1
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Rolas L, Stein M, Barkaway A, Reglero-Real N, Sciacca E, Yaseen M, Wang H, Vazquez-Martinez L, Golding M, Blacksell IA, Giblin MJ, Jaworska E, Bishop CL, Voisin MB, Gaston-Massuet C, Fossati-Jimack L, Pitzalis C, Cooper D, Nightingale TD, Lopez-Otin C, Lewis MJ, Nourshargh S. Senescent endothelial cells promote pathogenic neutrophil trafficking in inflamed tissues. EMBO Rep 2024; 25:3842-3869. [PMID: 38918502 PMCID: PMC11387759 DOI: 10.1038/s44319-024-00182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence. Progerin-expressing ECs supported prolonged neutrophil adhesion and crawling in a cell autonomous manner that additionally mediated neutrophil-dependent microvascular leakage. Transcriptomic and immunofluorescence analysis of inflamed tissues identified elevated levels of EC CXCL1 on progerin-expressing ECs and functional blockade of CXCL1 suppressed the dysregulated neutrophil responses elicited by senescent ECs. Similarly, cultured progerin-expressing human ECs exhibited a senescent phenotype, were pro-inflammatory and prompted increased neutrophil attachment and activation. Collectively, our findings support the concept that senescent ECs drive excessive inflammation and provide new insights into the mode, dynamics, and mechanisms of this response at single-cell level.
Collapse
Affiliation(s)
- Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Monja Stein
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elisabetta Sciacca
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohammed Yaseen
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haitao Wang
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Vazquez-Martinez
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Isobel A Blacksell
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meredith J Giblin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edyta Jaworska
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mathieu-Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Liliane Fossati-Jimack
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carlos Lopez-Otin
- Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Myles J Lewis
- Centre for Translational Bioinformatics, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
3
|
Patel AS, Ludwinski FE, Kerr A, Farkas S, Kapoor P, Bertolaccini L, Fernandes R, Jones PR, McLornan D, Livieratos L, Saha P, Smith A, Modarai B. A subpopulation of tissue remodeling monocytes stimulates revascularization of the ischemic limb. Sci Transl Med 2024; 16:eadf0555. [PMID: 38896604 DOI: 10.1126/scitranslmed.adf0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Despite decades of effort aimed at developing clinically effective cell therapies, including mixed population mononuclear cells, to revascularize the ischemic limb, there remains a paucity of patient-based studies that inform the function and fate of candidate cell types. In this study, we showed that circulating proangiogenic/arteriogenic monocytes (PAMs) expressing the FcγIIIA receptor CD16 were elevated in patients with chronic limb-threatening ischemia (CLTI), and these amounts decreased after revascularization. Unlike CD16-negative monocytes, PAMs showed large vessel remodeling properties in vitro when cultured with endothelial cells and smooth muscle cells and promoted salvage of the ischemic limb in vivo in a mouse model of hindlimb ischemia. PAMs showed a propensity to migrate toward and bind to ischemic muscle and to secrete angiogenic/arteriogenic factors, vascular endothelial growth factor A (VEGF-A) and heparin-binding epidermal growth factor. We instigated a first-in-human single-arm cohort study in which autologous PAMs were injected into the ischemic limbs of five patients with CLTI. Greater than 25% of injected cells were retained in the leg for at least 72 hours, of which greater than 80% were viable, with evidence of enhanced large vessel remodeling in the injected muscle area. In summary, we identified up-regulation of a circulatory PAM subpopulation as an endogenous response to limb ischemia in CLTI and tested a potentially clinically relevant therapeutic strategy.
Collapse
Affiliation(s)
- Ashish S Patel
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Francesca E Ludwinski
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Alexander Kerr
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Simon Farkas
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Puja Kapoor
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Laura Bertolaccini
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Ramon Fernandes
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Paul R Jones
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Donal McLornan
- Department of Haematology, Guy's & St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Lefteris Livieratos
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
- Department of Nuclear Medicine, Guy's & St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Prakash Saha
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Alberto Smith
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| | - Bijan Modarai
- Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK
- Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, London SE1 7EH, UK
| |
Collapse
|
4
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
5
|
Chi Y, Yu S, Yin J, Liu D, Zhuo M, Li X. Role of Angiopoietin/Tie2 System in Sepsis: A Potential Therapeutic Target. Clin Appl Thromb Hemost 2024; 30:10760296241238010. [PMID: 38449088 PMCID: PMC10921858 DOI: 10.1177/10760296241238010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis is a disorder of host response caused by severe infection that can lead to life-threatening organ dysfunction. There is no specific treatment for sepsis. Although there are many different pathogens that can cause sepsis, endothelial dysfunction is a frequent mechanism resulting in vascular leakage and coagulation problem. Recent studies on the regulatory pathways of vascular endothelium have shown that the disturbance of angiopoietin (Ang) /Tie2 axis can induce endothelial cell activation, which is the core pathogenesis of sepsis. In this review, we aim to discuss the regulation of Ang/Tie2 axis and the biomarkers involved in the context of sepsis. Also, we attempt to explore the prospective and feasibility of Ang/Tie2 axis as a potential target for sepsis intervention to improve clinical outcomes.
Collapse
Affiliation(s)
- Yawen Chi
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sihan Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jia Yin
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Danyan Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengke Zhuo
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xu Li
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1023. [PMID: 36267708 PMCID: PMC9577744 DOI: 10.21037/atm-22-2835] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022]
Abstract
Background and Objective Asthma is a common chronic disorder of the airway, and its disability and mortality rates continue to increase each year. Due to the lack of an ideal treatment, asthma control in China remains unsatisfactory. Airway remodeling is the pathological basis for the eventual development of the fixed airflow limitation in asthmatic patients. Early diagnosis and the prevention of airway remodeling has the potential to decrease disease severity, to improve control, and to prevent disease expression. Methods This article presents an overview. The literature was combed through via CNKi and PubMed according to the listed keywords. We considered Chinese and English original publications (basic science and clinical), reviews and abstracts of 21th Century. Key Content and Findings We review the pathological features and pathogenesis of, and the interventional treatment options for airway remodeling in asthmatic patients, emphasizing the importance of airway remodeling in asthma and providing novel insights into the prevention and control of asthma. Conclusions Thus, there have been research advances in airway remodeling, especially in the areas of slowing down or reversing airway remodeling. As growing studies showed, treating airway remodeling is a promising strategy in preventing the occurrence and progression of asthma. Breakthroughs in these difficulties airway remodeling still facing will open up new avenues in the research and treatment of asthma.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Respiratory and Critical Care Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chen Qiu
- Department of Respiratory and Critical Care Medicine, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
8
|
Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci 2020; 21:ijms21228689. [PMID: 33217955 PMCID: PMC7698611 DOI: 10.3390/ijms21228689] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.
Collapse
|
9
|
Mirando AC, Lima e Silva R, Chu Z, Campochiaro PA, Pandey NB, Popel AS. Suppression of Ocular Vascular Inflammation through Peptide-Mediated Activation of Angiopoietin-Tie2 Signaling. Int J Mol Sci 2020; 21:ijms21145142. [PMID: 32708100 PMCID: PMC7404316 DOI: 10.3390/ijms21145142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Persistent inflammation is a complication associated with many ocular diseases. Changes in ocular vessels can amplify disease responses and contribute to vision loss by influencing the delivery of leukocytes to the eye, vascular leakage, and perfusion. Here, we report the anti-inflammatory activity for AXT107, a non-RGD, 20-mer αvβ3 and α5β1 integrin-binding peptide that blocks vascular endothelial growth factor (VEGF)-signaling and activates tyrosine kinase with immunoglobulin and EGF-like domains 2 (Tie2) using the normally inhibitory ligand angiopoietin 2 (Ang2). Tumor necrosis factor α (TNFα), a central inflammation mediator, induces Ang2 release from endothelial cells to enhance its stimulation of inflammation and vascular leakage. AXT107 resolves TNFα-induced vascular inflammation in endothelial cells by converting the endogenously released Ang2 into an agonist of Tie2 signaling, thereby disrupting both the synergism between TNFα and Ang2 while also preventing inhibitor of nuclear factor-κB α (IκBα) degradation directly through Tie2 signaling. This recovery of IκBα prevents nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear localization, thereby blocking NF-κB-induced inflammatory responses, including the production of VCAM-1 and ICAM-1, leukostasis, and vascular leakage in cell and mouse models. AXT107 also decreased the levels of pro-inflammatory TNF receptor 1 (TNFR1) without affecting levels of the more protective TNFR2. These data suggest that AXT107 may provide multiple benefits in the treatment of retinal/choroidal and other vascular diseases by suppressing inflammation and promoting vascular stabilization.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Angiopoietin-2/metabolism
- Animals
- Capillary Permeability/drug effects
- Choroid Diseases/drug therapy
- Collagen Type IV/pharmacology
- Collagen Type IV/therapeutic use
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Human Umbilical Vein Endothelial Cells
- Humans
- I-kappa B Kinase/metabolism
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Leukostasis/drug therapy
- Leukostasis/metabolism
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Receptor, TIE-2/agonists
- Receptor, TIE-2/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Retinal Diseases/drug therapy
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Cell Adhesion Molecule-1/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Adam C. Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.C.M.); (Z.C.)
| | - Raquel Lima e Silva
- Department of Ophthalmology and the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.L.e.S.); (P.A.C.)
| | - Zenny Chu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.C.M.); (Z.C.)
| | - Peter A. Campochiaro
- Department of Ophthalmology and the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.L.e.S.); (P.A.C.)
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.C.M.); (Z.C.)
- AsclepiX Therapeutics, Inc., Baltimore, MD 21211, USA
- Correspondence: (N.B.P.); (A.S.P.); Tel.: +908-328-2019 (N.B.P.); +410-955-6419 (A.S.P.)
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (A.C.M.); (Z.C.)
- Correspondence: (N.B.P.); (A.S.P.); Tel.: +908-328-2019 (N.B.P.); +410-955-6419 (A.S.P.)
| |
Collapse
|
10
|
Owen-Woods C, Joulia R, Barkaway A, Rolas L, Ma B, Nottebaum AF, Arkill KP, Stein M, Girbl T, Golding M, Bates DO, Vestweber D, Voisin MB, Nourshargh S. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest 2020; 130:2301-2318. [PMID: 31971917 PMCID: PMC7190919 DOI: 10.1172/jci133661] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability-enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Régis Joulia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anna Barkaway
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Loïc Rolas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bin Ma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Astrid Fee Nottebaum
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kenton P. Arkill
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Monja Stein
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tamara Girbl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew Golding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
11
|
Moawad AW, Szklaruk J, Lall C, Blair KJ, Kaseb AO, Kamath A, Rohren SA, Elsayes KM. Angiogenesis in Hepatocellular Carcinoma; Pathophysiology, Targeted Therapy, and Role of Imaging. J Hepatocell Carcinoma 2020; 7:77-89. [PMID: 32426302 PMCID: PMC7188073 DOI: 10.2147/jhc.s224471] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, usually occurring on a background of liver cirrhosis. HCC is a highly vascular tumor in which angiogenesis plays a major role in tumor growth and spread. Tumor-induced angiogenesis is usually related to a complex interplay between multiple factors and pathways, with vascular endothelial growth factor being a major player in angiogenesis. In the past decade, understanding of tumor-induced angiogenesis has led to the emergence of novel anti-angiogenic therapies, which act by reducing neo-angiogenesis, and improving patient survival. Currently, Sorafenib and Lenvatinib are being used as the first-line treatment for advanced unresectable HCC. However, a disadvantage of these agents is the presence of numerous side effects. A major challenge in the management of HCC patients being treated with anti-angiogenic therapy is effective monitoring of treatment response, which decides whether to continue treatment or to seek second-line treatment. Several criteria can be used to assess response to treatment, such as quantitative perfusion on cross-sectional imaging and novel/emerging MRI techniques, including a host of known and emerging biomarkers and radiogenomics. This review addresses the pathophysiology of angiogenesis in HCC, accurate imaging assessment of angiogenesis, monitoring effects of anti-angiogenic therapy to guide future treatment and assessing prognosis.
Collapse
Affiliation(s)
- Ahmed W Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Janio Szklaruk
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Katherine J Blair
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Amita Kamath
- Department of Radiology, Icahn School of Medicine at Mount Sinai West, New York, NY, USA
| | - Scott A Rohren
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Abstract
The adaptive immune response is a 500-million-year-old (the "Big Bang" of Immunology) collective set of rearranged and/or selected receptors capable of recognizing soluble and cell surface molecules or shape (B cells, antibody), endogenous and extracellular peptides presented by Major Histocompatibility (MHC) molecules including Class I and Class II (conventional αβ T cells), lipid in the context of MHC-like molecules of the CD1 family (NKT cells), metabolites and B7 family molecules/butyrophilins with stress factors (γδT cells), and stress ligands and absence of MHC molecules (natural killer, NK cells). What makes tumor immunogenic is the recruitment of initially innate immune cells to sites of stress or tissue damage with release of Damage-Associated Molecular Pattern (DAMP) molecules. Subsequent maintenance of a chronic inflammatory state, representing a balance between mature, normalized blood vessels, innate and adaptive immune cells and the tumor provides a complex tumor microenvironment serving as the backdrop for Darwinian selection, tumor elimination, tumor equilibrium, and ultimately tumor escape. Effective immunotherapies are still limited, given the complexities of this highly evolved and selected tumor microenvironment. Cytokine therapies and Immune Checkpoint Blockade (ICB) enable immune effector function and are largely dependent on the shape and size of the B and T cell repertoires (the "adaptome"), now accessible by Next-Generation Sequencing (NGS) and dimer-avoidance multiplexed PCR. How immune effectors access the tumor (infiltrated, immune sequestered, and immune desserts), egress and are organized within the tumor are of contemporary interest and substantial investigation.
Collapse
|
13
|
Dorand RD, Benson BL, Huang LF, Petrosiute A, Huang AY. Insights From Dynamic Neuro-Immune Imaging on Murine Immune Responses to CNS Damage. Front Neurosci 2019; 13:737. [PMID: 31379488 PMCID: PMC6650615 DOI: 10.3389/fnins.2019.00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Evolving technologies and increasing understanding of human physiology over the past century have afforded our ability to intervene on human diseases using implantable bio-materials. These bio-electronic devices present a unique challenge through the creation of an interface between the native tissue and implantable bio-materials: the generation of host immune response surrounding such devices. While recent developments in cancer immunology seek to stimulate the immune system against cancer, successful long-term application of implantable bio-material devices need to durably minimize reactive immune processes at involved anatomical sites. Peripheral immune system response has been studied extensively for implanted bio-materials at various body sites. Examples include tooth composites (Gitalis et al., 2019), inguinal hernia repair (Heymann et al., 2019), and cardiac stents and pacemaker leads (Slee et al., 2016). Studies have also been extended to less well-studied immune reactivity in response to CNS neural-electronic implant devices. Recent technological advances in 2-Photon Laser Scanning Microscopy (2P-LSM) have allowed novel insights into in vivo immune response in a variety of tissue microenvironments. While imaging of peripheral tissues has provided an abundance of data with regards to immune cell dynamics, central nervous system (CNS) imaging is comparatively complicated by tissue accessibility and manipulation. Despite these challenges, the results of dynamic intravital neuro-immune imaging thus far have provided foundational insights into basic CNS biology. Utilizing a combination of intravital and ex vivo 2P-LSM, we have observed novel pathways allowing immune cells, stromal cells, cancer cells and proteins to communicate between the CNS parenchyma and peripheral vasculature. Similar to what has been reported in the intestinal tract, we have visualized myeloid cells extend dendritic processes across the blood brain barrier (BBB) into pial blood vessels. Furthermore, transient vessel leaks seen during systemic inflammation provide opportunities for cellular protein to be exchanged between the periphery and CNS. These insights provide new, visual information regarding immune surveillance and antigen presentation within the CNS. Furthermore, when combining intravital 2P-LSM and microfluidic devices complexed with mathematical modeling, we are gaining new insights into the intravascular behavior of circulating immune cells. This new knowledge into the basic mechanisms by which cells migrate to and interact with the CNS provide important considerations for the design of neuro-electronic biomaterials that have the potential to connect the peripheral-neural microenvironments into a unique, artificial interface.
Collapse
Affiliation(s)
- R Dixon Dorand
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Lauren F Huang
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Agne Petrosiute
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Angie Fowler Adolescent & Young Adult (AYA) Cancer Institute/University Hospitals (UH) Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Angie Fowler Adolescent & Young Adult (AYA) Cancer Institute/University Hospitals (UH) Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| |
Collapse
|
14
|
Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Sci Rep 2018; 8:9328. [PMID: 29921896 PMCID: PMC6008471 DOI: 10.1038/s41598-018-27566-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/05/2018] [Indexed: 02/02/2023] Open
Abstract
Leukocyte adhesion and extravasation are maximal near the transition from capillary to post-capillary venule, and are strongly influenced by a confluence of scale-dependent physical effects. Mimicking the scale of physiological vessels using in vitro microfluidic systems allows the capture of these effects on leukocyte adhesion assays, but imposes practical limits on reproducibility and reliable quantification. Here we present a microfluidic platform that provides multiple (54-512) technical replicates within a 15-minute sample collection time, coupled with an automated computer vision analysis pipeline that captures leukocyte adhesion probabilities as a function of shear and extensional stresses. We report that in post-capillary channels of physiological scale, efficient leukocyte adhesion requires erythrocytes forcing leukocytes against the wall, a phenomenon that is promoted by the transitional flow in post-capillary venule expansions and dependent on the adhesion molecule ICAM-1.
Collapse
|
15
|
Murgai M, Ju W, Eason M, Kline J, Beury DW, Kaczanowska S, Miettinen MM, Kruhlak M, Lei H, Shern JF, Cherepanova OA, Owens GK, Kaplan RN. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med 2017; 23:1176-1190. [PMID: 28920957 PMCID: PMC5724390 DOI: 10.1038/nm.4400] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
A deeper understanding of the metastatic process is required for the development of new therapies that improve patient survival. Metastatic tumor cell growth and survival in distant organs is facilitated by the formation of a pre-metastatic niche composed of hematopoietic cells, stromal cells, and extracellular matrix (ECM). Perivascular cells, including vascular smooth muscle cells (vSMCs) and pericytes, are involved in new vessel formation and in promoting stem cell maintenance and proliferation. Given the well-described plasticity of perivascular cells, we hypothesize that perivascular cells similarly regulate tumor cell fate at metastatic sites. Using perivascular cell-specific and pericyte-specific lineage-tracing models, we trace the fate of perivascular cells in the pre-metastatic and metastatic microenvironments. We show that perivascular cells lose the expression of traditional vSMC/pericyte markers in response to tumor-secreted factors and exhibit increased proliferation, migration, and ECM synthesis. Increased expression of the pluripotency gene Klf4 in these phenotypically-switched perivascular cells promotes a less differentiated state characterized by enhanced ECM production that establishes a pro-metastatic fibronectin-rich environment. Genetic inactivation of Klf4 in perivascular cells decreases pre-metastatic niche formation and metastasis. Our data reveal a previously unidentified role for perivascular cells in pre-metastatic niche formation and uncover novel strategies for limiting metastasis.
Collapse
Affiliation(s)
- Meera Murgai
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Wei Ju
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew Eason
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jessica Kline
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Daniel W Beury
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sabina Kaczanowska
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markku M Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Kruhlak
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
16
|
Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond) 2017; 131:87-103. [PMID: 27941161 PMCID: PMC5146956 DOI: 10.1042/cs20160129] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)-Tie system is a second endothelial cell specific ligand-receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang-Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang-Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang-Tie system in vascular development and pathogenesis of vascular diseases.
Collapse
|
17
|
Tumor necrosis factor-α levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant 2017; 37:107-115. [PMID: 28651907 DOI: 10.1016/j.healun.2017.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Non-surgical bleeding (NSB) due to angiodysplasia is common in left ventricular assist device (LVAD) patients. Thrombin-induced angiopoietin-2 (Ang-2) expression in LVAD patients leads to altered angiogenesis and is associated with lower angiopoietin-1 (Ang-1) and increased NSB. However, the mechanism for decreased Ang-1, made by pericytes, is unknown and the origin of thrombin in LVAD patients is unclear. We hypothesized that high tumor necrosis factor-α (TNF-α) levels in LVAD patients induce pericyte apoptosis, tissue factor (TF) expression and vascular instability. METHODS We incubated cultured pericytes with serum from patients with heart failure (HF), LVAD or orthotopic heart transplantation (OHT), with or without TNF-α blockade. We performed several measurements: Ang-1 expression was assessed by reverse transcript-polymerase chain reaction (RT-PCR) and pericyte death fluorescently; TF expression was assessed by RT-PCR in cultured endothelial cells incubated with patient plasma with or without TNF-α blockade; and TF expression was assessed in endothelial biopsy samples from these patients by immunofluorescence. We incubated cultured endothelial cells on Matrigel with patient serum with or without TNF-α blockade and determined tube formation by microscopy. RESULTS Serum from LVAD patients had higher levels of TNF-α, suppressed Ang-1 expression in pericytes, and induced pericyte death, and there was accelerated endothelial tube formation compared with serum from patients without LVADs. TF was higher in both plasma and endothelial cells from LVAD patients, and plasma from LVAD patients induced more endothelial TF expression. All of these effects were reversed or reduced with TNF-α blockade. High levels of TNF-α were associated with increased risk of NSB. CONCLUSIONS Elevated TNF-α in LVAD patients is a central regulator of altered angiogenesis, pericyte apoptosis and expression of TF and Ang-1.
Collapse
|
18
|
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 2017; 16:635-661. [PMID: 28529319 DOI: 10.1038/nrd.2016.278] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endothelial angiopoietin (ANG)-TIE growth factor receptor pathway regulates vascular permeability and pathological vascular remodelling during inflammation, tumour angiogenesis and metastasis. Drugs that target the ANG-TIE pathway are in clinical development for oncological and ophthalmological applications. The aim is to complement current vascular endothelial growth factor (VEGF)-based anti-angiogenic therapies in cancer, wet age-related macular degeneration and macular oedema. The unique function of the ANG-TIE pathway in vascular stabilization also renders this pathway an attractive target in sepsis, organ transplantation, atherosclerosis and vascular complications of diabetes. This Review covers key aspects of the function of the ANG-TIE pathway in vascular disease and describes the recent development of novel therapeutics that target this pathway.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 5A, University of Oulu, 90220 Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Oehlers SH, Cronan MR, Beerman RW, Johnson MG, Huang J, Kontos CD, Stout JE, Tobin DM. Infection-Induced Vascular Permeability Aids Mycobacterial Growth. J Infect Dis 2017; 215:813-817. [PMID: 27496976 DOI: 10.1093/infdis/jiw355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic mycobacteria trigger formation of organized granulomas. As granulomas mature, they induce angiogenesis and vascular permeability. Here, in a striking parallel to tumor pro-angiogenic signaling, we identify angiopoietin-2 (ANG-2) induction as an important component of vascular dysfunction during mycobacterial infection. Mycobacterial infection in humans and zebrafish results in robust induction of ANG-2 expression from macrophages and stromal cells. Using a small-molecule inhibitor closely related to one currently in clinical trials, we link ANG-2/TIE2 signaling to vascular permeability during mycobacterial infection. Targeting granuloma-induced vascular permeability via vascular endothelial-protein tyrosine phosphatase inhibition limits mycobacterial growth, suggesting a new strategy for host-directed therapies against tuberculosis.
Collapse
Affiliation(s)
- Stefan H Oehlers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Tuberculosis Research Program, Centenary Institute, Camperdown, NSW, Australia.,Sydney Medical School, The University of Sydney, Newtown, NSW, Australia
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca W Beerman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Matthew G Johnson
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jianhua Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher D Kontos
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason E Stout
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X. Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J Vasc Surg 2017; 65:501-508.e1. [DOI: 10.1016/j.jvs.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/03/2015] [Indexed: 02/04/2023]
|
21
|
Kim M, Allen B, Korhonen EA, Nitschké M, Yang HW, Baluk P, Saharinen P, Alitalo K, Daly C, Thurston G, McDonald DM. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest 2016; 126:3511-25. [PMID: 27548529 DOI: 10.1172/jci84871] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/24/2016] [Indexed: 01/12/2023] Open
Abstract
Angiopoietin-2 (ANG2) regulates blood vessel remodeling in many pathological conditions through differential effects on Tie2 signaling. While ANG2 competes with ANG1 to inhibit Tie2, it can paradoxically also promote Tie2 phosphorylation (p-Tie2). A related paradox is that both inactivation and overactivation of Tie2 can result in vascular remodeling. Here, we reconciled these opposing actions of ANG2 by manipulating conditions that govern its actions in the vasculature. ANG2 drove vascular remodeling during Mycoplasma pulmonis infection by acting as a Tie2 antagonist, which led to p-Tie2 suppression, forkhead box O1 (FOXO1) activation, increased ANG2 expression, and vessel leakiness. These changes were exaggerated by anti-Tie2 antibody, inhibition of PI3K signaling, or ANG2 overexpression and were reduced by anti-ANG2 antibody or exogenous ANG1. In contrast, under pathogen-free conditions, ANG2 drove vascular remodeling by acting as an agonist, promoting high p-Tie2, low FOXO1 activation, and no leakage. Tie1 activation was strong under pathogen-free conditions, but infection or TNF-α led to Tie1 inactivation by ectodomain cleavage and promoted the Tie2 antagonist action of ANG2. Together, these data indicate that ANG2 activation of Tie2 supports stable enlargement of normal nonleaky vessels, but reduction of Tie1 in inflammation leads to ANG2 antagonism of Tie2 and initiates a positive feedback loop wherein FOXO1-driven ANG2 expression promotes vascular remodeling and leakage.
Collapse
|
22
|
Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M, Allen B, Fang S, D'Amico G, Sipilä TJ, Lohela M, Strandin T, Vaheri A, Ylä-Herttuala S, Koh GY, McDonald DM, Alitalo K, Saharinen P. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 2016; 126:3495-510. [PMID: 27548530 DOI: 10.1172/jci84923] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability.
Collapse
|