrosis. However, approaches for the safety assessment of potentially profibrotic substances, that provide information on mechanistic immune responses, are underdeveloped. This study aimed to develop a novel framework for assessing the immunotoxicity of fibrotic compounds. We exposed macrophages in vitro to multiple sublethal concentrations of the profibrotic agent bleomycin, over multiple timepoints, and generated RNA sequencing data. Using a toxicogenomic approach, we performed dose-dependent analysis to discover genes dysregulated by bleomycin exposure in a dose-responsive manner. A subset of immune genes displayed a sustained dose-dependent and differential expression response to profibrotic challenge. An immunoassay revealed cytokines and proteinases responding to bleomycin exposure that closely correlated to transcriptomic alterations, underscoring the integration between transcriptional immune response and external immune signalling activity. This study not only increases our understanding of the immunological mechanisms of fibrosis, but also offers an innovative framework for the toxicological evaluation of substances with potential fibrogenic effects on macrophage signalling. Our work brings a new immunotoxicogenomic direction for hazard assessment of fibrotic compounds, through the implementation of a time and resource efficient in vitro methodology.
Collapse
Affiliation(s)
- Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Simo Inkala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Saara Sani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Peltola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Starke N, Challa NVD, Yuan H, Chen S, Duncan MR, Cabrera Ranaldi ED, de Rivero Vaccari JP, Schott A, Aguilar AC, Lee YS, Khan A, Duara J, Tan A, Benny M, Schmidt AF, Young K, Bancalari E, Claure N, Wu S. Extracellular Vesicle ASC: A Novel Mediator for Lung-Brain Axis in Preterm Brain Injury. Am J Respir Cell Mol Biol 2024; 71:464-480. [PMID: 38959416 PMCID: PMC11450310 DOI: 10.1165/rcmb.2023-0402oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment are among the most common morbidities affecting preterm infants. Although BPD is a predictor of poor neurodevelopmental outcomes, it is currently uncertain how BPD contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are involved in interorgan communication in diverse pathological processes. ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) is pivotal in inflammasome assembly and activation of inflammatory response. We assessed expression profiles of the alveolar macrophage (AM) markers CD11b, CD11c, and CD206 as well as ASC in EVs isolated from the plasma of preterm infants at risk for BPD at 1 week of age. We found that infants on higher fraction of inspired oxygen therapy (HO2⩾30%) had increased concentrations of AM-derived EV-ASC compared with infants on lower fraction of inspired oxygen (LO2<30%). To assess the function of these EVs, we performed adoptive transfer experiments by injecting them into the circulation of newborn mice. We discovered that mice that received EVs from infants on HO2 had increased lung inflammation, decreased alveolarization, and disrupted vascular development, the hallmarks of BPD. Importantly, these EVs crossed the blood-brain barrier, and the EVs from infants on HO2 caused inflammation, reduced cell survival, and increased cell death, with features of pyroptosis and necroptosis in the hippocampus. These results highlight a novel role for AM-derived EV-ASC in mediating the lung-to-brain cross-talk that is critical in the pathogenesis of BPD and brain injury and identify potential novel targets for preventing and treating BPD and brain injury in preterm infants.
Collapse
Affiliation(s)
- Natalie Starke
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Naga Venkata Divya Challa
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Huijun Yuan
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Shaoyi Chen
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Matthew R. Duncan
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | | | | | - Alini Schott
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Ana Cecilia Aguilar
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jo Duara
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - April Tan
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Merline Benny
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Augusto F. Schmidt
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Karen Young
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Eduardo Bancalari
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Nelson Claure
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| | - Shu Wu
- Division of Neonatology, Department of Pediatrics, Batchelor Children’s Research Institute, Holtz Children’s Hospital
| |
Collapse
|
5
|
Kadamani KL, Rahnamaie-Tajadod R, Eaton L, Bengtsson J, Ojaghi M, Cheng H, Pamenter ME. What can naked mole-rats teach us about ameliorating hypoxia-related human diseases? Ann N Y Acad Sci 2024; 1540:104-120. [PMID: 39269277 DOI: 10.1111/nyas.15219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ameliorating the deleterious impact of systemic or tissue-level hypoxia or ischemia is key to preventing or treating many human diseases and pathologies. Usefully, environmental hypoxia is also a common challenge in many natural habitats; animals that are native to such hypoxic niches often exhibit strategies that enable them to thrive with limited O2 availability. Studying how such species have evolved to tolerate systemic hypoxia offers a promising avenue of discovery for novel strategies to mitigate the deleterious effects of hypoxia in human diseases and pathologies. Of particular interest are naked mole-rats, which are among the most hypoxia-tolerant mammals. Naked mole-rats that tolerate severe hypoxia in a laboratory setting are also protected against clinically relevant mimics of heart attack and stroke. The mechanisms that support this tolerance are currently being elucidated but results to date suggest that metabolic rate suppression, reprogramming of metabolic pathways, and mechanisms that defend against deleterious perturbations of cellular signaling pathways all provide layers of protection. Herein, we synthesize and discuss what is known regarding adaptations to hypoxia in the naked mole-rat cardiopulmonary system and brain, as these systems comprise both the primary means of delivering O2 to tissues and the most hypoxia-sensitive organs in mammals.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Liam Eaton
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - John Bengtsson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohammad Ojaghi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hang Cheng
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Lu YN, Lu JM, Jin GN, Shen XY, Wang JH, Ma JW, Wang Y, Liu YM, Quan YZ, Gao HY, Xu X, Piao LX. A novel mechanism of resveratrol alleviates Toxoplasma gondii infection-induced pulmonary inflammation via inhibiting inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155765. [PMID: 38851105 DOI: 10.1016/j.phymed.2024.155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Infection by Toxoplasma gondii can lead to severe pneumonia, with current treatments being highly inadequate. The NLRP3 inflammasome is one member of the NOD-like receptor family with a pyrin domain, which is crucial in the innate immune defense against T. gondii. Research has shown that resveratrol (RSV) prevents lung damage caused by this infection by inhibiting the T. gondii-derived heat shock protein 70/TLR4/NF-κB pathway, thus reducing the macrophage-driven inflammatory response. However, it should be mentioned that the participation of NLRP3 inflammasome in the immune response to the lung injuries caused by T. gondii infections is not entirely clear. PURPOSE This study aims to clarify how RSV ameliorates lung damage triggered by Toxoplasma gondii infection, with a particular focus on the pathway involving TLR4, NF-κB, and the NLRP3 inflammasome. METHODS Both in vitro and in vivo models of infection were developed by employing the RH strain of T. gondii in BALB/c mice and RAW 264.7 macrophage cell lines. The action mechanism of RSV was explored using techniques such as molecular docking, surface plasmon resonance, ELISA, Western blot, co-immunoprecipitation, and immunofluorescence staining. RESULTS Findings indicate that the suppression of TLR4 or NF-κB impacts the levels of proteins associated with the NLRP3 inflammasome pathway. Additionally, a significant affinity for binding between RSV and NLRP3 was observed. Treatment with RSV led to a marked reduction in the activation and formation of the NLRP3 inflammasome within lung tissues and RAW 264.7 cells, alongside a decrease in IL-1β concentrations in the bronchoalveolar lavage fluid. These outcomes align with those seen when using the NLRP3 inhibitor CY-09. Moreover, the application of CY-09 prior to RSV negated the latter's anti-inflammatory properties. CONCLUSION Considering insights from previous research alongside the outcomes of the current investigation, it appears that the TLR4/NF-κB/NLRP3 signaling pathway emerges as a promising target for immunomodulation to alleviate lung injury from T. gondii infection. The evidence gathered in this study lays the groundwork for the continued exploration and potential future clinical deployment of RSV as a therapeutic agent with anti-Toxoplasma properties and the capability to modulate the inflammatory response.
Collapse
Affiliation(s)
- Yu Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Jing Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Guang Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Xin Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Jing He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Jing Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Yu Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Yi Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Yan Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Hong Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China.
| | - Lian Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
7
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
8
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
9
|
Colarusso C, Falanga A, Di Caprio S, Terlizzi M, Pinto A, Maiolino P, Sorrentino R. The activation of the AIM2 inflammasome after cigarette smoke exposure leads to an immunosuppressive lung microenvironment. Int Immunopharmacol 2024; 131:111832. [PMID: 38460301 DOI: 10.1016/j.intimp.2024.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024]
Abstract
Cigarette smoke is widely known as contributing to chronic inflammation underlying several airway diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. In our previous studies we found that the lung of both COPD and cancer patients were characterized by the presence and activation of the AIM2 inflammasome. Here, we wanted to investigate the upstream step during the establishment of chronic lung inflammation after cigarette smoke exposure. We took advantage of a mouse model of smoking exposure and public scRNAseq data. We found that AIM2 mRNA was expressed in both alveolar type II, B cells, T regulatory (Treg) and macrophages detected in the lung of non-smokers (n = 4) and smokers (n = 3). The activation of AIM2 in smoking mice by using PolydA:dT did not alter cigarette-smoke-induced alveoli enlargement and mucus production, rather it induced higher recruitment of immunosuppressive cells, such as non-active dendritic cells (DCs), Arginase I+ macrophages, myeloid-derived suppressor cells (MDSC) and Tregs. In addition, the inflammatory environment after AIM2 activation in smoking mice was characterized by higher levels of IL-1α, IL-1β, IL-33, TNFα, LDH, IL-10 and TGFβ. This scenario was not altered after the pharmacological inhibition of both caspase-1 and STING pathway. In conclusion, these data suggest that chronic inflammation after cigarette smoke exposure is associated with AIM2 activation, which could lead towards cigarette smoke-associated lung diseases.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy, University of Salerno, Fisciano 804084, Italy
| | - Anna Falanga
- Department of Pharmacy, University of Salerno, Fisciano 804084, Italy; Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Simone Di Caprio
- Department of Pharmacy, University of Salerno, Fisciano 804084, Italy; Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Michela Terlizzi
- Department of Pharmacy, University of Salerno, Fisciano 804084, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano 804084, Italy
| | - Piera Maiolino
- Istituto Nazionale Tumori IRCCS, "Fondazione Pascale", National Institute of Cancer, 80131 Naples, Italy
| | | |
Collapse
|
10
|
Yang J, Huang X, Yu Q, Wang S, Wen X, Bai S, Cao L, Zhang K, Zhang S, Wang X, Chen Z, Cai Z, Zhang G. Extracellular vesicles derived from M2-like macrophages alleviate acute lung injury in a miR-709-mediated manner. J Extracell Vesicles 2024; 13:e12437. [PMID: 38594787 PMCID: PMC11004041 DOI: 10.1002/jev2.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1β both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaofang Huang
- Department of Critical Care MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qing Yu
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shibo Wang
- Department of Orthopedics, Institute of Immunology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xuehuan Wen
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Songjie Bai
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shufang Zhang
- Department of Cardiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xingang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicinethe Key Laboratory of Trauma and Burns of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Zhijian Cai
- Department of Orthopedics, Institute of Immunology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Multiple Organ Failure (Zhejiang University)Ministry of EducationHangzhouZhejiangChina
| |
Collapse
|
11
|
Wang Y, Le Y, Wu J, Zhao W, Zhang Q, Xu G, Gong Z, Xu M, Ma Y, Yu C, Cai S, Zhao H. Inhibition of xanthine oxidase by allopurinol suppresses HMGB1 secretion and ameliorates experimental asthma. Redox Biol 2024; 70:103021. [PMID: 38219573 PMCID: PMC10825647 DOI: 10.1016/j.redox.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) is a key mediator in driving allergic airway inflammation and contributes to asthma. Yet, mechanism of HMGB1 secretion in asthma is poorly defined. Pulmonary metabolic dysfunction is recently recognized as a driver of respiratory pathology. However, the altered metabolic signatures and the roles of metabolic to allergic airway inflammation remain unclear. METHODS Male C57BL/6 J mice were sensitized and challenged with toluene diisocyanate (TDI) to generate a chemically induced asthma model. Pulmonary untargeted metabolomics was employed. According to results, mice were orally administered allopurinol, a xanthine oxidase (XO) inhibitor. Human bronchial epithelial cells (16HBE) were stimulated by TDI-human serum albumin (HSA). RESULTS We identified the purine metabolism was the most enriched pathway in TDI-exposed lungs, corresponding to the increase of xanthine and uric acid, products of purine degradation mediated by XO. Inhibition of XO by allopurinol ameliorates TDI-induced oxidative stress and DNA damage, mixed granulocytic airway inflammation and Th1, Th2 and Th17 immunology as well as HMGB1 acetylation and secretion. Mechanistically, HMGB1 acetylation was caused by decreased activation of the NAD+-sirtuin 1 (SIRT1) axis triggered by hyperactivation of the DNA damage sensor poly (ADP-ribose)-polymerase 1 (PARP-1). This was rescued by allopurinol, PARP-1 inhibitor or supplementation with NAD+ precursor in a SIRT1-dependent manner. Meanwhile, allopurinol attenuated Nrf2 defect due to SIRT1 inactivation to help ROS scavenge. CONCLUSIONS We demonstrated a novel regulation of HMGB1 acetylation and secretion by purine metabolism that is critical for asthma onset. Allopurinol may have therapeutic potential in patients with asthma.
Collapse
Affiliation(s)
- Yanhong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanqing Le
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jie Wu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guiling Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
12
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Chu FX, Wang X, Li B, Xu LL, Di B. The NLRP3 inflammasome: a vital player in inflammation and mediating the anti-inflammatory effect of CBD. Inflamm Res 2024; 73:227-242. [PMID: 38191853 DOI: 10.1007/s00011-023-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The NLRP3 inflammasome is a vital player in the emergence of inflammation. The priming and activation of the NLRP3 inflammasome is a major trigger for inflammation which is a defense response against adverse stimuli. However, the excessive activation of the NLRP3 inflammasome can lead to the development of various inflammatory diseases. Cannabidiol, as the second-most abundant component in cannabis, has a variety of pharmacological properties, particularly anti-inflammation. Unlike tetrahydrocannabinol, cannabidiol has a lower affinity for cannabinoid receptors, which may be the reason why it is not psychoactive. Notably, the mechanism by which cannabidiol exerts its anti-inflammatory effect is still unclear. METHODS We have performed a literature review based on published original and review articles encompassing the NLRP3 inflammasome and cannabidiol in inflammation from central databases, including PubMed and Web of Science. RESULTS AND CONCLUSIONS In this review, we first summarize the composition and activation process of the NLRP3 inflammasome. Then, we list possible molecular mechanisms of action of cannabidiol. Next, we explain the role of the NLRP3 inflammasome and the anti-inflammatory effect of cannabidiol in inflammatory disorders. Finally, we emphasize the capacity of cannabidiol to suppress inflammation by blocking the NLRP3 signaling pathway, which indicates that cannabidiol is a quite promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Feng-Xin Chu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Wang
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Li
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bin Di
- Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
15
|
Liu D, Zhang YQ, Yu TY, Han SL, Xu YJ, Guan Q, Wang HR. Regulatory mechanism of the six-method massage antipyretic process on lipopolysaccharide-induced fever in juvenile rabbits: A targeted metabolomics approach. Heliyon 2024; 10:e23313. [PMID: 38148795 PMCID: PMC10750150 DOI: 10.1016/j.heliyon.2023.e23313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
Objective To investigate the mechanism of the six-method massage antipyretic process (SMAP) and its influence on the body's metabolic state. Methods The random number table method was used to divide 24 New Zealand 2-month-old rabbits with qualified basal body temperature into a control group, model group and massage group (n = 8 per group). The model group and massage groups were injected with 0.5 μg/ml lipopolysaccharide (1 ml/kg) into the auricular vein, and the control group was injected with the same amount of normal saline at the same temperature. One hour after modelling, the massage group was given SMAP (opening Tianmen, pushing Kangong, rubbing Taiyang, rubbing Erhougaogu, clearing the Tianheshui and pushing the spine). The change of anal temperature 5 h after moulding was recorded to clarify the antipyretic effect. Results After modelling, the rectal temperature of the juvenile rabbits in the three groups increased. The rectal temperature of the model group was higher than that of the control group 5 h after modelling, and the rectal temperature of the massage group was lower than that of the model group (P < 0.05). The antipyretic mechanism is related to the regulation of the synthesis of phenylalanine, tyrosine and tryptophan, as well as the pentose phosphate pathway. Compared with the model group, the plasma interleukin (IL)-1, IL-6, interferon-gamma, toll-like receptor 4, nuclear factor κB, the mechanistic target of rapamycin complex 1, indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor, liver aspartate transaminase (AST), alanine transaminase (ALT) and l-glutamate dehydrogenase (L-GLDH) expression in the massage group were significantly decreased (P < 0.05). Compared with the model group, the massage group had significantly reduced AST, ALT and L-GLDH expression in plasma (P < 0.05). Conclusion The mechanism of SMAP therapy is related to regulating the expression of peripheral inflammatory factors and metabolic pathways.
Collapse
Affiliation(s)
- Di Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
- Department of Acupuncture-Moxibustion, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Ying-qi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Tian-yuan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Si-long Han
- Department of Orthopedics II, Changping District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing,102208, China
| | - Ya-jing Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Qian Guan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
| | - Hou-rong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 102401, China
| |
Collapse
|
16
|
Caceres L, Abogunloko T, Malchow S, Ehret F, Merz J, Li X, Sol Mitre L, Magnani N, Tasat D, Mwinyella T, Spiga L, Suchanek D, Fischer L, Gorka O, Colin Gissler M, Hilgendorf I, Stachon P, Rog-Zielinska E, Groß O, Westermann D, Evelson P, Wolf D, Marchini T. Molecular mechanisms underlying NLRP3 inflammasome activation and IL-1β production in air pollution fine particulate matter (PM 2.5)-primed macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122997. [PMID: 38000727 PMCID: PMC10804998 DOI: 10.1016/j.envpol.2023.122997] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Exposure to air pollution fine particulate matter (PM2.5) aggravates respiratory and cardiovascular diseases. It has been proposed that PM2.5 uptake by alveolar macrophages promotes local inflammation that ignites a systemic response, but precise underlying mechanisms remain unclear. Here, we demonstrate that PM2.5 phagocytosis leads to NLRP3 inflammasome activation and subsequent release of the pro-inflammatory master cytokine IL-1β. Inflammasome priming and assembly was time- and dose-dependent in inflammasome-reporter THP-1-ASC-GFP cells, and consistent across PM2.5 samples of variable chemical composition. While inflammasome activation was promoted by different PM2.5 surrogates, significant IL-1β release could only be observed after stimulation with transition-metal rich Residual Oil Fly Ash (ROFA) particles. This effect was confirmed in primary human monocyte-derived macrophages and murine bone marrow-derived macrophages (BMDMs), and by confocal imaging of inflammasome-reporter ASC-Citrine BMDMs. IL-1β release by ROFA was dependent on the NLRP3 inflammasome, as indicated by lack of IL-1β production in ROFA-exposed NLRP3-deficient (Nlrp3-/-) BMDMs, and by specific NLRP3 inhibition with the pharmacological compound MCC950. In addition, while ROFA promoted the upregulation of pro-inflammatory gene expression and cytokines release, MCC950 reduced TNF-α, IL-6, and CCL2 production. Furthermore, inhibition of TNF-α with a neutralizing antibody decreased IL-1β release in ROFA-exposed BMDMs. Using electron tomography, ROFA particles were observed inside intracellular vesicles and mitochondria, which showed signs of ultrastructural damage. Mechanistically, we identified lysosomal rupture, K+ efflux, and impaired mitochondrial function as important prerequisites for ROFA-mediated IL-1β release. Interestingly, specific inhibition of superoxide anion production (O2•-) from mitochondrial respiratory Complex I, but not III, blunted IL-1β release in ROFA-exposed BMDMs. Our findings unravel the mechanism by which PM2.5 promotes IL-1β release in macrophages and provide a novel link between innate immune response and exposure to air pollution PM2.5.
Collapse
Affiliation(s)
- Lourdes Caceres
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Tijani Abogunloko
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Sara Malchow
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Fabienne Ehret
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Julian Merz
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Deborah Tasat
- Universidad Nacional de General San Martín, Escuela de Ciencia y Tecnología, B1650, General San Martín, Argentina
| | - Timothy Mwinyella
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Lisa Spiga
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Dymphie Suchanek
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Larissa Fischer
- Faculty of Biology, University of Freiburg, 79104, Freiburg im Breisgau, Germany; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Mark Colin Gissler
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Eva Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| | - Dennis Wolf
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany.
| | - Timoteo Marchini
- Department of Cardiology and Angiology, University Heart Center, University of Freiburg, 79106, Freiburg im Breisgau, Germany; Faculty of Medicine, University of Freiburg, 79110, Freiburg im Breisgau, Germany; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, C1113AAD, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
17
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Challa NVD, Chen S, Yuan H, Duncan MR, Moreno WJ, Bramlett H, Dietrich WD, Benny M, Schmidt AF, Young K, Wu S. GSDMD gene knockout alleviates hyperoxia-induced hippocampal brain injury in neonatal mice. J Neuroinflammation 2023; 20:205. [PMID: 37679766 PMCID: PMC10486051 DOI: 10.1186/s12974-023-02878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found pharmacological inhibition of caspase-1, which blocks GSDMD activation, attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. METHODS Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal days 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1) and CD68, markers of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. RESULTS Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure did not increase AIF1 + , CD68 + , or TUNEL + cell numbers or decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air-exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, hypoxia-induced factor 1 pathway, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. CONCLUSIONS GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.
Collapse
Affiliation(s)
- Naga Venkata Divya Challa
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaoyi Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Huijun Yuan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matthew R Duncan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William Javier Moreno
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen Bramlett
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute, Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
19
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
20
|
Grimm SL, Reddick S, Dong X, Leek C, Wang AX, Gutierrez MC, Hartig SM, Moorthy B, Coarfa C, Lingappan K. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Biol Sex Differ 2023; 14:50. [PMID: 37553579 PMCID: PMC10408139 DOI: 10.1186/s13293-023-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by an arrest in lung development and is a leading cause of morbidity in premature neonates. It has been well documented that BPD disproportionally affects males compared to females, but the molecular mechanisms behind this sex-dependent bias remain unclear. Female mice show greater preservation of alveolarization and angiogenesis when exposed to hyperoxia, accompanied by increased miR-30a expression. In this investigation, we tested the hypothesis that loss of miR-30a would result in male and female mice experiencing similar impairments in alveolarization and angiogenesis under hyperoxic conditions. METHODS Wild-type and miR-30a-/- neonatal mice were exposed to hyperoxia [95% FiO2, postnatal day [PND1-5] or room air before being euthanized on PND21. Alveolarization, pulmonary microvascular development, differences in lung transcriptome, and miR-30a expression were assessed in lungs from WT and miR-30a-/- mice of either sex. Blood transcriptomic signatures from preterm newborns (with and without BPD) were correlated with WT and miR-30a-/- male and female lung transcriptome data. RESULTS Significantly, the sex-specific differences observed in WT mice were abrogated in the miR-30a-/- mice upon exposure to hyperoxia. The loss of miR-30a expression eliminated the protective effect in females, suggesting that miR-30a plays an essential role in regulating alveolarization and angiogenesis. Transcriptome analysis by whole lung RNA-Seq revealed a significant response in the miR-30a-/- female hyperoxia-exposed lung, with enrichment of pathways related to cell cycle and neuroactive ligand-receptor interaction. Gene expression signature in the miR-30a-/- female lung associated with human BPD blood transcriptomes. Finally, we showed the spatial localization of miR-30a transcripts in the bronchiolar epithelium. CONCLUSIONS miR-30a could be one of the biological factors mediating the resilience of the female preterm lung to neonatal hyperoxic lung injury. A better understanding of the effects of miR-30a on pulmonary angiogenesis and alveolarization may lead to novel therapeutics for treating BPD.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
| | - Samuel Reddick
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Xiao Wang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean M Hartig
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Panek I, Liczek M, Gabryelska A, Rakoczy I, Kuna P, Panek M. Inflammasome signalling pathway in the regulation of inflammation - its involvement in the development and exacerbation of asthma and chronic obstructive pulmonary disease. Postepy Dermatol Alergol 2023; 40:487-495. [PMID: 37692274 PMCID: PMC10485761 DOI: 10.5114/ada.2022.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/13/2021] [Indexed: 09/12/2023] Open
Abstract
Inflammasomes are multiprotein oligomers, whose main function is the recruitment and activation of caspase-1, which cleaves the precursor forms of interleukin (IL)-1β and IL-18, generating biologically active cytokines. Activation of inflammasome is an essential component of the innate immune response, and according to recent reports it is involved in epithelial homeostasis and type 2 T helper cell (Th2) differentiation. In recent years, the contribution of inflammasome dependent signalling pathways to the development of inflammatory diseases became a topic of multiple research studies. Asthma and chronic obstructive pulmonary disease (COPD) are the most prevalent obstructive lung diseases. Recent studies have focused on inflammatory aspects of asthma and COPD development, demonstrating the key role of inflammasome-dependent processes. Factors responsible for activation of inflammasome complex are similar in both asthma and COPD and include bacteria, viruses, cigarette smoke, and particulate matter. Some recent studies have revealed that NLRP3 inflammasome plays a crucial role, particularly in the development of acute exacerbations of COPD (AECOPD). Activation of NLRP3 inflammasome has been linked with neutrophilic severe steroid-resistant asthma. Although most of the studies on inflammasomes in asthma and COPD focused on the NLRP3 inflammasome, there are scarce scientific reports linking other inflammasomes such as AIM2 and NLRP1 with obstructive lung diseases. In this mini review we focus on the role of molecular pathways associated with inflammasome in the most prevalent lung diseases such as asthma and COPD. Furthermore, we will try to answer the question of whether inhibition of inflammasome can occur as a modern therapy in these diseases.
Collapse
Affiliation(s)
- Iga Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Liczek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Igor Rakoczy
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Challa NVD, Chen S, Yun H, Duncan MR, Moreno WJ, Bramlett H, Dietrich WD, Benny M, Schmidt AF, Young K, Wu S. GSDMD gene knockout alleviates hyperoxia-induced hippocampal brain injury in neonatal mice. RESEARCH SQUARE 2023:rs.3.rs-3055085. [PMID: 37398125 PMCID: PMC10312931 DOI: 10.21203/rs.3.rs-3055085/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found inhibition of GSDMD activation attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. Methods: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal day 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1), a marker of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. Results: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure failed to increase either AIF1+ or TUNEL+ cell numbers, nor decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air- exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, and core development pathways hypoxia-induced factor 1, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. Conclusion: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.
Collapse
Affiliation(s)
- Naga Venkata Divya Challa
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shaoyi Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Huijun Yun
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthew R Duncan
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Williams Javier Moreno
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Helen Bramlett
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Karen Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children’s Research Institute and Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Filler R, Yeganeh M, Li B, Lee C, Alganabi M, Hock A, Biouss G, Balsamo F, Lee D, Miyake H, Pierro A. Bovine milk-derived exosomes attenuate NLRP3 inflammasome and NF-κB signaling in the lung during neonatal necrotizing enterocolitis. Pediatr Surg Int 2023; 39:211. [PMID: 37268798 DOI: 10.1007/s00383-023-05490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC), an inflammatory intestinal disease common in premature infants, has been associated with the development of lung damage. Toll-like receptor 4 has been shown to regulate inflammation in the NEC lungs, however, other important inflammatory mechanisms have not been thoroughly investigated. In addition, we reported that milk-derived exosomes were able to attenuate intestinal injury and inflammation in experimental NEC. This study aims to (i) investigate the role of the NLRP3 inflammasome and NF-κB pathway in regulating lung damage during experimental NEC; and (ii) evaluate the therapeutic potential of bovine milk exosomes in reducing lung inflammation and injury during NEC. METHODS NEC was induced by gavage feeding of hyperosmolar formula, hypoxia, and lipopolysaccharide administration in neonatal mice from postnatal days 5-9. Exosomes were obtained by ultracentrifugation of bovine milk and administered during each formula feed. RESULTS The lung of NEC pups showed increased inflammation, tissue damage, NLRP3 inflammasome expression, and NF-κB pathway activation, which were attenuated upon exosome administration. CONCLUSION Our findings suggest that the lung undergoes significant inflammation and injury following experimental NEC which are attenuated by bovine milk-derived exosomes. This emphasizes the therapeutic potential of exosomes not just on the intestine but also on the lung.
Collapse
Affiliation(s)
- Rachel Filler
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mina Yeganeh
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mashriq Alganabi
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alison Hock
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felicia Balsamo
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hiromu Miyake
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
24
|
Kohno R, Nagata Y, Ishihara T, Amma C, Inomata Y, Seto T, Suzuki R. Benzo[ a]pyrene induces NLRP1 expression and promotes prolonged inflammasome signaling. Front Immunol 2023; 14:1154857. [PMID: 37215119 PMCID: PMC10192748 DOI: 10.3389/fimmu.2023.1154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon in the air, triggers pulmonary inflammation. This study focused on BaP-induced inflammation in the alveolar epithelium. A549 cells were stimulated with BaP for four days. BaP treatment markedly increased NLRP1 expression but slightly decreased NLRP3. Furthermore, aryl hydrocarbon receptor (AhR) knockdown displayed no increase in BaP-induced NLRP1 expression. Similar results were also observed by blocking reactive oxygen species (ROS), which is mediated through AhR, suggesting that the AhR-ROS axis operates in BaP-induced NLRP1 expression. p53 involvement in ROS-mediated NLRP1 induction has also been implied. When we confirmed inflammasome activation in cells treated with BaP for four days, while BaP transiently activated NLRP3, it predominantly activated the NLRP1 inflammasome. These findings have led to the conclusion that BaP could be a potential ligand for the NLRP1 inflammasome persistently observed in the lung epithelium. Our study may provide additional evidence for the sustained pulmonary inflammation caused by environmental air pollution.
Collapse
Affiliation(s)
- Risa Kohno
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuka Nagata
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomohiro Ishihara
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Chisato Amma
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yayoi Inomata
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Takafumi Seto
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Islam MA, Kibria MK, Hossen MB, Reza MS, Tasmia SA, Tuly KF, Mosharof MP, Kabir SR, Kabir MH, Mollah MNH. Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Sci Rep 2023; 13:4685. [PMID: 36949176 PMCID: PMC10031699 DOI: 10.1038/s41598-023-31276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Some recent studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and idiopathic pulmonary fibrosis (IPF) disease might stimulate each other through the shared genes. Therefore, in this study, an attempt was made to explore common genomic biomarkers for SARS-CoV-2 infections and IPF disease highlighting their functions, pathways, regulators and associated drug molecules. At first, we identified 32 statistically significant common differentially expressed genes (cDEGs) between disease (SARS-CoV-2 and IPF) and control samples of RNA-Seq profiles by using a statistical r-package (edgeR). Then we detected 10 cDEGs (CXCR4, TNFAIP3, VCAM1, NLRP3, TNFAIP6, SELE, MX2, IRF4, UBD and CH25H) out of 32 as the common hub genes (cHubGs) by the protein-protein interaction (PPI) network analysis. The cHubGs regulatory network analysis detected few key TFs-proteins and miRNAs as the transcriptional and post-transcriptional regulators of cHubGs. The cDEGs-set enrichment analysis identified some crucial SARS-CoV-2 and IPF causing common molecular mechanisms including biological processes, molecular functions, cellular components and signaling pathways. Then, we suggested the cHubGs-guided top-ranked 10 candidate drug molecules (Tegobuvir, Nilotinib, Digoxin, Proscillaridin, Simeprevir, Sorafenib, Torin 2, Rapamycin, Vancomycin and Hesperidin) for the treatment against SARS-CoV-2 infections with IFP diseases as comorbidity. Finally, we investigated the resistance performance of our proposed drug molecules compare to the already published molecules, against the state-of-the-art alternatives publicly available top-ranked independent receptors by molecular docking analysis. Molecular docking results suggested that our proposed drug molecules would be more effective compare to the already published drug molecules. Thus, the findings of this study might be played a vital role for diagnosis and therapies of SARS-CoV-2 infections with IPF disease as comorbidity risk.
Collapse
Affiliation(s)
- Md Ariful Islam
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kaderi Kibria
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Bayazid Hossen
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Selim Reza
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Samme Amena Tasmia
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khanis Farhana Tuly
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Parvez Mosharof
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
- School of Business, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hadiul Kabir
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Lab(Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
26
|
Abdelhady R, Cavalu S, Saber S, Elmowafy R, Morsy NE, Ibrahim S, Abdeldaiem MSI, Samy M, Abd-Eldayem MA, Shata A, Elgharabawy RM. Mirtazepine, an atypical antidepressant, mitigates lung fibrosis by suppressing NLPR3 inflammasome and fibrosis-related mediators in endotracheal bleomycin rat model. Biomed Pharmacother 2023; 161:114553. [PMID: 36934553 DOI: 10.1016/j.biopha.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with a poor prognosis. There is currently no definitive cure for IPF. The present study establishes a platform for the development of a novel therapeutic approach for the treatment of PF using the atypical antidepressant, mirtazapine. In the endotracheal bleomycin rat model, mirtazapine interfered with the activation of NLRP3 inflammasome via downregulating the NLRP3 on the gene and protein expression levels. Accordingly, the downstream mediators IL-1β and IL-18 were repressed. Such observation is potentially a direct result of the reported improvement in oxidative stress. Additionally, mirtazapine corrected the bleomycin-induced disparities in the levels of the fibrogenic mediators TGF-β, PDGF-BB, and TIMP-1, in consequence, the lung content of hydroxyproline and the expression of α-SMA were reduced. Besides, mirtazapine curbed the ICAM-1 and the chemotactic cytokines MCP-1 and CXCL4. This protective property of mirtazapine resulted in improving the BALF total and differential cell counts, diminishing LDH activity, and reducing the BALF total protein. Moreover, the inflammation and fibrosis scores were accordingly lower. To conclude, we reveal for the first time the efficacy of mirtazapine as a potential treatment for PF. The combination of social isolation, sleep problems, breathing difficulties, and fear of death can lead to psychological distress and depression in patients with IPF. Hence, mirtazapine is a promising treatment option that may improve the prognosis for IPF patients due to its antifibrotic effects, as well as its ability to alleviate depressive episodes.
Collapse
Affiliation(s)
- Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nesreen Elsayed Morsy
- Pulmonary Medicine Department, Mansoura University Sleep Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Samar Ibrahim
- Department of Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12451, Egypt.
| | | | - Mervat Samy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | | |
Collapse
|
27
|
Choi J, Cho Y, Choi H, Lee S, Han H, Lee J, Kwon J. Thymosin Beta 4 Inhibits LPS and ATP-Induced Hepatic Stellate Cells via the Regulation of Multiple Signaling Pathways. Int J Mol Sci 2023; 24:ijms24043439. [PMID: 36834849 PMCID: PMC9959661 DOI: 10.3390/ijms24043439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Risk signals are characteristic of many common inflammatory diseases and can function to activate nucleotide-binding oligomerization (NLR) family pyrin domain-containing 3 (NLRP3), the innate immune signal receptor in cytoplasm. The NLRP3 inflammasome plays an important role in the development of liver fibrosis. Activated NLRP3 nucleates the assembly of inflammasomes, leading to the secretion of interleukin (IL)-1β and IL-18, the activation of caspase-1, and the initiation of the inflammatory process. Therefore, it is essential to inhibit the activation of the NLRP3 inflammasome, which plays a vital role in the immune response and in initiating inflammation. RAW 264.7 and LX-2 cells were primed with lipopolysaccharide (LPS) for 4 h and subsequently stimulated for 30 min with 5 mM of adenosine 5'-triphosphate (ATP) to activate the NLRP3 inflammasome. Thymosin beta 4 (Tβ4) was supplemented to RAW264.7 and LX-2 cells 30 min before ATP was added. As a result, we investigated the effects of Tβ4 on the NLRP3 inflammasome. Tβ4 prevented LPS-induced NLRP3 priming by inhibiting NF-kB and JNK/p38 MAPK expression and the LPS and ATP-induced production of reactive oxygen species. Moreover, Tβ4 induced autophagy by controlling autophagy markers (LC3A/B and p62) through the inhibition of the PI3K/AKT/mTOR pathway. LPS combined with ATP significantly increased thee protein expression of inflammatory mediators and NLRP3 inflammasome markers. These events were remarkably suppressed by Tβ4. In conclusion, Tβ4 attenuated NLRP3 inflammasomes by inhibiting NLRP3 inflammasome-related proteins (NLRP3, ASC, IL-1β, and caspase-1). Our results indicate that Tβ4 attenuated the NLRP3 inflammasome through multiple signaling pathway regulations in macrophage and hepatic stellate cells. Therefore, based on the above findings, it is hypothesized that Tβ4 could be a potential inflammatory therapeutic agent targeting the NLRP3 inflammasome in hepatic fibrosis regulation.
Collapse
|
28
|
Sonny S, Yuan H, Chen S, Duncan MR, Chen P, Benny M, Young K, Park KK, Schmidt AF, Wu S. GSDMD deficiency ameliorates hyperoxia-induced BPD and ROP in neonatal mice. Sci Rep 2023; 13:143. [PMID: 36599874 DOI: 10.1038/s41598-022-27201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are among the most common morbidities affecting extremely premature infants who receive oxygen therapy. Many clinical studies indicate that BPD is associated with advanced ROP. However, the mechanistic link between hyperoxia, BPD, and ROP remains to be explored. Gasdermin D (GSDMD) is a key executor of inflammasome-induced pyroptosis and inflammation. Inhibition of GSDMD has been shown to attenuate hyperoxia-induced BPD and brain injury in neonatal mice. The objective of this study was to further define the mechanistic roles of GSDMD in the pathogenesis of hyperoxia-induced BPD and ROP in mouse models. Here we show that global GSDMD knockout (GSDMD-KO) protects against hyperoxia-induced BPD by reducing macrophage infiltration, improving alveolarization and vascular development, and decreasing cell death. In addition, GSDMD deficiency prevented hyperoxia-induced ROP by reducing vasoobliteration and neovascularization, improving thinning of multiple retinal tissue layers, and decreasing microglial activation. RNA sequencing analyses of lungs and retinas showed that similar genes, including those from inflammatory, cell death, tissue remodeling, and tissue and vascular developmental signaling pathways, were induced by hyperoxia and impacted by GSDMD-KO in both models. These data highlight the importance of GSDMD in the pathogenesis of BPD and ROP and suggest that targeting GSDMD may be beneficial in preventing and treating BPD and ROP in premature infants.
Collapse
Affiliation(s)
- Sarah Sonny
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Huijun Yuan
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Shaoyi Chen
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Matthew R Duncan
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Pingping Chen
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Merline Benny
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Karen Young
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, FL, USA
| | - Augusto F Schmidt
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA
| | - Shu Wu
- Neonatology and Batchelor Children Research Institute, University of Miami Miller School of Medicine, 1580 NW 10thAve, Miami, FL, 33136, USA.
| |
Collapse
|
29
|
Wu Y, Di X, Zhao M, Li H, Bai L, Wang K. The role of the NLRP3 inflammasome in chronic inflammation in asthma and chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10:e750. [PMID: 36444628 PMCID: PMC9695095 DOI: 10.1002/iid3.750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are lung diseases characterized by airflow limitation and chronic inflammation. More and more studies have shown that the occurrence and development of asthma and COPD are related to abnormal immune responses caused by dysregulation of many genetic and environmental factors. The exact pathogenesis of the disease is still unclear. A large number of studies have shown that the NLRP3 inflammasome is involved in the process of chronic airway inflammation in asthma and COPD. Here, we summarize recent advances in the mechanism of NLRP3 inflammasome activation and regulation and its role in the pathogenesis of inflammatory lung diseases such as asthma and COPD. Meanwhile we propose possible therapeutic targets in asthma and COPD.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Xin Di
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Min Zhao
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Haoran Li
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Li Bai
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| | - Ke Wang
- Department of Respiratory and Critical Care MedicineThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
30
|
Kasakura K, Kawakami Y, Jacquet A, Kawakami T. Histamine-Releasing Factor Is a Novel Alarmin Induced by House Dust Mite Allergen, Cytokines, and Cell Death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1851-1859. [PMID: 36426937 PMCID: PMC9643630 DOI: 10.4049/jimmunol.2200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022]
Abstract
Histamine-releasing factor (HRF) is a multifunctional protein with fundamental intracellular functions controlling cell survival and proliferation. HRF is also secreted during allergic reactions and promotes IgE-mediated activation of mast cells and basophils. In this study, we investigated HRF secretion and its relevance to airway inflammation. HRF monomers were constitutively secreted from BEAS-2B human bronchial epithelial cells (HBECs) and converted to oligomers over the course of culture. Stimulation with house dust mite (HDM) extract increased HRF secretion substantially. Several cytokines involved in asthma pathogenesis showed moderate effects on HRF secretion but dramatically enhanced HDM-induced HRF secretion. HDM-induced HRF secretion from BEAS-2B cells and normal HBECs proceeded via TLR2. Consistent with this, multiple TLR2 ligands, including Der p 2, Der p 5, Der p 13, and Der p 21, induced HRF secretion. Der p 10 (tropomyosin) also promoted HRF secretion. Cell death or incubation with adenosine and ATP, compounds released upon cell death, also enhanced HRF secretion. Furthermore, intranasal administration of recombinant HRF elicited robust airway inflammation in HDM-sensitized mice in an FcεRI-dependent manner. Therefore, we conclude that HRF is a novel alarmin that promotes allergic airway inflammation.
Collapse
Affiliation(s)
- Kazumi Kasakura
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
32
|
Dai B, Fan M, Huang X, Gong Z, Cao H, Hu Y, Su Q, Yang T, Chen Y, Peng X, Liu F, Zhang Y. Shuanghua decoction exerts anticancer activity by activating NLRP3 inflammasome via ROS and inhibiting NF-κB signaling in hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154249. [PMID: 35716538 DOI: 10.1016/j.phymed.2022.154249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major subtype of liver cancer, with a high mortality rate, and close relation to chronic hepatitis. The components of the NLRP3 inflammasome are poorly expressed or even lost in HCC. Downregulation of the NLRP3 inflammasome expression significantly affects the clinical stages and pathological grade of HCC. According to previous research, Shuanghua decoction (SHD), a traditional folk prescription, has an inhibitory effect on nasopharyngeal cancer. PURPOSE This study aimed to reveal the therapeutic potential of the traditional folk recipe, SHD and its demolition recipe for HCC, and to explore the underlying mechanism. METHODS The effect of SHD and its demolition recipe on HCC cell biological behaviors was assessed using the MTT assay, colony formation, LDH release assay, KFluor-Edu staining, annexin V-FITC/PI staining assay, Hoechst staining, wound-healing assay, transwell assay, reactive oxygen species (ROS) release assay, HPLC, nude mice model, HE staining, IHC, western blot, and immunofluorescence staining in vitro and in vivo. RESULTS SHD was found to inhibit HCC, and Oldenlandia and OP (Oldenlandia: Prunella spike = 2.5:1) were identified as the main ingredients that inhibited the proliferation and migration of HCC cells via the activation of the ROS-mediated NLRP3 inflammasome and inhibition of the NF-κB signaling pathway in vitro and in vivo. CONCLUSION Overall, Chinese medicine theory and pharmacology research revealed that SHD, Oldenlandia and OP may be promising traditional Chinese medicine for the treatment of HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Mengying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Xiaoyue Huang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Hanbing Cao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Yanbin Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Xiujuan Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China.
| |
Collapse
|
33
|
Mahmoodpoor A, Sanaie S, Ostadi Z, Eskandari M, Behrouzi N, Asghari R, Zahirnia A, Sohrabifar N, Kazeminasab S. Roles of mitochondrial DNA in dynamics of the immune response to COVID-19. Gene 2022; 836:146681. [PMID: 35728769 PMCID: PMC9219426 DOI: 10.1016/j.gene.2022.146681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 12/18/2022]
Abstract
Mitochondria dynamics have a pivotal role in many aspects of immune function. Viral infections affect mitochondrial dynamics and trigger the release of mitochondrial DNA (mtDNA) in host cells. Released mtDNA guides the immune response towards an inflammatory response against pathogens. In addition, circulating cell-free mtDNA (ccf-mtDNA) is considered an invaluable indicator for the prognosis and severity of infectious diseases. This study provides an overview of the role of mtDNA in the dynamics of the immune response to COVID-19. We focused on the possible roles of mtDNA in inducing the signaling pathways, and the inflammasome activation and regulation in SARS-CoV-2. Targeting mtDNA-related pathways can provide critical insights into therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Ata Mahmoodpoor
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zoherh Ostadi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maqsoud Eskandari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Behrouzi
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqayyeh Asghari
- Department of Anesthesiology and intensive care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Zahirnia
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran
| | - Nasim Sohrabifar
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Kazeminasab
- Nasle Farda Health Foundation, Medical Genetic Laboratory, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Liu J, Fan G, Tao N, Feng F, Meng C, Sun T. Ginsenoside Rb1 Alleviates Bleomycin-Induced Pulmonary Inflammation and Fibrosis by Suppressing Central Nucleotide-Binding Oligomerization-, Leucine-Rich Repeat-, and Pyrin Domains-Containing Protein Three Inflammasome Activation and the NF-κB Pathway. Drug Des Devel Ther 2022; 16:1793-1809. [PMID: 35719213 PMCID: PMC9205635 DOI: 10.2147/dddt.s361748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Idiopathic pulmonary fibrosis is a chronic and irreversible fibrotic interstitial pneumonia of unknown etiology and therapeutic strategies are limited. Emerging evidence suggests that the continuous activation of the central nucleotide-binding oligomerization-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in the pathogenesis of pulmonary fibrosis. Ginsenoside Rb1 (G-Rb1) is the most abundant component in the traditional Chinese herb ginseng and has anti-inflammatory and anti-fibrotic activities. The purpose of this study was to explore whether G-Rb1 exerts anti-inflammatory and anti-fibrotic activities in vivo and in vitro by suppressing the activation of the NLRP3 inflammasome and NF-κB pathway. Methods Forty-eight male C57BL/6 mice were randomly divided into four groups (n=12/group) as follows: control, bleomycin (BLM), BLM/G-Rb1, and G-Rb1. A pulmonary fibrosis model was developed via an intratracheal injection of BLM. Six mice from each group were euthanized on days 3 and 21. The degree of pulmonary fibrosis was examined by histological evaluation and assessing α-smooth muscle actin levels. THP-1 cells were differentiated into macrophages, and stimulated by lipopolysaccharide and adenosine triphosphate. Activation of the NLRP3 inflammasome and NF-κB pathway was determined by Western blotting. Interleukin-1 beta and interleukin-18 levels were measured by ELISA. MRC-5 cells were cultured in the conditioned medium of the treated macrophages, after which markers of myofibroblasts were determined by Western blotting. Results G-Rb1 ameliorated BLM-induced pulmonary inflammation and fibrosis in mice, and suppressed NLRP3 inflammasome activation and the NF-κB pathway in lung tissues. Moreover, interleukin-1 beta secreted after NLRP3 inflammasome activation in macrophages promoted fibroblast differentiation. G-Rb1 inhibited lipopolysaccharide- and adenosine triphosphate-induced NLRP3 inflammasome activation in macrophages and disturbed the crosstalk between macrophages and fibroblasts. Conclusion G-Rb1 ameliorates BLM-induced pulmonary inflammation and fibrosis by suppressing NLRP3 inflammasome activation and the NF-κB pathway. Hence, G-Rb1 is a potential novel therapeutic drug for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ningning Tao
- Department of Respiratory & Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Feifei Feng
- Department of Respiratory & Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chao Meng
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
35
|
The Inflammasome NLR Family Pyrin Domain-Containing Protein 3 (NLRP3) as a Novel Therapeutic Target for Idiopathic Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:837-846. [PMID: 35351468 DOI: 10.1016/j.ajpath.2022.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a dramatic disease without cure. The US Food and Drug Administration-approved drugs, pirfenidone and nintedanib, only slow disease progression. The clinical investigation of novel therapeutic approaches for IPF is an unmet clinical need. Nucleotide-binding oligomerization domain-like receptor or NOD-like receptors are pattern recognition receptors capable of binding a large variety of stress factors. NLR family pyrin domain-containing protein 3 (NLRP3), once activated, promotes IL-1β, IL-18 production, and innate immune responses. Multiple reports indicate that the inflammasome NLRP3 is overactivated in IPF patients, leading to increased production of class I IL and collagens. Similarly, data from animal models of pulmonary fibrosis confirm the role of NLRP3 in the development of chronic lung injury and pulmonary fibrosis. This report provides a review of the evidence of NLRP3 activation in IPF and of NLRP3 inhibition in different animal models of fibrosis, and highlights the recent advances in direct and indirect NLRP3 inhibitors.
Collapse
|
36
|
Ding X, Pan T, Tian Q, Huang W, Hayashi LS, Liu Q, Li F, Xu LX, Miao P, Yang X, Sun B, Feng CX, Feng X, Li M, Huang J. Profiling Temporal Changes of the Pineal Transcriptomes at Single Cell Level Upon Neonatal HIBD. Front Cell Dev Biol 2022; 10:794012. [PMID: 35350377 PMCID: PMC8958010 DOI: 10.3389/fcell.2022.794012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/24/2022] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) often results in various neurological deficits. Among them, a common, yet often neglected, symptom is circadian rhythm disorders. Previous studies revealed that the occurrence of cysts in the pineal gland, an organ known to regulate circadian rhythm, is associated with circadian problems in children with HIBD. However, the underlying mechanisms of pineal dependent dysfunctions post HIBD remain largely elusive. Here, by performing 10x single cell RNA sequencing, we firstly molecularly identified distinct pineal cell types and explored their transcriptome changes at single cell level at 24 and 72 h post neonatal HIBD. Bioinformatic analysis of cell prioritization showed that both subtypes of pinealocytes, the predominant component of the pineal gland, were mostly affected. We then went further to investigate how distinct pineal cell types responded to neonatal HIBD. Within pinealocytes, we revealed a molecularly defined β to α subtype conversion induced by neonatal HIBD. Within astrocytes, we discovered that all three subtypes responded to neonatal HIBD, with differential expression of reactive astrocytes markers. Two subtypes of microglia cells were both activated by HIBD, marked by up-regulation of Ccl3. Notably, microglia cells showed substantial reduction at 72 h post HIBD. Further investigation revealed that pyroptosis preferentially occurred in pineal microglia through NLRP3-Caspase-1-GSDMD signaling pathway. Taken together, our results delineated temporal changes of molecular and cellular events occurring in the pineal gland following neonatal HIBD. By revealing pyroptosis in the pineal gland, our study also provided potential therapeutic targets for preventing extravasation of pineal pathology and thus improving circadian rhythm dysfunction in neonates with HIBD.
Collapse
Affiliation(s)
- Xin Ding
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Pan
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Qiuyan Tian
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Wenxi Huang
- Undergraduate Program, University of Virginia, Charlottesville, VA, United States
| | - Lauren S Hayashi
- IRTA Fellow, National Institutes of Health, Bethesda, MD, United States
| | - Qin Liu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Fuyong Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Xiao Xu
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Po Miao
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaofeng Yang
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Bin Sun
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China
| | - Chen-Xi Feng
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Feng
- Soochow Key Laboratory of Prevention and Treatment of Child Brain Injury, Children's Hospital of Soochow University, Suzhou, China.,Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China.,Undergraduate Program, University of Virginia, Charlottesville, VA, United States.,IRTA Fellow, National Institutes of Health, Bethesda, MD, United States.,School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, China
| | - Mei Li
- Pediatrics Research Institute, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Jiang RY, Wang T, Lan QY, Qin YC, Man TT, Sun H, Li ZL, Zhong XT, Mo CM, Rong Z. BuFeiXiaoJiYin ameliorates the NLRP3 inflammation response and gut microbiota in mice with lung cancer companied with Qi-yin deficiency. Cancer Cell Int 2022; 22:121. [PMID: 35292015 PMCID: PMC8922837 DOI: 10.1186/s12935-022-02543-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Introduction NLRP3 inflammasome responses and gut microbiota have been shown an important role in lung cancer, however, the relationship between gut microbiota and NLRP3 inflammasome responses in lung cancer with Qi-yin deficiency remains elusive. Methods To investigate the effect of the traditional Chinese medicine BuFeiXiaoJiYin (BFXJY) on NLRP3 inflammasome responses and dysbiosis in lung cancer with Qi-yin deficiency, the female BALB/cA-nu mice were treated with LPS and ATP to induce inflammation, and were intragastrically treated with warm Chinese medicine and smoked with shavings to induce Qi-yin deficiency, as well as were injected with 1 × 107/ml A549 cells to simulate lung cancer. Then the three different doses of BuFeiXiaoJiYin (BFXJY) and positive control (CRID3) were used for intervention in mice for 27 consecutive days. Then, we estimated the protection effect of BFXJY on lung cancer mice with Qi-yin deficiency, through deterring tumor growth, NLRP3 inflammasome, PKC signaling, and homeostasis of gut microbiota. Results In this study, we found that BFXJY could inhibit the tumor growth in lung cancer with Qi-yin deficiency by reducing the production of IL-1β and IL-18 and inhibiting NLRP3 inflammasome activation, which might be associated with the inhibition of PKC signaling. Furthermore, BFXJY could promote microbial diversity and balance the microbial composition changes induced by inflammation and Qi-yin deficiency in lung cancer. Conclusion BuFeiXiaoJiYin ameliorates the NLRP3 inflammation response and gut microbiota in mice with lung cancer companied with Qi-yin deficiency. Our study provides a theoretical basis for the clinical development of therapeutic drugs targeting to treat lung cancer.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Ting Wang
- Department of Dean's Office, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Qiao-Yu Lan
- Department of Graduate Student, Guangzhou Medical University, No. 1, Xinzao Road, Fanyu District, Guangzhou, 511495, Guangdong, China
| | - Yan-Chun Qin
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Ting-Ting Man
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Hua Sun
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Zhu-Long Li
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Xiao-Ting Zhong
- Department of Graduate Student, Guangxi University of Chinese Medicine, No. 13, Wuhe Road, Qingxiu District, Nanning, 530022, Guangxi, China
| | - Chun-Mei Mo
- Department of Hepatology, Bao'an Authentic TCM Therapy Hospital, No. 99, Laian Road, Baoan District, Shenzhen, 518100, Guangdong, China.
| | - Zhen Rong
- Department of Oncology, Bao'an Authentic TCM Therapy Hospital, No. 99, Laian Road, Baoan District, Shenzhen, 518100, Guangdong, China.
| |
Collapse
|
38
|
Liu J, Fan G, Tao N, Sun T. Role of Pyroptosis in Respiratory Diseases and its Therapeutic Potential. J Inflamm Res 2022; 15:2033-2050. [PMID: 35370413 PMCID: PMC8974246 DOI: 10.2147/jir.s352563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is an inflammatory type of regulated cell death that is dependent on inflammasome activation and downstream proteases such as caspase-1 or caspase 4/5/11. The main executors are gasdermins, which have an inherent pore-forming function on the membrane and release inflammatory cytokines, such as interleukin (IL)-1β, IL-18 and high mobility group box 1. Emerging evidence demonstrates that pyroptosis is involved in the pathogenesis of various pulmonary diseases. In this review, we mainly discuss the biological mechanisms of pyroptosis, explore the relationship between pyroptosis and respiratory diseases, and discuss emerging therapeutic strategies for respiratory diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ningning Tao
- Department of Respiratory Medicine and Critical Care, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Tieying Sun, Department of Respiratory Medicine and Critical Care, Beijing Hospital, Dongcheng District, Beijing, 100730, People’s Republic of China, Tel +86 15153169108, Email
| |
Collapse
|
39
|
Glibenclamide Alleviates LPS-Induced Acute Lung Injury through NLRP3 Inflammasome Signaling Pathway. Mediators Inflamm 2022; 2022:8457010. [PMID: 35185385 PMCID: PMC8856806 DOI: 10.1155/2022/8457010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glibenclamide displays an anti-inflammatory response in various pulmonary diseases, but its exact role in lipopolysaccharide- (LPS-) induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) remains unknown. Herein, we aimed to explore the effect of glibenclamide in vivo and in vitro on the development of LPS-induced ALI in a mouse model. LPS stimulation resulted in increases in lung injury score, wet/dry ratio, and capillary permeability in lungs, as well as in total protein concentration, inflammatory cells, and inflammatory cytokines including IL-1β, IL-18 in bronchoalveolar lavage fluid (BALF), and lung tissues, whereas glibenclamide treatment reduced these changes. Meanwhile, the increased proteins of NLRP3 and Caspase-1/p20 after LPS instillation in lungs were downregulated by glibenclamide. Similarly, in vitro experiments also found that glibenclamide administration inhibited the LPS-induced upregulations in cytokine secretions of IL-1β and IL-18, as well as in the expression of components in NLRP3 inflammasome in mouse peritoneal macrophages. Of note, glibenclamide had no effect on the secretion of TNF-α in vivo nor in vitro, implicating that its anti-inflammatory effect is relatively specific to NLRP3 inflammasome. In conclusion, glibenclamide alleviates the development of LPS-induced ALI in a mouse model via inhibiting the NLRP3/Caspase-1/IL-1β signaling pathway, which might provide a new strategy for the treatment of LPS-induced ALI.
Collapse
|
40
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
41
|
Vitamin D3 Supplementation Attenuates Surgery-Induced Neuroinflammation and Cognitive Impairment by Regulating NLRP3 Inflammasome in Mice. Mediators Inflamm 2022; 2022:4696415. [PMID: 36880085 PMCID: PMC9985505 DOI: 10.1155/2022/4696415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). Vitamin D has been known to have important regulatory functions in inflammation and immune response. The NOD-like receptor protein 3 (NLRP3) is an essential inflammasome in the inflammatory response and could be activated by anesthesia and surgery. In this study, male C57BL/6 mice aged 14-16 months were given VD3 for 14 days straight before having an open tibial fracture surgery. The animals were either sacrificed to obtain the hippocampus or tested in a Morris water maze test. Western blot was employed to estimate the levels of NLRP3, ASC, and caspase-1, immunohistochemistry was used to identify microglial activation, and an enzyme-linked immunosorbent assay was used to measure the expression of IL-18 and IL-1β, while using the corresponding assay kits to assess ROS and MDA levels to reflect the oxidative stress status. We showed that VD3 pretreatment significantly improved surgery-induced memory and cognitive dysfunctions in aged mice, which was linked to the inactivation of the NLRP3 inflammasome and the inhibition of neuroinflammation. This finding provided a novel preventative strategy for clinically reducing postoperative cognitive impairment in elderly surgical patients. This study has some limitations. Gender differences in the effects of VD3 were not considered, and only male mice were used. Additionally, VD3 was given as a preventative measure; however, it is unknown whether it has any therapeutic benefits for POCD mice. This trial is registered with ChiCTR-ROC-17010610.
Collapse
|
42
|
Zheng R, Song P, Wu Y, Wang Y, Han X, Yan J, Wu X, Zhang H. Property-activity relationship between physicochemical properties of PM 2.5 and their activation of NLRP3 inflammasome. NANOIMPACT 2022; 25:100380. [PMID: 35559886 DOI: 10.1016/j.impact.2022.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is becoming severe environment factor affecting human health. More and more research has indicated that fine particulate matter (PM2.5) plays a critical role in causing pulmonary inflammation or fibrosis, which potentially is ascribed to the activation of nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. However, the underlying property-activity relationship between the physicochemical properties of PM2.5 and their activation of NLRP3 inflammasome remains unclear. Herein, various ways, such as metal chelation, organic extraction, ROS consumption, charge neutralization and particle dispersion, were applied to interfere with the effects of metal ion, polycyclic aromatic hydrocarbons (PAHs), reactive oxygen species (ROS), charge and size. It was found that aggregated size and PAHs could activate the NLRP3 inflammasome through lysosome rupture and potassium efflux, respectively. Metal ion, PAHs and surface ROS could also activate the NLRP3 inflammasome through mitochondrial ROS production. However, neutralization of PM2.5 with the negative surface charge could not relieve the activation of NLRP3 inflammasome. Furthermore, oropharyngeal aspiration of various modified PM2.5 were adopted to explore their effects on lung fibrosis, which showed the consistent results with those in cellular levels. Removal of metal ion, PAHs and ROS as well as reduction of size of PM2.5 could reduce collagen deposition in the lung tissue of mice, while the charge neutralization of PM2.5 increased this collagen deposition. This study provides great insights to clarify the property-activity relationship of PM2.5.
Collapse
Affiliation(s)
- Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, Jilin, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; University of Science and Technology of China, Hefei, China.
| |
Collapse
|
43
|
Kong X, Chen R, Zhang L, Wu M, Wu J, Wei Y, Dai W, Jiang Y. ESR2 regulates PINK1-mediated mitophagy via transcriptional repression of microRNA-423 expression to promote asthma development. Pharmacol Res 2021; 174:105956. [PMID: 34700017 DOI: 10.1016/j.phrs.2021.105956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Asthma represents an inflammatory airway disease related to the induction of airway eosinophilia, mucus overproduction, and bronchial hyperresponsiveness. This study explored the effects of microRNA-423 (miR-423) on mitophagy and inflammation in asthmatic mice challenged with house dust mites (HDMs) and rhinovirus (RV). By searching for differentially expressed miRNAs in the GSE25230 microarray, miR-423 was identified as our target. Moreover, miR-423 was expressed at low levels in the lung tissues from patients with asthma, and agomiR-423 significantly inhibited RV-induced inflammatory injury and activation of inflammasome signaling in mouse lung tissues. Additionally, miR-423 downregulated the expression of IL-1β/NLRP3/Caspase-1 inflammasome signaling by targeting phosphatase and tensin homolog-induced putative kinase 1 (PINK1). Furthermore, luciferase reporter experiments and ChIP-qPCR assays revealed that estrogen receptor 2 (ESR2) transcriptionally repressed miR-423 expression by coordinating with H3K9me2 modification of the miR-423 promoter histone. Overall, ESR2 synergized with the H3K9me2 modification of the miR-423 promoter histone to transcriptionally repress miR-423 expression and increase PINK1 expression in lung tissues, resulting in asthma exacerbation.
Collapse
Affiliation(s)
- Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China.
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Lina Zhang
- Intensive Care Unit, Liaocheng People's Hospital, Liaocheng 252000, Shandong, PR China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| |
Collapse
|
44
|
Li N, Li X, Cheng P, Yang P, Shi P, Kong L, Liu H. Preparation of Curcumin Solid Lipid Nanoparticles Loaded with Flower-Shaped Lactose for Lung Inhalation and Preliminary Evaluation of Cytotoxicity In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4828169. [PMID: 34745284 PMCID: PMC8568537 DOI: 10.1155/2021/4828169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this study is to design a flower-shaped lactose loaded curcumin solid lipid nanoparticles dry powder inhaler and characterize it to improve the solubility and dissolution rate of curcumin in lung. Curcumin solid lipid nanoparticles (Cur-SLNs) were prepared by solvent evaporation method, and then they were micronized by freeze-drying technology. Finally, Cur-SLN micropowder obtained by freeze-drying was mixed with flower-shaped lactose (FL) at a ratio of 2 : 1 and then passed through a 200-mesh sieve to obtain Cur-SLN-FL powder. Tween-80 was selected as the surfactant to inhibit the aggregation of drug solid lipid nanoparticles. Under the optimum conditions, the solid lipid nanoparticles (SLN) were relatively spherical, with an average particle size of 14.7 nm, narrow distribution, Zeta potential of -22.5 mV, encapsulation efficiency of 90.21%, and drug loading of 8.56%. According to the particle size, PI, Zeta potential, drug loading (LC%), encapsulation efficiency (EE%), morphology, and in vitro release characteristics, the prescription of solid lipid nanoparticles was screened. Dry powder inhaler (DPI) was characterized by differential scanning calorimetry, scanning electron microscopy, particle size, density, and in vitro release performance. Its cytotoxicity to mouse fibroblasts (L929) and human normal lung epithelial cells (BEAS-2B) in vitro was investigated, and its safety for pulmonary inhalation was preliminarily determined. FTIR analysis shows that the micronized Cur-SLN-FL has the same chemical structure as FL. FTIR and DSC analysis confirmed that the characteristic absorption peak of curcumin was not found in Cur-SLN-FL, showing similar structure to SLN and FL. In addition, curcumin was coated in solid lipid nanoparticles to make powder mist, which increased its drug loading, kept its aerodynamic particle size (4.03 ± 0.40) μm, and significantly improved its drug release performance in artificial lung fluid. In vitro cytotoxicity test results confirmed that Cur-SLN-FL was less toxic to BEAS-2B cells than L929 cells. Therefore, curcumin was prepared into solid lipid nanoparticles by emulsion evaporation-low temperature solidification method and then micronized and mixed with FL to prepare curcumin solid lipid nanoparticle powder mist loaded with flower-shaped lactose. The process is simple and feasible, and it has better safety performance for lung cells, which is expected to become a safe and effective delivery system for pulmonary inhalation drugs.
Collapse
Affiliation(s)
- Nan Li
- Pharmaceutical Analysis Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Xu Li
- Cardiovascular and Cerebrovascular Drugs Research and Development Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Peng Cheng
- Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Ping Yang
- Pharmaceutical Analysis Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Pengcheng Shi
- Oncology Drug R&D Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Lingyu Kong
- Pharmaceutical Analysis Center of Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| | - Hongbin Liu
- Tianjin Institute of Medical and Pharmaceutical Sciences, 79 Duolun Road, Heping District, Tianjin 300020, China
| |
Collapse
|
45
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
46
|
The Crucial Role of NLRP3 Inflammasome in Viral Infection-Associated Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms221910447. [PMID: 34638790 PMCID: PMC8509020 DOI: 10.3390/ijms221910447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), one of the most common fibrosing interstitial lung diseases (ILD), is a chronic-age-related respiratory disease that rises from repeated micro-injury of the alveolar epithelium. Environmental influences, intrinsic factors, genetic and epigenetic risk factors that lead to chronic inflammation might be implicated in the development of IPF. The exact triggers that initiate the fibrotic response in IPF remain enigmatic, but there is now increasing evidence supporting the role of chronic exposure of viral infection. During viral infection, activation of the NLRP3 inflammasome by integrating multiple cellular and molecular signaling implicates robust inflammation, fibroblast proliferation, activation of myofibroblast, matrix deposition, and aberrant epithelial-mesenchymal function. Overall, the crosstalk of the NLRP3 inflammasome and viruses can activate immune responses and inflammasome-associated molecules in the development, progression, and exacerbation of IPF.
Collapse
|
47
|
Braakhuis HM, Murphy F, Ma-Hock L, Dekkers S, Keller J, Oomen AG, Stone V. An Integrated Approach to Testing and Assessment to Support Grouping and Read-Across of Nanomaterials After Inhalation Exposure. ACTA ACUST UNITED AC 2021; 7:112-128. [PMID: 34746334 PMCID: PMC8567336 DOI: 10.1089/aivt.2021.0009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Here, we describe the generation of hypotheses for grouping nanoforms (NFs) after inhalation exposure and the tailored Integrated Approaches to Testing and Assessment (IATA) with which each specific hypothesis can be tested. This is part of a state-of-the-art framework to support the hypothesis-driven grouping and read-across of NFs, as developed by the EU-funded Horizon 2020 project GRACIOUS. Development of Grouping Hypotheses and IATA: Respirable NFs, depending on their physicochemical properties, may dissolve either in lung lining fluid or in acidic lysosomal fluid after uptake by cells. Alternatively, NFs may also persist in particulate form. Dissolution in the lung is, therefore, a decisive factor for the toxicokinetics of NFs. This has led to the development of four hypotheses, broadly grouping NFs as instantaneous, quickly, gradually, and very slowly dissolving NFs. For instantaneously dissolving NFs, hazard information can be derived by read-across from the ions. For quickly dissolving particles, as accumulation of particles is not expected, ion toxicity will drive the toxic profile. However, the particle aspect influences the location of the ion release. For gradually dissolving and very slowly dissolving NFs, particle-driven toxicity is of concern. These NFs may be grouped by their reactivity and inflammation potency. The hypotheses are substantiated by a tailored IATA, which describes the minimum information and laboratory assessments of NFs under investigation required to justify grouping. Conclusion: The GRACIOUS hypotheses and tailored IATA for respiratory toxicity of inhaled NFs can be used to support decision making regarding Safe(r)-by-Design product development or adoption of precautionary measures to mitigate potential risks. It can also be used to support read-across of adverse effects such as pulmonary inflammation and subsequent downstream effects such as lung fibrosis and lung tumor formation after long-term exposure.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona Murphy
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Susan Dekkers
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Johannes Keller
- Experimental Toxicology and Ecology, BASF, Ludwigshafen am Rhein, Germany
| | - Agnes G Oomen
- Centre for Health Protection and Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vicki Stone
- NanoSafety Research Group, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
49
|
Zhao S, Chen F, Wang D, Han W, Zhang Y, Yin Q. NLRP3 inflammasomes are involved in the progression of postoperative cognitive dysfunction: from mechanism to treatment. Neurosurg Rev 2021; 44:1815-1831. [PMID: 32918635 DOI: 10.1007/s10143-020-01387-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) involves patient memory and learning decline after surgery. POCD not only presents challenges for postoperative nursing and recovery but may also cause permanent brain damage for patients, including children and the aged, with vulnerable central nervous systems. Its occurrence is mainly influenced by surgical trauma, anesthetics, and the health condition of the patient. There is a lack of imaging and experimental diagnosis; therefore, patients can only be diagnosed by clinical observation, which may underestimate the morbidity, resulting in decreased treatment efficacy. Except for symptomatic support therapy, there is a relative lack of effective drugs specific for the treatment of POCD, because the precise mechanism of POCD remains to be determined. One current hypothesis is that postoperative inflammation promotes the progression of POCD. Accumulating research has indicated that overactivation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to the POCD progression, suggesting that targeting NLRP3 inflammasomes may be an effective therapy to treat POCD. In this review, we summarize recent studies and systematically describe the pathogenesis, treatment progression, and potential treatment options of targeting NLRP3 inflammasomes in POCD patients.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Fan Chen
- Department of Neurosurgery, University of Medicine Greifswald, Greifswald, Germany
| | - Dunwei Wang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Wei Han
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yuan Zhang
- Department of Anesthesiology, First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| | - Qiliang Yin
- Department of Oncology, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
50
|
Nizami S, Millar V, Arunasalam K, Zarganes-Tzitzikas T, Brough D, Tresadern G, Brennan PE, Davis JB, Ebner D, Di Daniel E. A phenotypic high-content, high-throughput screen identifies inhibitors of NLRP3 inflammasome activation. Sci Rep 2021; 11:15319. [PMID: 34321581 PMCID: PMC8319173 DOI: 10.1038/s41598-021-94850-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Inhibition of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome has recently emerged as a promising therapeutic target for several inflammatory diseases. After priming and activation by inflammation triggers, NLRP3 forms a complex with apoptosis-associated speck-like protein containing a CARD domain (ASC) followed by formation of the active inflammasome. Identification of inhibitors of NLRP3 activation requires a well-validated primary high-throughput assay followed by the deployment of a screening cascade of assays enabling studies of structure–activity relationship, compound selectivity and efficacy in disease models. We optimized a NLRP3-dependent fluorescent tagged ASC speck formation assay in murine immortalized bone marrow-derived macrophages and utilized it to screen a compound library of 81,000 small molecules. Our high-content screening assay yielded robust assay metrics and identified a number of inhibitors of NLRP3-dependent ASC speck formation, including compounds targeting HSP90, JAK and IKK-β. Additional assays to investigate inflammasome priming or activation, NLRP3 downstream effectors such as caspase-1, IL-1β and pyroptosis form the basis of a screening cascade to identify NLRP3 inflammasome inhibitors in drug discovery programs.
Collapse
Affiliation(s)
- Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Val Millar
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,National Phenotypic Screening Centre, Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Kanisa Arunasalam
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Tryfon Zarganes-Tzitzikas
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Gary Tresadern
- Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - John B Davis
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Daniel Ebner
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,National Phenotypic Screening Centre, Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| |
Collapse
|