1
|
Sheoran S, Arora S, Basu T, Negi S, Subbarao N, Kumar A, Singh H, Prabhu D, Upadhyay AK, Kumar N, Vuree S. In silico analysis of Diosmetin as an effective chemopreventive agent against prostate cancer: molecular docking, validation, dynamic simulation and pharmacokinetic prediction-based studies. J Biomol Struct Dyn 2024; 42:9105-9117. [PMID: 37615411 DOI: 10.1080/07391102.2023.2250451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Prostate cancer is the second most dangerous cancer type worldwide. While various treatment options are present i.e. agonists and antagonists, their utilization leads to adverse effects and due to this resistance developing, ultimately the outcome is remission. So, to overcome this issue, we have undertaken an in-silico investigation to identify promising and unique flavonoid candidates for combating prostate cancer. Using GOLD software, the study assessed the effectiveness of 560 natural secondary polyphenols against CDKN2. Protein Data Bank was used to retrieve the 3D crystal structure of CDKN2 (PDB Id: 4EK3) and we retrieved the structure of selected secondary polyphenols from the PubChem database. The compound Diosmetin shows the highest GOLD score with the selected Protein i.e. CDKN2 which is 58.72. To better understand the 2-dimensional and 3-dimensional interactions, the interacting amino acid residues were visualised using Discovery Studio 3.5 and Maestro 13.5. Using Schrodinger-Glide, the Diosmetin and CDKN2 were re-docked, and decoy ligands were docked to CDKN2, which was used to further ascertain the study. The ligands with the highest Gold score were forecasted for pharmacokinetics characteristics, and the results were tabulated and analysed. Utilising the Gromacs software and Desmond packages, 100 ns of Diosmetin molecular dynamics simulations were run to evaluate the structural persistence and variations of protein-ligand complexes. Additionally, our investigation revealed that Diosmetin had a better binding affinity with CDKN2 measuring 58.72, and it also showed remarkable stability across a 100-ns simulation. Thus, following in-vitro and in-vivo clinical studies, diosmetin might lead to the Prostate regimen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumit Sheoran
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Swati Arora
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Tanmayee Basu
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Swati Negi
- Department of Chemistry, Delhi University, New Delhi, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anupam Kumar
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Himanshu Singh
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
| | - Dhamodharan Prabhu
- Centre for Drug Discovery, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neeraj Kumar
- Geetanjali Institute of Pharmacy, Udaipur, India
| | - Sugunakar Vuree
- School of Bioengineering & Biosciences, Lovely Professional University, Jalandhar, India
- MNR Foundation for Research and Innovation (MNR-FRI), MNR Medical College and Hospital, Fasalwadi Village, Hyderabad, India
| |
Collapse
|
2
|
Dhawale SA, Bhosle P, Mahajan S, Patil G, Gawale S, Ghodke M, Tapadiya G, Ansari A. Dual targeting in prostate cancer with phytoconstituents as a potent lead: a computational approach for novel drug discovery. J Biomol Struct Dyn 2024; 42:8906-8919. [PMID: 37649379 DOI: 10.1080/07391102.2023.2251059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Prostate Cancer (PCa) is an abnormal cell growth within the prostate. This condition is the second most widespread malignancy in elderly males and one of the most frequently diagnosed life-threatening conditions. The Androgen receptor signaling pathway played a crucial role in the initiation and spread to increase the risk of PCa. Hence, targeting the AR receptor signaling pathway is a key strategy for a therapeutic plan for PCa. Our study focuses on recognizing potential inhibitors for dual targeting in PCa by using the in-silico approach. In this study, we target the two enzymes that are CYP17A1 (3RUK) and 5α-reductase (3G1R) responsible for PCa, with the help of phytoconstituents. The natural plant contains various phytochemical types produced from secondary metabolites and used as a medical treatment. The in-silico investigation of phytoconstituents and enzymes was done by approaching molecular docking, ADMET analysis, and high-level molecular dynamic simulation used to assess the stability and binding affinities of the protein-ligand complex. Some phytoconstituents, such as Peonidin, Pelargonidin, Malvidin and Berberine show complex has good molecular interaction with protein. The reliability of the docking scores was examined using a molecular dynamic simulation, which revealed that the complex remained stable throughout the simulation, which ranged from 0 to 200 ns. The selected hits may be effective against CYP17A1 (3RUK) and 5α-reductase (3G1R) (PCa) using a computer-aided drug design (CADD) method, which further enables researchers for upcoming in-vivo and in-vitro research, according to our in-silico approach.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, India
| | - Pallavi Bhosle
- Pharmacology, Shrinath College of Pharmacy, Aurangabad, India
| | | | - Geetanjali Patil
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, India
| | - Mangesh Ghodke
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, India
| | - Ganesh Tapadiya
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, India
| | | |
Collapse
|
3
|
Kwon H, Jin BR, Yoo S, Kim HJ, Hwang BY, Guo Y, Yim JH, Kim IC, Shim SH, An HJ, Lee D. New fusidane-type nortriterpenoids from the Arctic marine-derived fungus Simplicillium lamellicola culture medium with their inhibitory effect on benign prostatic hyperplasia. Bioorg Chem 2024; 143:107070. [PMID: 38190796 DOI: 10.1016/j.bioorg.2023.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/25/2023] [Indexed: 01/10/2024]
Abstract
Three new fusidane-type nortriterpenoids, simplifusinolide A, 24-epi simplifusinolide A, and simplifusidic acid L (1-3), were isolated from the EtOAc extract of the Arctic marine-derived fungus Simplicillium lamellicola culture medium, together with fusidic acid (4) and 16-O-deacetylfusicid acid (5). The structures of the isolated compounds were elucidated by NMR and MS analyses. The absolute configurations of compounds 1-3 were established by the quantum mechanical calculations of electronic circular dichroism and gauge-including atomic orbital NMR chemical shifts, followed by DP4 + analysis. Benign prostatic hyperplasia (BPH) is a major urological disorder in men worldwide. The anti-BPH potentials of the isolated compounds were evaluated using BPH-1 and WPMY-1 cells. Treatment with simplifusidic acid L (3) and fusidic acid (4) significantly downregulated the mRNA levels of the androgen receptor (AR) and its downstream effectors, inhibiting the proliferation of BPH-1 cells. Specifically, treatment with 24-epi simplifusinolide A (2) significantly suppressed the cell proliferation of both BPH-1 and DHT-stimulated WPMY-1 cells by inhibiting AR signaling. These results suggest the potential of 24-epi simplifusinolide A (2), simplifusidic acid L (3) and fusidic acid (4) as alternative agents for BPH treatment by targeting AR signaling.
Collapse
Affiliation(s)
- Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sori Yoo
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Joung Han Yim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Hahn AW, Siddiqui BA, Leo J, Dondossola E, Basham KJ, Miranti CK, Frigo DE. Cancer Cell-Extrinsic Roles for the Androgen Receptor in Prostate Cancer. Endocrinology 2023; 164:bqad078. [PMID: 37192413 PMCID: PMC10413433 DOI: 10.1210/endocr/bqad078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Given the central role of the androgen receptor (AR) in prostate cancer cell biology, AR-targeted therapies have been the backbone of prostate cancer treatment for over 50 years. New data indicate that AR is expressed in additional cell types within the tumor microenvironment. Moreover, targeting AR for the treatment of prostate cancer has established side effects such as bone complications and an increased risk of developing cardiometabolic disease, indicating broader roles for AR. With the advent of novel technologies, such as single-cell approaches and advances in preclinical modeling, AR has been identified to have clinically significant functions in other cell types. In this mini-review, we describe new cancer cell-extrinsic roles for AR within the tumor microenvironment as well as systemic effects that collectively impact prostate cancer progression and patient outcomes.
Collapse
Affiliation(s)
- Andrew W Hahn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| | - Daniel E Frigo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
5
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
6
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Dulińska-Litewka J, Felkle D, Dykas K, Handziuk Z, Krzysztofik M, Gąsiorkiewicz B. The role of cyclins in the development and progression of prostate cancer. Biomed Pharmacother 2022; 155:113742. [PMID: 36179490 DOI: 10.1016/j.biopha.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
The role of cyclins in hormone-dependent neoplasms is crucial in the development of the disease that is resistant to first-line therapy, as the example of breast cancer shows. However, in prostate cancer, cyclins are studied to a lesser extent. There are some well-described molecular pathways, including cyclins A1 and D1 signaling, however the role of other cyclins, e.g., D2, D3, E, and H, still requires further investigation. Recent studies indicate that cyclins regulate various cellular processes, not only the cell cycle. Furthermore, they remain in cross-talk with many other signaling pathways, e.g., MAPK/ERK, PI3K/Akt, and Notch. The androgen signaling axis, which is pivotal in prostate cancer progression, interferes with cyclin pathways at many levels. This article summarizes current knowledge on the influence of cyclins on prostate cancer progression by describing interactions between the androgen receptor and cyclins, as well as mechanisms underlying the development of resistance to currently used therapies.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland.
| | - Dominik Felkle
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Kacper Dykas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Zuzanna Handziuk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Marta Krzysztofik
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Bartosz Gąsiorkiewicz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| |
Collapse
|
8
|
Fu X, Liu H, Liu J, DiSanto ME, Zhang X. The Role of Heat Shock Protein 70 Subfamily in the Hyperplastic Prostate: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11132052. [PMID: 35805135 PMCID: PMC9266107 DOI: 10.3390/cells11132052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common causes of lower urinary tract symptoms (LUTS) in men, which is characterized by a noncancerous enlargement of the prostate. BPH troubles the vast majority of aging men worldwide; however, the pathogenetic factors of BPH have not been completely identified. The heat shock protein 70 (HSP70) subfamily, which mainly includes HSP70, glucose-regulated protein 78 (GRP78) and GRP75, plays a crucial role in maintaining cellular homeostasis. HSP70s are overexpressed in the course of BPH and involved in a variety of biological processes, such as cell survival and proliferation, cell apoptosis, epithelial/mesenchymal transition (EMT) and fibrosis, contributing to the development and progress of prostate diseases. These chaperone proteins also participate in oxidative stress, a cellular stress response that takes place under stress conditions. In addition, HSP70s can bind to the androgen receptor (AR) and act as a regulator of AR activity. This interaction of HSP70s with AR provides insight into the importance of the HSP70 chaperone family in BPH pathogenesis. In this review, we discuss the function of the HSP70 family in prostate glands and the role of HSP70s in the course of BPH. We also review the potential applications of HSP70s as biomarkers of prostate diseases for targeted therapies.
Collapse
Affiliation(s)
- Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Huan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08028, USA;
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China; (X.F.); (H.L.); (J.L.)
- Correspondence:
| |
Collapse
|
9
|
Liu Y, Wang J, Horton C, Yu C, Knudsen B, Stefanson J, Hu K, Stefanson O, Green J, Guo C, Xie Q, Wang ZA. Stromal AR inhibits prostate tumor progression by restraining secretory luminal epithelial cells. Cell Rep 2022; 39:110848. [PMID: 35613593 PMCID: PMC9175887 DOI: 10.1016/j.celrep.2022.110848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/03/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Androgen receptor (AR) is expressed in both the prostate epithelium and the prostate stroma and plays diverse roles in prostate physiology. Although low expression of stromal AR is clinically associated with advanced cancer stage and worse outcome, whether stromal AR inhibits or promotes prostate cancer progression remains controversial. Here, we specifically delete AR in smooth muscle cells of the adult mouse prostate under two tumorigenic conditions, namely, the Hi-Myc genetic model and the T + E2 hormonal carcinogenesis model. Histology analyses show that stromal AR deletion exacerbates tumor progression phenotypes in both models. Furthermore, single-cell analyses of the tumor samples reveal that secretory luminal cells are the cell population particularly affected by stromal AR deletion, as they transition to a cellular state of potentiated PI3K-mTORC1 activities. Our results suggest that stromal AR normally inhibits prostate cancer progression by restraining secretory luminal cells and imply possible unintended negative effects of androgen deprivation therapy.
Collapse
Affiliation(s)
- Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiawen Wang
- Sequencing Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beatrice Knudsen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kevin Hu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ofir Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan Green
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charlene Guo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
10
|
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN, Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett 2022; 530:156-169. [PMID: 35051532 DOI: 10.1016/j.canlet.2022.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
During disease progression from primary towards metastatic prostate cancer (PCa), and in particular bone metastases, the tumor microenvironment (TME) evolves in parallel with the cancer clones, altering extracellular matrix composition (ECM), vasculature architecture, and recruiting specialized tumor-supporting cells that favor tumor spread and colonization at distant sites. We introduce the clinical profile of advanced metastatic PCa in terms of common genetic alterations. Findings from recently developed models of PCa metastatic spread are discussed, focusing mainly on the role of the TME (mainly matrix and fibroblast cell types), at distinct stages: premetastatic niche orchestrated by the primary tumor towards the metastatic site and bone metastasis. We report evidence of premetastatic niche formation, such as the mechanisms of distant site conditioning by extracellular vesicles, chemokines and other tumor-derived mechanisms, including altered cancer cell-ECM interactions. Furthermore, evidence supporting the similarities of stroma alterations among the primary PCa and bone metastasis, and contribution of TME to androgen deprivation therapy resistance are also discussed. We summarize the available bone metastasis transgenic mouse models of PCa from a perspective of pro-metastatic TME alterations during disease progression and give an update on the current diagnostic and therapeutic radiological strategies for bone metastasis clinical management.
Collapse
Affiliation(s)
- Juening Kang
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ian L Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland; Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
12
|
Study of Structure–Activity Relationships of the Marine Alkaloid Fascaplysin and Its Derivatives as Potent Anticancer Agents. Mar Drugs 2022; 20:md20030185. [PMID: 35323484 PMCID: PMC8949187 DOI: 10.3390/md20030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b’]diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure–activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.
Collapse
|
13
|
Antoszczak M, Otto-Ślusarczyk D, Kordylas M, Struga M, Huczyński A. Synthesis of Lasalocid-Based Bioconjugates and Evaluation of Their Anticancer Activity. ACS OMEGA 2022; 7:1943-1955. [PMID: 35071884 PMCID: PMC8771711 DOI: 10.1021/acsomega.1c05434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 06/06/2023]
Abstract
Using rationally designed bioconjugates is an attractive strategy to develop novel anticancer drugs with enhanced therapeutic potential and minimal side effects compared to the native structures. With respect to the promising activity of lasalocid (LAS) toward various cancer cells, this polyether ionophore seems to be an ideal candidate for bioconjugation. Herein, we describe the synthetic access to a cohort of nine conjugated products of LAS, in which the ionophore biomolecule was successfully combined via covalent bonds with selected anticancer therapeutics or other anticancer active components. The in vitro screening of a series of cancer cell lines allowed us to identify three products with improved anticancer activity profiles compared to those of the starting materials. The results indicate that human prostate cancer cells (PC3) and human primary colon cancer cells (SW480) were essentially more sensitive to exposure to LAS derivatives than human keratinocytes (HaCaT). Furthermore, the selected products were stronger inducers of late apoptosis and/or necrosis in PC3 and SW480 cancer cells, when compared to the metastatic variant of colon cancer cells (SW620). To establish the anticancer mechanism of LAS-based bioconjugates, the levels of interleukin 6 (IL-6) and reactive oxygen species (ROS) were measured; the tested compounds significantly reduced the release of IL-6, while the level of ROS was significantly higher in all the cell lines studied.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Marta Kordylas
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Marta Struga
- Chair
and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Huczyński
- Department
of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
15
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
16
|
Safarulla S, Khillar PS, Kini S, Jaiswal AK. Tissue engineered scaffolds as 3D models for prostate cancer metastasis to bone. MATERIALS TODAY COMMUNICATIONS 2021; 28:102641. [DOI: 10.1016/j.mtcomm.2021.102641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
|
17
|
Enriquez C, Cancila V, Ferri R, Sulsenti R, Fischetti I, Milani M, Ostano P, Gregnanin I, Mello-Grand M, Berrino E, Bregni M, Renne G, Tripodo C, Colombo MP, Jachetti E. Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer. Cancer Res 2021; 81:4257-4274. [PMID: 34185677 PMCID: PMC9398117 DOI: 10.1158/0008-5472.can-21-0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 06/18/2021] [Indexed: 01/07/2023]
Abstract
Fatal neuroendocrine differentiation (NED) of castration-resistant prostate cancer is a recurrent mechanism of resistance to androgen deprivation therapies (ADT) and antiandrogen receptor pathway inhibitors (ARPI) in patients. The design of effective therapies for neuroendocrine prostate cancer (NEPC) is complicated by limited knowledge of the molecular mechanisms governing NED. The paucity of acquired genomic alterations and the deregulation of epigenetic and transcription factors suggest a potential contribution from the microenvironment. In this context, whether ADT/ARPI induces stromal cells to release NED-promoting molecules and the underlying molecular networks are unestablished. Here, we utilized transgenic and transplantable mouse models and coculture experiments to unveil a novel tumor-stroma cross-talk that is able to induce NED under the pressure of androgen deprivation. Castration induced upregulation of GRP78 in tumor cells, which triggers miR29-b-mediated downregulation of the matricellular protein SPARC in the nearby stroma. SPARC downregulation enabled stromal cells to release IL6, a known inducer of NED. A drug that targets GRP78 blocked NED in castrated mice. A public, human NEPC gene expression dataset showed that Hspa5 (encoding for GRP78) positively correlates with hallmarks of NED. Finally, prostate cancer specimens from patients developing local NED after ADT showed GRP78 upregulation in tumor cells and SPARC downregulation in the stroma. These results point to GRP78 as a potential therapeutic target and to SPARC downregulation in stromal cells as a potential early biomarker of tumors undergoing NED. SIGNIFICANCE: Tumor-stroma cross-talk promotes neuroendocrine differentiation in prostate cancer in response to hormone therapy via a GRP78/SPARC/IL6 axis, providing potential therapeutic targets and biomarkers for neuroendocrine prostate cancer.
Collapse
Affiliation(s)
- Claudia Enriquez
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Renata Ferri
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Sulsenti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Enrico Berrino
- Department of Medical Sciences, University of Turin, Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Marco Bregni
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy
| | - Giuseppe Renne
- Division of Uropathology and Intraoperative Consultation, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
18
|
Current Status and Future Perspectives of Androgen Receptor Inhibition Therapy for Prostate Cancer: A Comprehensive Review. Biomolecules 2021; 11:biom11040492. [PMID: 33805919 PMCID: PMC8064397 DOI: 10.3390/biom11040492] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) is one of the main components in the development and progression of prostate cancer (PCa), and treatment strategies are mostly directed toward manipulation of the AR pathway. In the metastatic setting, androgen deprivation therapy (ADT) is the foundation of treatment in patients with hormone-sensitive prostate cancer (HSPC). However, treatment response is short-lived, and the majority of patients ultimately progress to castration-resistant prostate cancer (CRPC). Surmountable data from clinical trials have shown that the maintenance of AR signaling in the castration environment is accountable for disease progression. Study results indicate multiple factors and survival pathways involved in PCa. Based on these findings, the alternative molecular pathways involved in PCa progression can be manipulated to improve current regimens and develop novel treatment modalities in the management of CRPC. In this review, the interaction between AR signaling and other molecular pathways involved in tumor pathogenesis and its clinical implications in metastasis and advanced disease will be discussed, along with a thorough overview of current and ongoing novel treatments for AR signaling inhibition.
Collapse
|
19
|
Yao Y, Xie W, Chen D, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of VEGF and its receptors VEGFR1 and VEGFR2 in the prostate of the wild ground squirrels (<em>Spermophilus dauricus</em>). Eur J Histochem 2021; 65. [PMID: 33764018 PMCID: PMC8033528 DOI: 10.4081/ejh.2021.3219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
As a vital male accessory reproductive gonad, the prostate requires vascular endothelial growth factors for promoting its growth and development. In this study, we investigated the localizations and expressions of vascular endothelial growth factor (VEGF) and its receptors including VEGF-receptor1 (VEFGR1) and VEGF-receptor2 (VEGFR2) in the prostate of the wild ground squirrels during the breeding and the non-breeding seasons. The values of total prostate weight and volume in the breeding season were higher than those in the non-breeding season. Histological observations showed that the exocrine lumens of the prostate expanded in the breeding season and contracted in the non-breeding season. The mRNA expression levels of VEGF and VEGFR2 in the prostate were higher in the breeding season than those in the non-breeding season, but the mRNA expression level of VEGFR1 had no significant change between the breeding and non-breeding seasons. Immunohistochemical results revealed that VEGF, VEGFR1 and VEGFR2 were presented in epithelial and stromal cells during the breeding and non-breeding seasons. In addition, the microvessels of the prostate were widely distributed and the number of microvessels increased obviously in the breeding season, while decreased sharply in the non-breeding season. These results suggested that expression levels of VEGF and VEGFR2 might be correlated with seasonal changes in morphology and functions of the prostate, and VEGF might serve as pivotal regulators to affect seasonal changes in the prostate functions of the wild male ground squirrels via an autocrine/paracrine pathway.
Collapse
Affiliation(s)
- Yuchen Yao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Di Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
20
|
The androgen receptor/filamin A complex as a target in prostate cancer microenvironment. Cell Death Dis 2021; 12:127. [PMID: 33500395 PMCID: PMC7838283 DOI: 10.1038/s41419-021-03402-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer represents the major cause of cancer-related death in men and patients frequently develop drug-resistance and metastatic disease. Most studies focus on hormone-resistance mechanisms related to androgen receptor mutations or to the acquired property of prostate cancer cells to over-activate signaling pathways. Tumor microenvironment plays a critical role in prostate cancer progression. However, the mechanism involving androgen/androgen receptor signaling in cancer associated fibroblasts and consequences for prostate cancer progression still remains elusive. We now report that prostate cancer associated fibroblasts express a transcriptional-incompetent androgen receptor. Upon androgen challenging, the receptor co-localizes with the scaffold protein filamin A in the extra-nuclear compartment of fibroblasts, thus mediating their migration and invasiveness. Cancer-associated fibroblasts move towards epithelial prostate cancer cells in 2D and 3D cultures, thereby inducing an increase of the prostate cancer organoid size. Androgen enhances both these effects through androgen receptor/filamin A complex assembly in cancer-associated fibroblasts. An androgen receptor-derived stapled peptide, which disrupts the androgen receptor/filamin A complex assembly, abolishes the androgen-dependent migration and invasiveness of cancer associated fibroblasts. Notably, the peptide impairs the androgen-induced invasiveness of CAFs in 2D models and reduces the overall tumor area in androgen-treated 3D co-culture. The androgen receptor in association with β1 integrin and membrane type-matrix metalloproteinase 1 activates a protease cascade triggering extracellular matrix remodeling. The peptide also impairs the androgen activation of this cascade. This study offers a potential new marker, the androgen receptor/filamin A complex, and a new therapeutic approach targeting intracellular pathways activated by the androgen/androgen receptor axis in prostate cancer-associated fibroblasts. Such a strategy, alone or in combination with conventional therapies, may allow a more efficient treatment of prostate cancer.
Collapse
|
21
|
Linares J, Marín-Jiménez JA, Badia-Ramentol J, Calon A. Determinants and Functions of CAFs Secretome During Cancer Progression and Therapy. Front Cell Dev Biol 2021; 8:621070. [PMID: 33553157 PMCID: PMC7862334 DOI: 10.3389/fcell.2020.621070] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple lines of evidence are indicating that cancer development and malignant progression are not exclusively epithelial cancer cell-autonomous processes but may also depend on crosstalk with the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are abundantly represented in the TME and are continuously interacting with cancer cells. CAFs are regulating key mechanisms during progression to metastasis and response to treatment by enhancing cancer cells survival and aggressiveness. The latest advances in CAFs biology are pointing to CAFs-secreted factors as druggable targets and companion tools for cancer diagnosis and prognosis. Especially, extensive research conducted in the recent years has underscored the potential of several cytokines as actionable biomarkers that are currently evaluated in the clinical setting. In this review, we explore the current understanding of CAFs secretome determinants and functions to discuss their clinical implication in oncology.
Collapse
Affiliation(s)
- Jenniffer Linares
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juan A. Marín-Jiménez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO) - L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
22
|
Özdemir BC. Androgen Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:169-183. [PMID: 33123999 DOI: 10.1007/978-3-030-47189-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key function of mesenchymal/stromal androgen receptor (AR) signaling for prostate development has been well documented by tissue recombination experiments. Some studies have addressed the expression and function of AR in stromal cells in prostate cancer, yet our understanding of the role of stromal AR in other tissues beyond prostate is still insufficient.Genomic analysis has revealed that cellular responses to androgens differ between epithelial and stromal cells. AR in stromal cells seems not to act via classical AR transcription factors such as FOXA1 but rather depends on the JUN/AP1 complex. Stromal AR appears to have tumor-promoting and tumor-protective functions depending on tumor stage. Loss of AR signaling in fibroblasts has been detected already in premalignant lesions in the skin and prostate and has been associated with tumor induction in xenografts of skin cancer and aggressive disease features and poor patient prognosis in prostate cancer. Moreover, AR expression is found on virtually all tissue-infiltrating immune cells and plays critical roles in immune cell function. These findings suggest a potential deleterious impact of current androgen deprivation therapies which inhibit both epithelial and stromal AR, highlighting the need to develop tissue-specific AR inhibitors.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
23
|
Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M, Montironi R. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells 2020; 9:E2653. [PMID: 33321757 PMCID: PMC7763510 DOI: 10.3390/cells9122653] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Around 80-90% of prostate cancer (PCa) cases are dependent on androgens at initial diagnosis; hence, androgen ablation therapy directed toward a reduction in serum androgens and the inhibition of androgen receptor (AR) is generally the first therapy adopted. However, the patient's response to androgen ablation therapy is variable, and 20-30% of PCa cases become castration resistant (CRPCa). Several mechanisms can guide treatment resistance to anti-AR molecules. In this regard, AR-dependent and -independent resistance mechanisms can be distinguished within the AR pathway. In this article, we investigate the multitude of AR signaling aspects, encompassing the biological structure of AR, current AR-targeted therapies, mechanisms driving resistance to AR, and AR crosstalk with other pathways, in an attempt to provide a comprehensive review for the PCa research community. We also summarize the new anti-AR drugs approved in non-metastatic castration-resistant PCa, in the castration-sensitive setting, and combination therapies with other drugs.
Collapse
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.A.); (E.V.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | - Roberta Mazzucchelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | | | - Elena Verri
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.A.); (E.V.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | - Francesco Massari
- Division of Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy;
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| |
Collapse
|
24
|
Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ, Hooijberg E, Peters D, Hofland I, Lubeck Y, de Jong J, Sanders J, Vivié J, van der Poel HG, de Boer JP, Griffioen AW, Zwart W, Bergman AM. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun 2020; 11:4498. [PMID: 32908142 PMCID: PMC7481219 DOI: 10.1038/s41467-020-18313-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy. Anti-androgen therapy inhibits prostate cancer (PC) progression, and is thought to act directly on cancer cells. Here the authors show that androgen receptor is expressed on normal and PC-associated macrophages, and its stimulation alters macrophage secretome to promote migration of cultured PC cell lines.
Collapse
Affiliation(s)
- Bianca Cioni
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judy R van Beijnum
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Monique H M Melis
- Molecular Genetics, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | | - Mauro J Muraro
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Erik Hooijberg
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Yoni Lubeck
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Joyce Sanders
- Division of Pathology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Judith Vivié
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Henk G van der Poel
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis laboratory, Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands. .,, Oncode Institute, The Netherlands.
| | - Andries M Bergman
- Divisions of Oncogenomics, The Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Urology and Medical Oncology, NKI, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K, Saar M. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep 2020; 10:12575. [PMID: 32724081 PMCID: PMC7387494 DOI: 10.1038/s41598-020-69424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The unique microenvironment of the prostate plays a crucial role in the development and progression of prostate cancer (PCa). We examined the effects of cancer-associated fibroblasts (CAFs) on PCa progression using patient-derived fibroblast primary cultures in a representative orthotopic xenograft model. Primary cultures of CAFs, non-cancer-associated fibroblasts (NCAFs) and benign prostate hyperplasia-associated fibroblasts (BPHFs) were generated from patient-derived tissue specimens. These fibroblasts were coinjected together with cancer cells (LuCaP136 spheroids or LNCaP cells) in orthotopic PCa xenografts to investigate their effects on local and systemic tumor progression. Primary tumor growth as well as metastatic spread to lymph nodes and lungs were significantly stimulated by CAF coinjection in LuCaP136 xenografts. When NCAFs or BPHFs were coinjected, tumor progression was similar to injection of tumor cells alone. In LNCaP xenografts, all three fibroblast types significantly stimulated primary tumor progression compared to injection of LNCaP cells alone. CAF coinjection further increased the frequency of lymph node and lung metastases. This is the first study using an orthotopic spheroid culture xenograft model to demonstrate a stimulatory effect of patient-derived CAFs on PCa progression. The established experimental setup will provide a valuable tool to further unravel the interacting mechanisms between PCa cells and their microenvironment.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany.
| | - Turkan Hajili
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Carolina Berchem
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| |
Collapse
|
27
|
Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers (Basel) 2020; 12:E1887. [PMID: 32668821 PMCID: PMC7409163 DOI: 10.3390/cancers12071887] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor-stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.
Collapse
Affiliation(s)
- Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| | - George N. Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| |
Collapse
|
28
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
29
|
Chauhan G, Mehta A, Gupta S. Stromal-AR influences the growth of epithelial cells in the development of benign prostate hyperplasia. Mol Cell Biochem 2020; 471:129-142. [PMID: 32504365 DOI: 10.1007/s11010-020-03773-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, β-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Avani Mehta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.,Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sarita Gupta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
30
|
Jin BR, An HJ. Baicalin alleviates benign prostate hyperplasia through androgen-dependent apoptosis. Aging (Albany NY) 2020; 12:2142-2155. [PMID: 32018227 PMCID: PMC7041748 DOI: 10.18632/aging.102731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
BPH is a disease prevalent among elderly men that is characterized by abnormal proliferation of prostatic epithelial and stromal tissues. No effective treatment exists for BPH owing to lack of a clear understanding of its molecular etiology. Although several studies have reported therapeutic effects of baicalin against numerous diseases, including prostate cancer, its beneficial effects on BPH have not yet been explored. The present study investigated the therapeutic effects of baicalin on the development of BPH and its mechanism of action. We established a testosterone-treated BPH animal model and DHT-stimulated prostate cell lines, including RWPE-1 and WPMY-1. Administration of baicalin ameliorated the pathological prostate enlargement, suppressed the production of DHT, and inhibited the activity of 5α- reductase Type II in the animal model. BC exerted these effects via its anti-proliferative effects by restoring the Bax/Bcl-2 ratio, activating caspase-3 and caspase-8, and inducing the phosphorylation of AMPK. In vitro studies using DHT-stimulated prostate cells demonstrated an up-regulation of BPH-related and proliferation markers, whereas baicalin clearly reduced the overexpression of AR, PSA, PCNA, and Bcl-2. These results suggested that baicalin could suppress androgen-dependent development of BPH both in vivo and in vitro by inducing apoptosis.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si 26339, Gangwon-do, Republic of Korea
| |
Collapse
|
31
|
Woods-Burnham L, Stiel L, Martinez SR, Sanchez-Hernandez ES, Ruckle HC, Almaguel FG, Stern MC, Roberts LR, Williams DR, Montgomery S, Casiano CA. Psychosocial Stress, Glucocorticoid Signaling, and Prostate Cancer Health Disparities in African American Men. CANCER HEALTH DISPARITIES 2020; 4:https://companyofscientists.com/index.php/chd/article/view/169/188. [PMID: 35252767 PMCID: PMC8896511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in our understanding of racial disparities in prostate cancer (PCa) incidence and mortality that disproportionately affect African American (AA) men have provided important insights into the psychosocial, socioeconomic, environmental, and molecular contributors. There is, however, limited mechanistic knowledge of how the interplay between these determinants influences prostate tumor aggressiveness in AA men and other men of African ancestry. Growing evidence indicates that chronic psychosocial stress in AA populations leads to sustained glucocorticoid signaling through the glucocorticoid receptor (GR), with negative physiological and pathological consequences. Compelling evidence indicates that treatment of castration-resistant prostate cancer (CRPC) with anti-androgen therapy activates GR signaling. This enhanced GR signaling bypasses androgen receptor (AR) signaling and transcriptionally activates both AR-target genes and GR-target genes, resulting in increased prostate tumor resistance to anti-androgen therapy, chemotherapy, and radiotherapy. Given its enhanced signaling in AA men, GR-together with specific genetic drivers-may promote CRPC progression and exacerbate tumor aggressiveness in this population, potentially contributing to PCa mortality disparities. Ongoing and future CRPC clinical trials that combine standard of care therapies with GR modulators should assess racial differences in therapy response and clinical outcomes in order to improve PCa health disparities that continue to exist for AA men.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Laura Stiel
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Herbert C. Ruckle
- Department of Surgical Urology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Frankis G. Almaguel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - Mariana C. Stern
- Departments of Preventive Medicine and Urology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Lisa R. Roberts
- Loma Linda University School of Nursing, Loma Linda, CA, USA
| | - David R. Williams
- Department of Social and Behavioral Sciences, Harvard University School of Public Health
| | - Susanne Montgomery
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Loma Linda University School of Behavioral Health, Loma Linda, CA, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
32
|
Anticancer and antimicrobial effects of novel ciprofloxacin fatty acids conjugates. Eur J Med Chem 2020; 185:111810. [DOI: 10.1016/j.ejmech.2019.111810] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022]
|
33
|
Liu Q, Yu W, Fan S, Zhuang H, Han Y, Zhang H, Yuan Z, Weng Q. Seasonal expressions of androgen receptor, estrogen receptors, 5α-reductases and P450arom in the epididymis of the male muskrat (Ondatra zibethicus). J Steroid Biochem Mol Biol 2019; 194:105433. [PMID: 31376460 DOI: 10.1016/j.jsbmb.2019.105433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
The steroid hormones not only exert various endocrine functions but also act as the autocrine or paracrine factors in different tissues of mammals. In the present study, the seasonal expressions of androgen receptor (AR), estrogen receptors alpha and beta (ERα and ERβ), aromatase cytochrome P450 (P450arom) and 5α-reductase 1, 2 were investigated in the epididymis of the muskrat. HE staining showed enlarged lumen and abundant sperm in the breeding season while reduced lumen with no sperm in the non-breeding season. The staining of AR was presented in nuclei of epithelial cells of the epididymis in both seasons. The immunostaining of ERα was localized in both nuclei and cytoplasm of epithelial cells of the epididymis during the breeding season, while the weak staining of ERα was only in the nuclei of epithelial cells during the non-breeding season. In contrast, ERβ signal was negative in the epididymis of the muskrat in both seasons. The positive signals for P450arom and 5α-reductase 1, 2 were found in the cytoplasm of epithelial and smooth muscle cells during both seasons. Moreover, the protein and mRNA expression levels of AR, ERα, P450arom and 5α-reductase 1, 2 were significantly higher in the epididymis during the breeding season than those of the non-breeding season, and the expression level of 5α-reductase 1 was higher when compared with 5α-reductase 2. In addition, the levels of testosterone (T) and dihydrotestosterone (DHT) in the epididymis and serum were remarkably higher during the breeding season. Taken together, these findings suggested androgen and estrogen might play an important endocrine or autocrine/paracrine role to regulate the epididymal functions of the muskrat.
Collapse
Affiliation(s)
- Qian Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenyang Yu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haotong Zhuang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Zamagni A, Cortesi M, Zanoni M, Tesei A. Non-nuclear AR Signaling in Prostate Cancer. Front Chem 2019; 7:651. [PMID: 31616657 PMCID: PMC6775214 DOI: 10.3389/fchem.2019.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Despite the key role played by androgen receptor (AR) in tumor cell aggressiveness and prostate cancer (PCa) progression, its function in the tumor microenvironment (TME) is still controversial. Increasing studies highlight the crucial role played by TME modulation in treatment outcome and tumor cell spreading. In this context, targeting specific constituents of the TME could be considered an alternative approach to classic treatments directed against cancer cells. Currently, androgen deprivation therapy (ADT) is a routinely adopted strategy in the management of PCa, with initial success, and consecutive fail. A possible justification to this is the fact that ADT aims to target all the transcription/translation-related activities of AR, which are typical of tumor epithelial cells. Less is still known about side effects of ADT on TME. Cancer Associated Fibroblasts (CAFs), for example, express a classic AR, mostly confined in the extra-nuclear portion of the cell. In CAFs ADT exerts a plethora of non-transcriptional effects, depending by the protein partner linked to AR, leading to cell migration, proliferation, and differentiation. In recent years, substantial progress in the structure-function relationships of AR, identification of its binding partners and function of protein complexes including AR have improved our knowledge of its signaling axis. Important AR non-genomic effects and lots of its cytoplasmatic binding partners have been described, pointing out a fine control of AR non-genomic pathways. Accordingly, new AR inhibitors have been designed and are currently under investigation. Prompt development of new approaches to target AR or block recruitment of its signaling effectors, or co-activators, is urgently needed. The present review takes an in-depth look at current literature, furnishing an exhaustive state-of-the-art overview of the non-genomic role of AR in PCa, with particular emphasis on its involvement in TME biology.
Collapse
Affiliation(s)
- Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| | - Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, Italy
| |
Collapse
|
35
|
Lipid Metabolism and Endocrine Resistance in Prostate Cancer, and New Opportunities for Therapy. Int J Mol Sci 2019; 20:ijms20112626. [PMID: 31142021 PMCID: PMC6600138 DOI: 10.3390/ijms20112626] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and more than 10% of men will be diagnosed with PCa during their lifetime. Patients that are not cured with surgery or radiation are largely treated with endocrine therapies that target androgens or the androgen receptor (AR), a major driver of PCa. In response to androgen deprivation, most PCas progress to castrate resistant PCa, which is treated with anti-androgens like enzalutamide, but tumors still progress and become incurable. Thus, there is a critical need to identify cellular pathways that allow tumors to escape anti-androgen therapies. Epidemiological studies suggest that high-fat diets play important roles in PCa progression. Lipid metabolism rewires the PCa metabolome to support growth and resistance to endocrine therapies, although the exact mechanisms remain obscure. Therapeutic effects have been observed inhibiting several aspects of PCa lipid metabolism: Synthesis, uptake, and oxidation. Since AR remains a driver of PCa in advanced disease, strategies targeting both lipid metabolism and AR are starting to emerge, providing new opportunities to re-sensitize tumors to endocrine therapies with lipid metabolic approaches.
Collapse
|
36
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
37
|
McAllister MJ, Underwood MA, Leung HY, Edwards J. A review on the interactions between the tumor microenvironment and androgen receptor signaling in prostate cancer. Transl Res 2019; 206:91-106. [PMID: 30528321 DOI: 10.1016/j.trsl.2018.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer growth is controlled by androgen receptor signaling via both androgen-dependent and androgen-independent pathways. Furthermore, the prostate is an immune competent organ with inflammatory changes both within the systemic and local environment contributing to the reprogramming of the prostatic epithelium with consistently elevated lymphocyte infiltration and proinflammatory cytokines being found in prostate cancer. The crosstalk between the tumor microenvironment and androgen receptor signaling is complex with both protumorigenic and antitumorigenic roles observed. However, despite an increase in immune checkpoint inhibitors and inflammatory signaling blockades available for a range of cancer types, we are yet to see substantial progress in the treatment of prostate cancer. Therefore, this review aims to summarize the tumor microenvironment and its impact on androgen receptor signaling in prostate cancer.
Collapse
Affiliation(s)
- Milly J McAllister
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Mark A Underwood
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Hing Y Leung
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Urology, Queen Elizabeth University Hospital, Glasgow, United Kingdom; Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Zhang Y, Wang Y, Huang C, Wang Y, Qi H, Han Y, Yuan Z, Weng Q, Zhang H. Seasonal expression of 5α-reductases and androgen receptor in the prostate gland of the wild ground squirrel (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol 2018; 226:11-16. [DOI: 10.1016/j.cbpa.2018.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
|
39
|
Mishra R, Haldar S, Placencio V, Madhav A, Rohena-Rivera K, Agarwal P, Duong F, Angara B, Tripathi M, Liu Z, Gottlieb RA, Wagner S, Posadas EM, Bhowmick NA. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 2018; 128:4472-4484. [PMID: 30047926 PMCID: PMC6159981 DOI: 10.1172/jci99397] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is an androgen-dependent disease subject to interactions between the tumor epithelium and its microenvironment. Here, we found that epigenetic changes in prostatic cancer-associated fibroblasts (CAF) initiated a cascade of stromal-epithelial interactions. This facilitated lethal prostate cancer growth and development of resistance to androgen signaling deprivation therapy (ADT). We identified a Ras inhibitor, RASAL3, as epigenetically silenced in human prostatic CAF, leading to oncogenic Ras activity driving macropinocytosis-mediated glutamine synthesis. Interestingly, ADT further promoted RASAL3 epigenetic silencing and glutamine secretion by prostatic fibroblasts. In an orthotopic xenograft model, subsequent inhibition of macropinocytosis and glutamine transport resulted in antitumor effects. Stromal glutamine served as a source of energy through anaplerosis and as a mediator of neuroendocrine differentiation for prostate adenocarcinoma. Antagonizing the uptake of glutamine restored sensitivity to ADT in a castration-resistant xenograft model. In validating these findings, we found that prostate cancer patients on ADT with therapeutic resistance had elevated blood glutamine levels compared with those with therapeutically responsive disease (odds ratio = 7.451, P = 0.02). Identification of epigenetic regulation of Ras activity in prostatic CAF revealed RASAL3 as a sensor for metabolic and neuroendocrine reprogramming in prostate cancer patients failing ADT.
Collapse
Affiliation(s)
| | | | | | - Anisha Madhav
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | - Roberta A. Gottlieb
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shawn Wagner
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Neil A. Bhowmick
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
| |
Collapse
|
40
|
Cunha GR, Vezina CM, Isaacson D, Ricke WA, Timms BG, Cao M, Franco O, Baskin LS. Development of the human prostate. Differentiation 2018; 103:24-45. [PMID: 30224091 PMCID: PMC6234090 DOI: 10.1016/j.diff.2018.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
This paper provides a detailed compilation of human prostatic development that includes human fetal prostatic gross anatomy, histology, and ontogeny of selected epithelial and mesenchymal differentiation markers and signaling molecules throughout the stages of human prostatic development: (a) pre-bud urogenital sinus (UGS), (b) emergence of solid prostatic epithelial buds from urogenital sinus epithelium (UGE), (c) bud elongation and branching, (d) canalization of the solid epithelial cords, (e) differentiation of luminal and basal epithelial cells, and (f) secretory cytodifferentiation. Additionally, we describe the use of xenografts to assess the actions of androgens and estrogens on human fetal prostatic development. In this regard, we report a new model of de novo DHT-induction of prostatic development from xenografts of human fetal female urethras, which emphasizes the utility of the xenograft approach for investigation of initiation of human prostatic development. These studies raise the possibility of molecular mechanistic studies on human prostatic development through the use of tissue recombinants composed of mutant mouse UGM combined with human fetal prostatic epithelium. Our compilation of human prostatic developmental processes is likely to advance our understanding of the pathogenesis of benign prostatic hyperplasia and prostate cancer as the neoformation of ductal-acinar architecture during normal development is shared during the pathogenesis of benign prostatic hyperplasia and prostate cancer.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Chad M Vezina
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Dylan Isaacson
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - William A Ricke
- Department of Urology, University of Wisconsin, Madison, WI 53705, United States
| | - Barry G Timms
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Omar Franco
- Department of Surgery, North Shore University Health System, 1001 University Place, Evanston, IL 60201, United States
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
41
|
Cioni B, Nevedomskaya E, Melis MHM, van Burgsteden J, Stelloo S, Hodel E, Spinozzi D, de Jong J, van der Poel H, de Boer JP, Wessels LFA, Zwart W, Bergman AM. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol Oncol 2018; 12:1308-1323. [PMID: 29808619 PMCID: PMC6068356 DOI: 10.1002/1878-0261.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer‐associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High‐grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR‐expressing CAF‐like cells. Testosterone (R1881) exposure did not affect CAF‐like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881‐exposed CAF‐like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP‐seq) was performed and motif search suggested that AR in CAF‐like cells bound the chromatin through AP‐1‐elements upon R1881 exposure, inducing enhancer‐mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF‐like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF‐like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.
Collapse
Affiliation(s)
- Bianca Cioni
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Monique H M Melis
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johan van Burgsteden
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Suzan Stelloo
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Emma Hodel
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Daniele Spinozzi
- Division of Molecular Genetics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Henk van der Poel
- Division of Urology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Jan Paul de Boer
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Oncode Institute, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.,Division of Medical Oncology, The Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| |
Collapse
|
42
|
Abstract
The prostate is a male exocrine gland that secretes components of the seminal fluid. In men, prostate tumors are one of the most prevalent cancers. Studies on the development of the prostate have given a better understanding of the processes and genes that are important in the formation of this organ and have provided insights into the mechanisms of prostate tumorigenesis. These developmental studies have provided evidence that some of the genes and signaling pathways involved in development are reactivated or deregulated during prostate cancer. The prostate goes through a number of different stages during organogenesis, which include organ specification, epithelial budding, branching morphogenesis, canalization, and cytodifferentiation. During development, these processes are tightly regulated, many of which are controlled by the male hormone androgens. The majority of prostate tumors remain hormone regulated, and antiandrogen therapy is a first-line therapy, highlighting the important link between prostate organogenesis and cancer. In this review, we describe some of the data on genes that have important roles during prostate development that also have strong evidence linking them to prostate cancer.
Collapse
Affiliation(s)
- Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
43
|
Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 2018; 25:R331-R349. [PMID: 29618577 DOI: 10.1530/erc-18-0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Collapse
Affiliation(s)
- B Cioni
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W Zwart
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode InstituteThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A M Bergman
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Jiang CY, Yang BY, Zhao S, Shao SH, Bei XY, Shi F, Sun Q, Deng Z, Wang XH, Han BM, Zhao FJ, Xia SJ, Ruan Y. Deregulation of ATG9A by impaired AR signaling induces autophagy in prostate stromal fibroblasts and promotes BPH progression. Cell Death Dis 2018; 9:431. [PMID: 29568063 PMCID: PMC5864884 DOI: 10.1038/s41419-018-0415-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
The activation of androgen receptor (AR) signaling plays an essential role in both prostate stromal cells and epithelial cells during the development of benign prostatic hyperplasia (BPH). Here we demonstrated that androgen ablation after 5α-reductase inhibitor (5-ARI) treatment induced autophagy in prostate stromal fibroblasts inhibiting cell apoptosis. In addition, we found that ATG9A expression was increased after androgen ablation, which facilitated autophagic flux development. Knockdown of ATG9A not only inhibited autophagy notably in prostate stromal fibroblasts, but also reduced the volumes of prostate stromal fibroblast and epithelial cell recombinant grafts in nude mice. In conclusion, our findings suggested that ATG9A upregulation after long-term 5-ARI treatment constitutes a possible mechanism of BPH progression. Thus, combined treatment with 5-ARI and autophagy inhibitory agents would reduce the risk of BPH progression.
Collapse
Affiliation(s)
- Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bo-Yu Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sheng Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Si-Hui Shao
- Hangzhou Normal University School of Medicine, Hangzhou, 311121, China
| | - Xiao-Yu Bei
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qian Sun
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China
| | - Zheng Deng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiao-Hai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
45
|
Liu RF, Fu G, Li J, Yang YF, Wang XG, Bai PD, Chen YD. Roles of autophagy in androgen-induced benign prostatic hyperplasia in castrated rats. Exp Ther Med 2018; 15:2703-2710. [PMID: 29456672 PMCID: PMC5795549 DOI: 10.3892/etm.2018.5772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The present study investigated the role of androgen in the process of androgen-induced prostate hyperplasia in castrated rats and assessed the role of the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway in this process. Furthermore, the extent to which autophagy may affect the level of androgen-induced benign prostatic hyperplasia was also explored. A total of 40 Sprague Dawley rats were randomly divided into four groups: Testosterone group, rapamycin group, 3-methyladenine (3-MA) group, and control group. The extent of hyperplasia in prostate tissue the apoptosis and autophagy were assayed. The prostate wet weight, volume and index in the testosterone group were significantly higher compared with the control group (P<0.05) and these factors were significantly lower in the rapamycin group compared with the testosterone group (P<0.05). HE staining demonstrated that prostate hyperplasia was obvious in the testosterone group. Western blotting revealed that caspase-3 levels were higher in the 3-MA group compared with the control group and Bcl-2 was higher in the testosterone group compared with the control group (P<0.05). Furthermore, in the rapamycin group, Bcl-2 protein expression levels were significantly lower than those in the testosterone group (P<0.05). The prostate tissue was analyzed using electron microscopy and autophagy bodies were identified in the rapamycin group. In the process of androgen-induced prostatic hyperplasia in castrated rats, the role of androgen may be related to the PI3K/Akt/mTOR signaling pathway. Rapamycin was able to inhibit the effect of testosterone and promoted prostate tissue hyperplasia by inhibiting the PI3K/Akt pathway. In addition to inhibiting apoptosis in prostate cells, androgen was able to induce rat prostate hyperplasia and may also be related to the promotion of the proliferation of prostate cells.
Collapse
Affiliation(s)
- Rong-Fu Liu
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Guo Fu
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jian Li
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu-Feng Yang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xue-Gang Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Pei-De Bai
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yue-Dong Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
46
|
Wegner KA, Cadena MT, Trevena R, Turco AE, Gottschalk A, Halberg RB, Guo J, McMahon JA, McMahon AP, Vezina CM. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS One 2017; 12:e0188413. [PMID: 29145476 PMCID: PMC5690684 DOI: 10.1371/journal.pone.0188413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available.
Collapse
Affiliation(s)
- Kyle A. Wegner
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark T. Cadena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan Trevena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne E. Turco
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam Gottschalk
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Jill A. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Chad M. Vezina
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
47
|
Karakas C, Wang C, Deng F, Huang H, Wang D, Lee P. Molecular mechanisms involving prostate cancer racial disparity. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:34-48. [PMID: 29181436 PMCID: PMC5698597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in the United States. The African (AA) descent has greater incidence and mortality rates of PCa as compared to Caucasian (CA) men. While socioeconomic differences across racial groups contribute to disparity in PCa, increasing evidence points that genetic and molecular alterations play important roles in racial disparities associated with PCa. In this review, we focus on genetic and molecular influences that contribute to racial disparity between AA and CA men including: androgen and estrogen receptor signaling pathways, growth factors, apoptotic proteins, genetic, genomic and epigenetic alterations. Future translational studies will identify prognostic and predictive biomarkers for AA PCa and assist in the development of new targeted-therapies specifically for AA men with PCa.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Cassie Wang
- Department of Bioengineering, University of PennsylvaniaPennsylvania, PA, USA
| | - Fangming Deng
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Hongying Huang
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY, USA
- Department of Urology, New York University School of MedicineNew York, NY, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
48
|
Intrauterine exposure to 17β-oestradiol (E2) impairs postnatal development in both female and male prostate in gerbil. Reprod Toxicol 2017; 73:30-40. [DOI: 10.1016/j.reprotox.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
49
|
Sanches BDA, Maldarine JS, Zani BC, Tamarindo GH, Biancardi MF, Santos FCA, Rahal P, Góes RM, Felisbino SL, Vilamaior PSL, Taboga SR. Telocytes play a key role in prostate tissue organisation during the gland morphogenesis. J Cell Mol Med 2017; 21:3309-3321. [PMID: 28840644 PMCID: PMC5706570 DOI: 10.1111/jcmm.13234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/15/2017] [Indexed: 01/19/2023] Open
Abstract
Telocytes are CD34-positive interstitial cells, known to exert several functions, one of which is a role in tissue organisation, previously demonstrated by telocytes in the myocardium. The existence of telocytes in the prostate has recently been reported, however, there is a lack of information regarding the function of these cells in prostate tissue, and information regarding the possible role of these cells in prostatic development. This study used immunofluorescence techniques in prostate tissue and prostatic telocytes in culture to determine the relationship between telocytes and prostate morphogenesis. Furthermore, immunofluorescent labelling of telocytes was performed on prostate tissue at different stages of early postnatal development. Initially, CD34-positive cells are found at the periphery of the developing alveoli, later in the same region, c-kit-positive cells and cells positive for both factors are verified and CD34-positive cells were predominantly observed in the interalveolar stroma and the region surrounding the periductal smooth muscle. Fluorescence assays also demonstrated that telocytes secrete TGF-β1 and are ER-Beta (ERβ) positive. The results suggest that telocytes play a changing role during development, initially supporting the differentiation of periductal and perialveolar smooth muscle, and later, producing dense networks that separate alveoli groups and form a barrier between the interalveolar region and periurethral smooth muscle. We conclude that telocytes play a relevant role in prostate tissue organisation during postnatal development.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Juliana S Maldarine
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Bruno C Zani
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Manoel F Biancardi
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Fernanda C A Santos
- Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Rahal
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sérgio L Felisbino
- Department of Morphology, Institute of Biology (IB), Univ. Estadual Paulista - UNESP, Botucatu, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Univ. Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
50
|
Filipovski V, Kubelka-Sabit K, Jasar D, Janevska V. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia. Open Access Maced J Med Sci 2017; 5:608-612. [PMID: 28932300 PMCID: PMC5591589 DOI: 10.3889/oamjms.2017.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. AIM To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. MATERIAL AND METHODS Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). RESULTS AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. CONCLUSION AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.
Collapse
Affiliation(s)
- Vanja Filipovski
- Acibadem Sistina, Department of Histopathology and Cytology, Skopje, Republic of Macedonia
| | - Katerina Kubelka-Sabit
- Acibadem Sistina, Department of Histopathology and Cytology, Skopje, Republic of Macedonia
| | - Dzengis Jasar
- Acibadem Sistina, Department of Histopathology and Cytology, Skopje, Republic of Macedonia
| | - Vesna Janevska
- Institute of Pathology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|