1
|
Mofed D, Mandarino A, Wu X, Lang Y, Gowripalan A, Kalpana GV, Prasad VR. Construction of a Macrophage-Tropic Subtype C HIV-1-mGreenLantern Reporter Virus for Studies on HIV-1 Replication and the Impact of Methamphetamine. Viruses 2024; 16:1859. [PMID: 39772169 PMCID: PMC11680207 DOI: 10.3390/v16121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication-competent HIV-1 subtype C reporter virus expressing mGreenLantern. mGreenLantern sequences were inserted in-frame with Nef ATG in HIV-1IndieC1. As controls, we employed HIV-1IndieC1, HIV-1ADA, and HIV-1NLAD8-GFP-Nef viruses. HIV-1IndieC1-mGreenLantern (HIV-1IndieC1-mGL) exhibited characteristics of the parental HIV-1IndieC1 virus, including its infectivity in TZMbl reporter cells and replication competence in macrophages. To further characterize HIV-1IndieC1-mGL virus, we tested its responsiveness to CCL2 levels, a characteristic feature of subtype B HIV-1 that is missing in subtype C. CCL2 immunodepletion inhibited the production of HIV-1ADA and HIV-1NLAD8-GFP-Nef as expected, but not that of HIV-1IndieC1-mGL, as previously reported. We also tested the effect of methamphetamine, as its effect is mediated by NF-kB and since subtype C viruses carry an additional copy of NF-kB. We found that methamphetamine increased the replication of all viruses tested in macrophages; however, its effect was much more robust for HIV-1IndieC1 and HIV-1IndieC1-mGL. Our studies established that HIV-1IndieC1-mGL retains all the characteristics of the parental HIV-1IndieC1 and can be a useful tool for HIV-1 subtype C investigations.
Collapse
Affiliation(s)
- Dina Mofed
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (D.M.); (A.M.); (Y.L.); (A.G.)
| | - Angelo Mandarino
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (D.M.); (A.M.); (Y.L.); (A.G.)
| | - Xuhong Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (X.W.); (G.V.K.)
| | - Yuekun Lang
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (D.M.); (A.M.); (Y.L.); (A.G.)
| | - Anjali Gowripalan
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (D.M.); (A.M.); (Y.L.); (A.G.)
| | - Ganjam V. Kalpana
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (X.W.); (G.V.K.)
| | - Vinayaka R. Prasad
- Departments of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (D.M.); (A.M.); (Y.L.); (A.G.)
| |
Collapse
|
2
|
Mofed D, Mandarino A, Wu X, Lang Y, Gowripalan A, Kalpana GV, Prasad VR. Construction of a macrophage-tropic subtype C HIV-1 mGreenLantern reporter virus for studies on HIV-1 replication and the impact of methamphetamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619504. [PMID: 39484376 PMCID: PMC11527031 DOI: 10.1101/2024.10.24.619504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
HIV-1 subtype C viruses are responsible for 50% of global HIV burden. However, nearly all currently available reporter viruses widely used in HIV research are based on subtype B. We constructed and characterized a replication competent HIV-1 subtype C reporter virus expressing mGreenLantern. mGreenLantern sequences were inserted in-frame with nef ATG in HIV-1 IndieC1 . As controls, we employed HIV-1 IndieC1 , HIV-1 ADA, and HIV-1 NLAD8-GFP-Nef viruses. HIV-1 IndieC1-mGreenLantern (HIV-1 IndieC1-mGL ) exhibited characteristics of the parental HIV-1 IndieC1 virus, including its infectivity in TZMbl reporter cells and replication competence in macrophages. To further characterize HIV-1 IndieC1-mGL virus, we tested its responsiveness to CCL2 levels, a characteristic feature of subtype B HIV-1 that is missing in subtype C. CCL2 immunodepletion inhibited the production of HIV-1 ADA and HIV-1 NLAD8-GFP-Nef as expected, but not that of HIV-1 IndieC1-mGL as previously reported. We also tested the effect of Methamphetamine, as its effect is mediated by NF-κB and since subtype C viruses carry an additional copy of NFκB. We found that methamphetamine increased the replication of all viruses tested in macrophages, however, its effect was much more robust for HIV-1 IndieC1 and HIV-1 IndieC1-mGL . Our studies established that HIV-1 IndieC1-mGL retains all the characteristics of the parental HIV-1 IndieC1 and can be a useful tool for HIV-1 subtype C investigations.
Collapse
|
3
|
Feelemyer J, Jarlais DD, Nagot N, Thi HD, Hai OKT, Minh KP, Thi GH, Tuyet TNT, Cleland CM, Arasteh K, Caniglia E, Chen Y, Bart G, Moles JP, Hai VV, Vallo R, Quillet C, Rapoud D, Sao ML, Michel L, Laureillard D, Khan MR. Association between recent methamphetamine use, antiretroviral therapy and HIV viral load; a mediation analysis from a cohort of HIV positive persons who inject drugs in Hai Phong, Vietnam. Int J STD AIDS 2023; 34:236-244. [PMID: 36637437 PMCID: PMC10089109 DOI: 10.1177/09564624221142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND There has been a significant increase in methamphetamine use among persons who use drugs in Vietnam in the last 5-10 years. We examined the degree to which adherence to antiretroviral therapy (ART) mediates the relationship between recent methamphetamine use and unsuppressed HIV viral load among people who inject drugs (PWID) in Hai Phong, Vietnam. METHODS We recruited PWID from October 2016-October 2018 and enrolled HIV positive PWID into a cohort, with up to three years of total follow-up. We assessed relationships among recent methamphetamine use frequency, ART adherence and unsuppressed HIV viral load. Mediation analysis was used to estimate the total and natural direct effects of recent methamphetamine use on unsuppressed HIV viral load and the indirect effect proportion. RESULTS We enrolled 792 HIV seropositive PWID into the cohort; approximately 75.9% reported high/perfect ART adherence at baseline and 81.3% were virally suppressed. In mediation analysis, the total effect for the association between methamphetamine use and unsuppressed HIV viral load (1000 copies/mL) was 3.94 (95% CI: 1.95, 7.96); the natural direct effect was 2.14 (95% CI: 1.29, 3.55); the proportion mediated by self-reported ART adherence was 0.444. Similar results were found when examining lower unsuppressed HIV viral load cutpoints of 250 copies/mL and 500 copies/mL. CONCLUSIONS Methamphetamine use is associated with unsuppressed HIV viral load among PWID despite high levels of ART adherence. Further research is needed to better understand these relationships, with emphasis on potential biological pathways that may interact with ART.
Collapse
Affiliation(s)
- Jonathan Feelemyer
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Don Des Jarlais
- New York University College of Global Public Health, New York, NY, USA
| | - Nicolas Nagot
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
| | - Huong Duong Thi
- Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | | | - Khuê Pham Minh
- Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Giang Hoang Thi
- Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | | | - Charles M Cleland
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Kamyar Arasteh
- New York University College of Global Public Health, New York, NY, USA
| | - Ellen Caniglia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Gavin Bart
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Jean Pierre Moles
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
| | - Vinh Vu Hai
- Department of Infectious and Tropical Diseases, Viet Tiep Hospital, Haiphong, Vietnam
| | - Roselyne Vallo
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
| | - Catherine Quillet
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
| | - Delphine Rapoud
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
| | - Mai Le Sao
- Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Laurent Michel
- Pierre Nicole Center, French Red Cross, CESP/Inserrm, Paris, France
| | - Didier Laureillard
- Pathogenesis & Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Antilles University, Montpellier, France
- Infectious Diseases Department, Caremeau University Hospital, Nîmes, France
| | - Maria R Khan
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, Re GF, Luo HY, Kuang YQ, Wang KH. Effects and associated transcriptomic landscape changes of methamphetamine on immune cells. BMC Med Genomics 2022; 15:144. [PMID: 35765053 PMCID: PMC9241331 DOI: 10.1186/s12920-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Methamphetamine (METH) abuse causes serious health problems, including injury to the immune system, leading to increased incidence of infections and even making withdrawal more difficult. Of course, immune cells, an important part of the immune system, are also injured in methamphetamine abuse. However, due to different research models and the lack of bioinformatics, the mechanism of METH injury to immune cells has not been clarified. Methods We examined the response of three common immune cell lines, namely Jurkat, NK-92 and THP-1 cell lines, to methamphetamine by cell viability and apoptosis assay in vitro, and examined their response patterns at the mRNA level by RNA-sequencing. Differential expression analysis of two conditions (control and METH treatment) in three types of immune cells was performed using the DESeq2 R package (1.20.0). And some of the differentially expressed genes were verified by qPCR. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes by the clusterProfiler R package (3.14.3). And gene enrichment analysis was also performed using MetaScape (www.metascape.org). Results The viability of the three immune cells was differentially affected by methamphetamine, and the rate of NK-cell apoptosis was significantly increased. At the mRNA level, we found disorders of cholesterol metabolism in Jurkat cells, activation of ERK1 and ERK2 cascade in NK-92 cells, and disruption of calcium transport channels in THP-1 cells. In addition, all three cells showed changes in the phospholipid metabolic process. Conclusions The results suggest that both innate and adaptive immune cells are affected by METH abuse, and there may be commonalities between different immune cells at the transcriptome level. These results provide new insights into the potential effects by which METH injures the immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01295-9.
Collapse
Affiliation(s)
- Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Jian-Yu Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Yu-Yang Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Xiao-Cong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guo-Fen Re
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Yunnan University, Kunming, 650032, China.
| |
Collapse
|
5
|
Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses 2021; 13:v13122387. [PMID: 34960656 PMCID: PMC8707190 DOI: 10.3390/v13122387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Commonly misused substances such as alcohol, cocaine, heroin, methamphetamine, and opioids suppress immune responses and may impact viral pathogenesis. In recent years, illicit use of opioids has fueled outbreaks of several viral pathogens, including the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). This review focuses on the myriad of mechanisms by which drugs of abuse impact viral replication and disease progression. Virus–drug interactions can accelerate viral disease progression and lead to increased risk of virus transmission.
Collapse
|
6
|
Lu D, Sun H, Yu J, Kuang YQ, Wang KH. Chemical sex drugs regulate HIV infection and replication in immune cells: a vicious circle. AIDS 2021; 35:147-150. [PMID: 33048887 DOI: 10.1097/qad.0000000000002708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Hua Sun
- NHC Key Laboratory of Drug Addiction Medicine
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | | |
Collapse
|
7
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
9
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
10
|
Almenar-Pérez E, Sánchez-Fito T, Ovejero T, Nathanson L, Oltra E. Impact of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking Back on Treatments. Pharmaceutics 2019; 11:pharmaceutics11030126. [PMID: 30889846 PMCID: PMC6471415 DOI: 10.3390/pharmaceutics11030126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are diseases of unknown etiology presenting complex and often overlapping symptomatology. Despite promising advances on the study of miRNomes of these diseases, no validated molecular diagnostic biomarker yet exists. Since FM and ME/CFS patient treatments commonly include polypharmacy, it is of concern that biomarker miRNAs are masked by drug interactions. Aiming at discriminating between drug-effects and true disease-associated differential miRNA expression, we evaluated the potential impact of commonly prescribed drugs on disease miRNomes, as reported by the literature. By using the web search tools SM2miR, Pharmaco-miR, and repoDB, we found a list of commonly prescribed drugs that impact FM and ME/CFS miRNomes and therefore could be interfering in the process of biomarker discovery. On another end, disease-associated miRNomes may incline a patient’s response to treatment and toxicity. Here, we explored treatments for diseases in general that could be affected by FM and ME/CFS miRNomes, finding a long list of them, including treatments for lymphoma, a type of cancer affecting ME/CFS patients at a higher rate than healthy population. We conclude that FM and ME/CFS miRNomes could help refine pharmacogenomic/pharmacoepigenomic analysis to elevate future personalized medicine and precision medicine programs in the clinic.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Teresa Sánchez-Fito
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Tamara Ovejero
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
| | - Lubov Nathanson
- Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA.
- Institute for Neuro Immune Medicine, Nova Southeastern University, Ft Lauderdale, FL 33314, USA.
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain.
- Unidad Mixta CIPF-UCV, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
11
|
Camacho L, Silva CS, Hanig JP, Schleimer RP, George NI, Bowyer JF. Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune function resulting from amphetamine exposure or heat stroke in adult male rats. PLoS One 2019; 14:e0210273. [PMID: 30779732 PMCID: PMC6380594 DOI: 10.1371/journal.pone.0210273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
This work extends the understanding of how toxic exposures to amphetamine (AMPH) adversely affect the immune system and lead to tissue damage. Importantly, it determines which effects of AMPH are and are not due to pronounced hyperthermia. Whole blood messenger RNA (mRNA) and whole blood and serum microRNA (miRNA) transcripts were identified in adult male Sprague-Dawley rats after exposure to toxic AMPH under normothermic conditions, AMPH when it produces pronounced hyperthermia, or environmentally-induced hyperthermia (EIH). mRNA transcripts with large increases in fold-change in treated relative to control rats and very low expression in the control group were a rich source of organ-specific transcripts in blood. When severe hyperthermia was produced by either EIH or AMPH, significant increases in circulating organ-specific transcripts for liver (Alb, Fbg, F2), pancreas (Spink1), bronchi/lungs (F3, Cyp4b1), bone marrow (Np4, RatNP-3b), and kidney (Cesl1, Slc22a8) were observed. Liver damage was suggested also by increased miR-122 levels in the serum. Increases in muscle/heart-enriched transcripts were produced by AMPH even in the absence of hyperthermia. Expression increases in immune-related transcripts, particularly Cd14 and Vcan, indicate that AMPH can activate the innate immune system in the absence of hyperthermia. Most transcripts specific for T-cells decreased 50–70% after AMPH exposure or EIH, with the noted exception of Ccr5 and Chst12. This is probably due to T-cells leaving the circulation and down-regulation of these genes. Transcript changes specific for B-cells or B-lymphoblasts in the AMPH and EIH groups ranged widely from decreasing ≈ 40% (Cd19, Cd180) to increasing 30 to 100% (Tk1, Ahsa1) to increasing ≥500% (Stip1, Ackr3). The marked increases in Ccr2, Ccr5, Pld1, and Ackr3 produced by either AMPH or EIH observed in vivo provide further insight into the initial immune system alterations that result from methamphetamine and AMPH abuse and could modify risk for HIV and other viral infections.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Camila S. Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert P. Schleimer
- Division of Allergy and Immunology, Northwestern Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Nysia I. George
- Division of Bioinformatics and Biostatistics, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - John F. Bowyer
- Division of Neurotoxicology, NCTR/U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Prasad A, Kulkarni R, Shrivastava A, Jiang S, Lawson K, Groopman JE. Methamphetamine functions as a novel CD4 + T-cell activator via the sigma-1 receptor to enhance HIV-1 infection. Sci Rep 2019; 9:958. [PMID: 30700725 PMCID: PMC6353873 DOI: 10.1038/s41598-018-35757-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Methamphetamine (Meth) exacerbates HIV-1 pathobiology by increasing virus transmission and replication and accelerating clinical progression to AIDS. Meth has been shown to alter the expression of HIV-1 co-receptors and impair intrinsic resistance mechanisms of immune cells. However, the exact molecular mechanisms involved in augmenting HIV-1 replication in T-cells are still not yet clear. Here, we demonstrate that pretreatment with Meth of CD4+ T-cells enhanced HIV-1 replication. We observed upregulation of CD4+ T-cell activation markers and enhanced expression of miR-34c-5p and miR-155 in these cells. Further, we noted activation of the sigma-1 receptor and enhanced intracellular Ca2+ concentration and cAMP release in CD4+ T-cells upon Meth treatment, which resulted in increased phosphorylation and nuclear translocation of transcription factors NFκB, CREB, and NFAT1. Increased gene expression of IL-4 and IL-10 was also observed in Meth treated CD4+ T-cells. Moreover, proteasomal degradation of Ago1 occurred upon Meth treatment, further substantiating the drug as an activator of T-cells. Taken together, these findings show a previously unreported mechanism whereby Meth functions as a novel T-cell activator via the sigma-1 signaling pathway, enhancing replication of HIV-1 with expression of miR-34c-5p, and transcriptional activation of NFκB, CREB and NFAT1.
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Rutuja Kulkarni
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ashutosh Shrivastava
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Molecular Biology Unit, Center for Advance Research, King George's Medical University, Lucknow, India
| | - Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kaycie Lawson
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Skowronska M, McDonald M, Velichkovska M, Leda AR, Park M, Toborek M. Methamphetamine increases HIV infectivity in neural progenitor cells. J Biol Chem 2018; 293:296-311. [PMID: 29158267 PMCID: PMC5766929 DOI: 10.1074/jbc.ra117.000795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 01/01/2023] Open
Abstract
HIV-1 infection and methamphetamine (METH) abuse frequently occur simultaneously and may have synergistic pathological effects. Although HIV-positive/active METH users have been shown to have higher HIV viral loads and experience more severe neurological complications than non-users, the direct impact of METH on HIV infection and its link to the development of neurocognitive alternations are still poorly understood. In the present study, we hypothesized that METH impacts HIV infection of neural progenitor cells (NPCs) by a mechanism encompassing NFκB/SP1-mediated HIV LTR activation. Mouse and human NPCs were infected with EcoHIV (modified HIV virus infectious to mice) and HIV, respectively, in the presence or absence of METH (50 or 100 μm). Pretreatment with METH, but not simultaneous exposure, significantly increased HIV production in both mouse and human NPCs. To determine the mechanisms underlying these effects, cells were transfected with different variants of HIV LTR promoters and then exposed to METH. METH treatment induced transcriptional activity of the HIV LTR promotor, an effect that required both NFκB and SP1 signaling. Pretreatment with METH also decreased neuronal differentiation of HIV-infected NPCs in both in vitro and in vivo settings. Importantly, NPC-derived daughter cells appeared to be latently infected with HIV. This study indicates that METH increases HIV infectivity of NPCs, through the NFκB/SP1-dependent activation of the HIV LTR and with the subsequent alterations of NPC neurogenesis. Such events may underlie METH- exacerbated neurocognitive dysfunction in HIV-infected patients.
Collapse
Affiliation(s)
- Marta Skowronska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| | - Marisa McDonald
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ana Rachel Leda
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136; Jerzy Kukuczka Academy of Physical Education, 40-001 Katowice, Poland.
| |
Collapse
|
14
|
Jiang W, Luo Z, Martin L, Wan Z, Fu P, Wagner A, Ling B, Heath SL, Haque A, McRae-Clark A. Drug Use is Associated with Anti-CD4 IgG-mediated CD4+ T Cell Death and Poor CD4+ T Cell Recovery in Viral-suppressive HIV-infected Individuals Under Antiretroviral Therapy. Curr HIV Res 2018; 16:143-150. [PMID: 29968539 PMCID: PMC6115301 DOI: 10.2174/1570162x16666180703151208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role and mechanism of drug use or abuse in Antiretroviral Therapy (ART)-treated HIV disease are not completely known. METHODS To investigate the impact of drug use on HIV pathogenesis without confounding by HIV replication and ART adherence, we first analyzed the data from our clinical database in 103 HIV+ subjects with viral-suppressed ART treatment by a multiple regression test. RESULTS We found that HIV+ drug users had lower CD4+ T cell counts but higher CD8+ T cell counts compared to HIV+ non-drug users, and both drug use and nadir CD4+ T cell counts was independently associated with CD4+ T cell recovery after controlling for sex and age. Next, we enrolled individuals from four study groups, HIV-negative and HIV+ subjects without any substance use, HIV-negative and HIV+ subjects with current illicit drug use (either non-injection cocaine or cannabis). All HIV+ subjects were viral-suppressed with ART treatment (≥ 2 years). Notably, HIV+ drug users had increased plasma anti-CD4 IgG levels compared to the other three study groups which were inversely correlated with decreased CD4+ T cell counts only in HIV+ drug users. There was a significant increase in CD4+ T cell recovery following ART in HIV+ non-drug users but not in HIV+ drug users. Anti-CD4 IgGs purified from plasma of HIV+ drug users induced CD4+ T cell death in vitro through Antibody-Dependent Cytotoxicity (ADCC). CONCLUSION These results suggest that drug use prevents immune reconstitution in HIV-infected individuals despite long-term ART treatment and viral suppression.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA, 29425
| | - Zhenwu Luo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
| | - Lisa Martin
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, USA, 29425
| | - Zhuang Wan
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
| | - Pingfu Fu
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH 44106
| | - Amanda Wagner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA, 29425
| | - Binhua Ling
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112; Tulane National Primate Research Center, New Orleans, LA, 70433
| | - Sonya L. Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA, 35294
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, USA, 29425
| | - Aimee McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA, 29425
- Ralph H. Johnson VA Medical Center, Charleston, USA 29403
| |
Collapse
|
15
|
Longitudinal Examination of the Intestinal Lamina Propria Cellular Compartment of Simian Immunodeficiency Virus-Infected Rhesus Macaques Provides Broader and Deeper Insights into the Link between Aberrant MicroRNA Expression and Persistent Immune Activation. J Virol 2016; 90:5003-5019. [PMID: 26937033 DOI: 10.1128/jvi.00189-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic immune activation/inflammation driven by factors like microbial translocation is a key determinant of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) disease progression. Although extensive research on inflammation has focused on studying protein regulators, increasing evidence suggests a critical role for microRNAs (miRNAs) in regulating several aspects of the immune/inflammatory response and immune cell proliferation, differentiation, and activation. To understand their immunoregulatory role, we profiled miRNA expression sequentially in intestinal lamina propria leukocytes (LPLs) of eight macaques before and at 21, 90, and 180 days postinfection (dpi). At 21 dpi, ∼20 and 9 miRNAs were up- and downregulated, respectively. However, at 90 dpi (n = 60) and 180 dpi (n = 44), ≥75% of miRNAs showed decreased expression. Notably, the T-cell activation-associated miR-15b, miR-142-3p, miR-142-5p, and miR-150 expression was significantly downregulated at 90 and 180 dpi. Out of ∼10 downregulated miRNAs predicted to regulate CD69, we confirmed miR-92a to directly target CD69. Interestingly, the SIV-induced miR-190b expression was elevated at all time points. Additionally, elevated lipopolysaccharide (LPS)-responsive miR-146b-5p expression at 180 dpi was confirmed in primary intestinal macrophages following LPS treatment in vitro Further, reporter and overexpression assays validated IRAK1 (interleukin-1 receptor 1 kinase) as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8(+) T-cell activation/proliferation with delta-9 tetrahydrocannabinol (Δ(9)-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation disrupts the translational control of IRAK1, facilitating persistent gastrointestinal (GI) inflammation. Finally, the ability of Δ(9)-THC to block the miR-150-IRAK1 regulatory cascade highlights the potential of cannabinoids to inhibit persistent inflammation/immune activation in HIV/SIV infection. IMPORTANCE Persistent GI tract disease/inflammation is a cardinal feature of HIV/SIV infection. Increasing evidence points to a critical role for miRNAs in controlling several aspects of the immune/inflammatory response. Here, we show significant dysregulation of miRNA expression exclusively in the intestinal lamina propria cellular compartment through the course of SIV infection. Specifically, the study identified miRNA signatures associated with key pathogenic events, such as viral replication, T-cell activation, and microbial translocation. The T-cell-enriched miR-150 showed significant downregulation throughout SIV infection and was confirmed to target IRAK1, a critical signal-transducing component of the IL-1 receptor and TLR signaling pathways. Reduced miR-150 expression was associated with markedly elevated IRAK1 expression in the intestines of chronically SIV-infected macaques. Finally, Δ(9)-THC-mediated blockade of CD8(+) T-cell activation in vitro significantly inhibited miR-150 downregulation and IRAK1 upregulation, suggesting its potential for targeted immune modulation in HIV infection.
Collapse
|
16
|
Castellano P, Nwagbo C, Martinez LR, Eugenin EA. Methamphetamine compromises gap junctional communication in astrocytes and neurons. J Neurochem 2016; 137:561-75. [PMID: 26953131 DOI: 10.1111/jnc.13603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection.
Collapse
Affiliation(s)
- Paul Castellano
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chisom Nwagbo
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Luis R Martinez
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
17
|
Abstract
OBJECTIVE In this work, we evaluated the association of human immunodeficiency virus (HIV) infection and methamphetamine (METH) use with mitochondrial injury in the brain and its implication on neurocognitive impairment. DESIGN Mitochondria carry their genome (mtDNA) and play a critical role in cellular processes in the central nervous system. METH is commonly used in HIV-infected populations. HIV infection and METH use can cause damage to mtDNA and lead to neurocognitive morbidity. We evaluated HIV infection and METH use with mitochondrial injury in the brain. METHODS We obtained white and gray matter from Brodmann areas 7, 8, 9, 46 of the following: HIV-infected individuals with history of past METH use (HIV+METH+, n = 16), HIV-infected individuals with no history of past METH use (HIV+METH-, n = 11), and HIV-negative controls (HIV-METH-, n = 30). We used the 'common deletion', a 4977 bp mutation, as a measurement of mitochondrial injury, and quantified levels of mtDNA and 'common deletion' by droplet digital PCR, and evaluated in relation to neurocognitive functioning [Global Deficit Score (GDS)]. RESULTS Levels of mtDNA and mitochondrial injury were highest in white matter of Brodmann area 46. A higher relative proportion of mtDNA carrying the 'common deletion' was associated with lower GDS (P < 0.01) in HIV+METH+ but higher GDS (P < 0.01) in HIV+METH-. CONCLUSIONS Increased mitochondrial injury was associated with worse neurocognitive function in HIV+METH- individuals. Among HIV+METH+ individuals, an opposite effect was seen.
Collapse
|
18
|
Jiang J, Wang M, Liang B, Shi Y, Su Q, Chen H, Huang J, Su J, Pan P, Li Y, Wang H, Chen R, Liu J, Zhao F, Ye L, Liang H. In vivo effects of methamphetamine on HIV-1 replication: A population-based study. Drug Alcohol Depend 2016; 159:246-54. [PMID: 26790825 DOI: 10.1016/j.drugalcdep.2015.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although a number of in vitro studies have shown that methamphetamine (METH) can increase HIV-1 replication in human immune cells, a direct link between METH use and HIV-1 pathogenesis remains to be determined among HIV-1 patients. METHODS According to the status of METH use and HIV-1 infection, we enrolled participants and divided them into four groups: METH+HIV+, METH-HIV+, METH+HIV-, and METH-HIV-. HIV viral loads and HIV-1-related cellular factors were measured and compared among different groups. RESULTS A total of 60 participants were enrolled into this study, 15 within each group. HIV viral loads in METH+HIV+ group were significantly higher than those in METH-HIV+ group, while CD4+ T cell counts had an inverse trend between the two groups (p<0.05). METH users or HIV-1 infected patients had lower CCR5+, CXCR4+ percentages in CD4+ T cells than METH-HIV- subjects (p<0.01). However, METH use had little effect on CD3 expression in PBMCs and the levels of MIP-1α, MIP-1β and IL-6 in PBMCs or plasma, which were increased by HIV-1 infection with or without METH. TLR-9 and IFN-α levels in PBMCs of METH users with or without HIV infection were higher than non-METH users (p<0.05). CONCLUSIONS METH use is associated with higher viral loads and lower CD4+ T cell counts in HIV-infected individuals. This finding may be mediated by activation of innate immunity (TLR-9, IFN-α) by METH use.
Collapse
Affiliation(s)
- Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Minlian Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yi Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qijian Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yu Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hong Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fangning Zhao
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical Research Center, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical Research Center, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
19
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
20
|
Pilakka-Kanthikeel S, Nair MPN. Interaction of drugs of abuse and microRNA with HIV: a brief review. Front Microbiol 2015; 6:967. [PMID: 26483757 PMCID: PMC4586453 DOI: 10.3389/fmicb.2015.00967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs), the post-transcriptional regulators of gene expression, play key roles in modulating many cellular processes. The changes in the expression profiles of several specific miRNAs affect the interactions between miRNA and their targets in various illnesses, including addiction, HIV, cancer etc. The presence of anti-HIV-1 microRNAs (which regulate the level of infectivity of HIV-1) have been validated in the cells which are the primary targets of HIV infection. Drugs of abuse impair the intracellular innate anti-HIV mechanism(s) in monocytes, contributing to cell susceptibility to HIV infection. Emerging evidence has implicated miRNAs are differentially expressed in response to chronic morphine treatment. Activation of mu opioid receptors (MOR) by morphine is shown to down regulate the expression of anti-HIV miRNAs. In this review, we summarize the results which demonstrate that several drugs of abuse related miRNAs have roles in the mechanisms that define addiction, and how they interact with HIV.
Collapse
Affiliation(s)
- Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Madhavan P N Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| |
Collapse
|
21
|
Passaro RC, Pandhare J, Qian HZ, Dash C. The Complex Interaction Between Methamphetamine Abuse and HIV-1 Pathogenesis. J Neuroimmune Pharmacol 2015; 10:477-86. [PMID: 25850893 PMCID: PMC4779551 DOI: 10.1007/s11481-015-9604-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
Abstract
The global HIV/AIDS pandemic has claimed the lives of an estimated 35 million people. A significant barrier for combating this global pandemic is substance use since it is associated with HIV transmission, delayed diagnosis/initiation of therapy, and poor adherence to therapy. Clinical studies also suggest a link between substance use and HIV-disease progression/AIDS-associated mortality. Methamphetamine (METH) use is one of the fastest-growing substance use problems in the world. METH use enhances high-risk sexual behaviors, therefore increases the likelihood of HIV-1 acquisition. METH use is also associated with higher viral loads, immune dysfunction, and antiretroviral resistance. Moreover, METH use has also been correlated with rapid progression to AIDS. However, direct effects of METH on HIV-1 disease progression remains poorly understood because use of METH and other illicit drugs is often associated with reduced/non adherence to ART. Nevertheless, in vitro studies demonstrate that METH increases HIV-1 replication in cell cultures and animal models. Thus, it has been proposed that METH's potentiating effects on HIV-1 replication may in part contribute to the worsening of HIV-1 pathogenesis. However, our recent data demonstrate that METH at physiologically relevant concentrations has no effect and at higher concentrations inhibits HIV-1 replication in CD4+ T cells. Thus, the goal of this review is to systematically examine the published literature to better understand the complex interaction between METH abuse and HIV-1 disease progression.
Collapse
Affiliation(s)
- Ryan Colby Passaro
- Vanderbilt Institute for Global Health, Vanderbilt University Schools of Medicine, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Han-Zhu Qian
- Vanderbilt Institute for Global Health, Vanderbilt University Schools of Medicine, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Sriram U, Cenna JM, Haldar B, Fernandes NC, Razmpour R, Fan S, Ramirez SH, Potula R. Methamphetamine induces trace amine-associated receptor 1 (TAAR1) expression in human T lymphocytes: role in immunomodulation. J Leukoc Biol 2015; 99:213-23. [PMID: 26302754 DOI: 10.1189/jlb.4a0814-395rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/05/2015] [Indexed: 01/18/2023] Open
Abstract
The novel transmembrane G protein-coupled receptor, trace amine-associated receptor 1 (TAAR1), represents a potential, direct target for drugs of abuse and monoaminergic compounds, including amphetamines. For the first time, our studies have illustrated that there is an induction of TAAR1 mRNA expression in resting T lymphocytes in response to methamphetamine. Methamphetamine treatment for 6 h significantly increased TAAR1 mRNA expression (P < 0.001) and protein expression (P < 0.01) at 24 h. With the use of TAAR1 gene silencing, we demonstrate that methamphetamine-induced cAMP, a classic response to methamphetamine stimulation, is regulated via TAAR1. We also show by TAAR1 knockdown that the down-regulation of IL-2 in T cells by methamphetamine, which we reported earlier, is indeed regulated by TAAR1. Our results also show the presence of TAAR1 in human lymph nodes from HIV-1-infected patients, with or without a history of methamphetamine abuse. TAAR1 expression on lymphocytes was largely in the paracortical lymphoid area of the lymph nodes with enhanced expression in lymph nodes of HIV-1-infected methamphetamine abusers rather than infected-only subjects. In vitro analysis of HIV-1 infection of human PBMCs revealed increased TAAR1 expression in the presence of methamphetamine. In summary, the ability of methamphetamine to activate trace TAAR1 in vitro and to regulate important T cell functions, such as cAMP activation and IL-2 production; the expression of TAAR1 in T lymphocytes in peripheral lymphoid organs, such as lymph nodes; and our in vitro HIV-1 infection model in PBMCs suggests that TAAR1 may play an important role in methamphetamine -mediated immune-modulatory responses.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roshanak Razmpour
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shongshan Fan
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Huang XL, Zhang L, Li JP, Wang YJ, Duan Y, Wang J. MicroRNA-150: A potential regulator in pathogens infection and autoimmune diseases. Autoimmunity 2015; 48:503-10. [DOI: 10.3109/08916934.2015.1072518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Sriram U, Haldar B, Cenna JM, Gofman L, Potula R. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection. Front Microbiol 2015; 6:793. [PMID: 26322025 PMCID: PMC4531300 DOI: 10.3389/fmicb.2015.00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA ; Center for Substance Abuse Research, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
25
|
Abstract
Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.
Collapse
|
26
|
Swaminathan S, Kelleher AD. MicroRNA modulation of key targets associated with T cell exhaustion in HIV-1 infection. Curr Opin HIV AIDS 2015; 9:464-71. [PMID: 25023625 DOI: 10.1097/coh.0000000000000089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The emergence of studies linking microRNAs (miRNAs), a species of small RNA molecules important in gene regulation, with HIV-1 infection has led to a better understanding of the complex molecular changes that occur following infection. We aim to discuss these changes and show how miRNAs may be involved with regulating key immunomodulatory molecules linked to T cell exhaustion at the post-transcriptional level. RECENT FINDINGS Blimp-1 is a recently described T cell exhaustion marker. Reduced levels of miR-9 have been shown to have a functional role in the higher levels of Blimp-1 in CD4 T cells from patients with HIV-1 infection. Reduced levels of let-7 miRNAs have been linked to higher levels of IL-10, again with potential pathophysiological significance in HIV-1 infection. The advent of deep sequencing technologies is allowing detection of virally derived miRNAs expressed at extremely low levels, although some controversy still exists. SUMMARY miRNAs have emerged as important players in the T cell dysfunction observed with HIV-1 infection. It is likely that they may emerge as novel markers of T cell dysfunction and provide potential targets for new therapeutics to reverse dysfunction.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- aDepartment of Clinical Immunology, Westmead and Blacktown Hospitals bSydney Medical School, University of Sydney cSchool of Medicine, University of Western Sydney, Sydney dImmunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst eThe Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | | |
Collapse
|
27
|
Addai AB, Pandhare J, Paromov V, Mantri CK, Pratap S, Dash C. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients. J Leukoc Biol 2015; 97:779-90. [PMID: 25691383 DOI: 10.1189/jlb.4a0714-356r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4(+) T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM-100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4(+) T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4(+) T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4(+) T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients.
Collapse
Affiliation(s)
- Amma B Addai
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Victor Paromov
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chinmay K Mantri
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Siddharth Pratap
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- *The Laboratory of Retrovirology and Epigenetics, Center For AIDS Health Disparities Research, and Departments of Biochemistry and Cancer Biology and Graduate Studies, Genomics and Proteomics Core, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Gill AJ, Kolson DL. Chronic inflammation and the role for cofactors (hepatitis C, drug abuse, antiretroviral drug toxicity, aging) in HAND persistence. Curr HIV/AIDS Rep 2015; 11:325-35. [PMID: 24929842 DOI: 10.1007/s11904-014-0210-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) is a group of syndromes of varying degrees of cognitive impairment affecting up to 50 % of HIV-infected individuals. The neuropathogenesis of HAND is thought to be driven by HIV invasion and productive replication within brain perivascular macrophages and endogenous microglia, and to some degree by restricted infection of astrocytes. The persistence of HAND in individuals experiencing suppression of systemic HIV viral load with antiretroviral therapy (ART) is incompletely explained, and suggested factors include chronic inflammation, persistent HIV replication in brain macrophages, effects of aging on brain vulnerability, and co-morbid conditions including hepatitis C (HCV) co-infection, substance abuse, and CNS toxicity of ART, among other factors. This review discusses several of these conditions: chronic inflammation, co-infection with HCV, drugs of abuse, aging, and antiretroviral drug effects. Effectively managing these co-morbid conditions in individuals with and without HAND is critical for improving neurocognitive outcomes and decreasing HIV-associated morbidity.
Collapse
Affiliation(s)
- Alexander J Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard 280C Clinical Research Building, Philadelphia, PA, 19104, USA,
| | | |
Collapse
|
29
|
Gannon BM, Reichard EE, Fantegrossi WE. Psychostimulant Abuse and HIV Infection: cocaine, methamphetamine, and "bath salts" cathinone analogues. CURRENT ADDICTION REPORTS 2014; 1:237-242. [PMID: 26413453 DOI: 10.1007/s40429-014-0025-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Psychostimulants are among the most widely-abused substances worldwide, and typically exert their abuse-related effects via interactions with monoamine reuptake transporters within the CNS. Over the last decade, a symbiotic relationship between psychostimulant abuse and HIV infection has been demonstrated, where psychostimulants potentiate the effects of HIV infection, and HIV infection increases sensitivity to psychostimulant drugs. Most recently, a new class of designer psychostimulants has emerged in abuse-ready "bath salt" preparations. These commercial products typically contain ring-substituted and/or side-chain-substituted analogues of cathinone, which is itself a psychostimulant drug of abuse in its natural plant form. The cathinone analogues exhibit a range of interactions with monoamine transporters, from cocaine-like reuptake inhibition to methamphetamine-like release. Since the primary mechanism of action of these novel drugs overlaps with those of traditional psychostimulants, it may be the case that the cathinone analogues also interact with HIV infection. As use of these emerging cathinone-derived drugs continues to rise, there is an urgent need to better understand the pharmacology and toxicology of these novel compounds, both in terms of their abuse-related effects, and in terms of their capacity to interact with HIV infection.
Collapse
Affiliation(s)
- Brenda M Gannon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR
| | - Emily E Reichard
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, Little Rock, AR
| |
Collapse
|
30
|
Pandhare J, Addai AB, Mantri CK, Hager C, Smith RM, Barnett L, Villalta F, Kalams SA, Dash C. Cocaine enhances HIV-1-induced CD4(+) T-cell apoptosis: implications in disease progression in cocaine-abusing HIV-1 patients. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:927-936. [PMID: 24486327 DOI: 10.1016/j.ajpath.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
Abstract
Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1-associated CD4(+) T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4(+) T cells from HIV-1-negative and HIV-1-positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4(+) T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4(+) T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4(+) T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4(+) T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1-infected drug abusers.
Collapse
Affiliation(s)
- Jui Pandhare
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee; Department of Graduate Studies, Meharry Medical College, Nashville, Tennessee
| | - Amma B Addai
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee; Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee
| | - Chinmay K Mantri
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee
| | - Cynthia Hager
- Infectious Disease Division, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Rita M Smith
- Infectious Disease Division, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Louis Barnett
- Infectious Disease Division, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee
| | - Spyros A Kalams
- Infectious Disease Division, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chandravanu Dash
- Laboratory of Retrovirology and Epigenetics, Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee; Department of Graduate Studies, Meharry Medical College, Nashville, Tennessee; Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee; Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|