1
|
Majer AD, Hua X, Katona BW. Menin in Cancer. Genes (Basel) 2024; 15:1231. [PMID: 39336822 PMCID: PMC11431421 DOI: 10.3390/genes15091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.
Collapse
Affiliation(s)
- Ariana D Majer
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianxin Hua
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bryson W Katona
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Ito Y, Imaizumi T, Daido H, Kato T, Yabe D. Sporadic Parathyroid Carcinoma Treated With Lenvatinib, Exhibiting a Novel Somatic MEN1 Mutation. JCEM CASE REPORTS 2024; 2:luae121. [PMID: 39056047 PMCID: PMC11267463 DOI: 10.1210/jcemcr/luae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 07/28/2024]
Abstract
Parathyroid carcinoma (PC) is extremely rare and is primarily treated surgically. Chemotherapy is an option for advanced stages, but no standard regimen exists. Emerging research suggests the efficacy of multitarget tyrosine kinase inhibitors (MTKIs) for PC, targeting vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR). A 61-year-old Japanese woman presented with a neck mass, diagnosed as PC with pleural and lumbar metastases. After parathyroidectomy and radiation for lumbar metastasis, immunohistochemistry showed VEGFR overexpression, leading to targeted therapy with MTKIs. Despite no actionable mutations on cancer genomic panel test, a novel MEN1 somatic mutation (NM_130801: exon2: c.332delG: p.G111fs*8) was identified, which may affect VEGFR2 expression and tumor epigenetics. Although severe hand-foot syndrome necessitated dose reductions and treatment interruptions, sorafenib treatment managed hypercalcemia with evocalcet and denosumab. Lenvatinib, as second-line therapy, was effective against pleural metastases but caused thrombocytopenia and hematuria, leading to discontinuation and uncontrolled recurrence and metastasis progression. Our case highlights the need for further research on genomic profiling, molecular targets, and therapy response in PC.
Collapse
Affiliation(s)
- Yu Ito
- Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Toshinori Imaizumi
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hisashi Daido
- Department of Diabetes and Endocrinology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Takehiro Kato
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism/Department of Rheumatology and Clinical Immunology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Gifu University, Gifu 501-1194, Japan
- Departments of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. Genome-wide prediction of disease variant effects with a deep protein language model. Nat Genet 2023; 55:1512-1522. [PMID: 37563329 PMCID: PMC10484790 DOI: 10.1038/s41588-023-01465-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Predicting the effects of coding variants is a major challenge. While recent deep-learning models have improved variant effect prediction accuracy, they cannot analyze all coding variants due to dependency on close homologs or software limitations. Here we developed a workflow using ESM1b, a 650-million-parameter protein language model, to predict all ~450 million possible missense variant effects in the human genome, and made all predictions available on a web portal. ESM1b outperformed existing methods in classifying ~150,000 ClinVar/HGMD missense variants as pathogenic or benign and predicting measurements across 28 deep mutational scan datasets. We further annotated ~2 million variants as damaging only in specific protein isoforms, demonstrating the importance of considering all isoforms when predicting variant effects. Our approach also generalizes to more complex coding variants such as in-frame indels and stop-gains. Together, these results establish protein language models as an effective, accurate and general approach to predicting variant effects.
Collapse
Affiliation(s)
- Nadav Brandes
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Grant Goldman
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Vasilis Ntranos
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Lairmore TC, Abdulsattar J, De Benedetti A, Shi R, Huang S, Khalil MI, Witt SN. Loss of tumor suppressor menin expression in high grade cholangiocarcinomas. BMC Res Notes 2023; 16:15. [PMID: 36782257 PMCID: PMC9923918 DOI: 10.1186/s13104-023-06282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND MEN1, which codes for the protein menin, is a tumor suppressor in neuroendocrine tissue. In cholangiocarcinoma (CCA) cell lines the overexpression of menin decreased proliferation, angiogenesis, migration, and invasion in vitro and in xenografts, but its expression in CCA tumor tissue samples is not established. OBJECTIVE Determine whether the expression of menin correlates with disease progression in patient samples of CCA in a tissue microarray (TMA) by immunohistochemical (IHC) staining. RESULTS IHC analysis of 97 biopsies revealed that low-grade tumors (Grade I) exhibited intense, diffuse, finely granular nuclear menin immunoreactivity with a pronounced linear perinuclear pattern (mean IHC score = 2.00), whereas high-grade tumors (Grade III) mostly lacked such staining (mean IHC score = 0.35). Collectively, there was a significant inverse association between tumor grade and menin staining (P = 0.0005). We also found a significant association between fibrosis status and menin staining, in that, 81.2% (56/69) of patients without fibrosis had no menin staining, whereas 92.9% (26/28) patients with fibrosis exhibited menin staining (P < 0.0001). No association was found between fibrosis status and grade. Overall, menin expression is inversely associated with tumor grade and positively associated with fibrosis status.
Collapse
Affiliation(s)
- Terry C. Lairmore
- grid.411417.60000 0004 0443 6864Department of Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA ,grid.411417.60000 0004 0443 6864Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA ,grid.411417.60000 0004 0443 6864Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Jehan Abdulsattar
- grid.411417.60000 0004 0443 6864Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Arrigo De Benedetti
- grid.411417.60000 0004 0443 6864Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA ,grid.411417.60000 0004 0443 6864Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Runhua Shi
- grid.411417.60000 0004 0443 6864Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Shile Huang
- grid.411417.60000 0004 0443 6864Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA ,grid.411417.60000 0004 0443 6864Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Md Imtiaz Khalil
- grid.411417.60000 0004 0443 6864Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Stephan N. Witt
- grid.411417.60000 0004 0443 6864Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA ,grid.411417.60000 0004 0443 6864Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
5
|
Ghafouri-Fard S, Safarzadeh A, Hussen BM, Taheri M, Samsami M. A review on the role of ncRNAs in the pathogenesis of cholangiocarcinoma. Int J Biol Macromol 2023; 225:809-821. [PMID: 36400211 DOI: 10.1016/j.ijbiomac.2022.11.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a rare tumor but a challenging cancer in terms of pathological changes, clinical manifestations and therapeutic options. Recent studies have provided evidence for participation of non-coding RNAs in the carcinogenic process of cholangiocarcinoma. We demonstrate the role of long non-coding RNAs, microRNAs and circular RNAs in the pathogenesis of cholangiocarcinoma and highlight their significant position as therapeutic targets and biomarkers for this type of cancer. We also list a number of molecular axes comprising these non-coding RNAs that represent potential targets for therapeutic options in cholangiocarcinoma, based on their significant roles in the regulation of cell proliferation, differentiation and apoptosis of these cells.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
7
|
Safarpour AR, Askari H, Ejtehadi F, Azarnezhad A, Raeis-Abdollahi E, Tajbakhsh A, Abazari MF, Tarkesh F, Shamsaeefar A, Niknam R, Sivandzadeh GR, Lankarani KB, Ejtehadi F. Cholangiocarcinoma and liver transplantation: What we know so far? World J Gastrointest Pathophysiol 2021; 12:84-105. [PMID: 34676129 PMCID: PMC8481789 DOI: 10.4291/wjgp.v12.i5.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a type of cancer with increasing prevalence around the world that originates from cholangiocytes, the epithelial cells of the bile duct. The tumor begins insidiously and is distinguished by high grade neoplasm, poor outcome, and high risk for recurrence. Liver transplantation has become broadly accepted as a treatment option for CCA. Liver transplantation is expected to play a crucial role as palliative and curative therapy for unresectable hilar CCA and intrahepatic CCA. The purpose of this study was to determine which cases with CCA should be subjected to liver transplantation instead of resection, although reported post-transplant recurrence rate averages approximately 20%. This review also aims to highlight the molecular current frontiers of CCA and directions of liver transplantation for CCA.
Collapse
Affiliation(s)
- Ali Reza Safarpour
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hassan Askari
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Farshid Ejtehadi
- The Princess Alexandra Hospital HNS Trust, Harlow, Essex CM20 1QX, United Kingdom
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 6617913446, Iran
| | - Ehsan Raeis-Abdollahi
- Department of Basic Medical Sciences, Qom Medical Branch, Islamic Azad University, Qom, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Firoozeh Tarkesh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Niknam
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Gholam Reza Sivandzadeh
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | | - Fardad Ejtehadi
- Department of Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
8
|
Marini F, Brandi ML. Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int J Mol Sci 2021; 22:ijms22147352. [PMID: 34298972 PMCID: PMC8306915 DOI: 10.3390/ijms22147352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited multiple cancer syndrome of neuroendocrine tissues. Tumors are caused by an inherited germinal heterozygote inactivating mutation of the MEN1 tumor suppressor gene, followed by a somatic loss of heterozygosity (LOH) of the MEN1 gene in target neuroendocrine cells, mainly at parathyroids, pancreas islets, and anterior pituitary. Over 1500 different germline and somatic mutations of the MEN1 gene have been identified, but the syndrome is completely missing a direct genotype-phenotype correlation, thus supporting the hypothesis that exogenous and endogenous factors, other than MEN1 specific mutation, are involved in MEN1 tumorigenesis and definition of individual clinical phenotype. Epigenetic factors, such as microRNAs (miRNAs), are strongly suspected to have a role in MEN1 tumor initiation and development. Recently, a direct autoregulatory network between miR-24, MEN1 mRNA, and menin was demonstrated in parathyroids and endocrine pancreas, showing a miR-24-induced silencing of menin expression that could have a key role in initiation of tumors in MEN1-target neuroendocrine cells. Here, we review the current knowledge on the post-transcriptional regulation of MEN1 and menin expression by miR-24, and its possible direct role in MEN1 syndrome, describing the possibility and the potential approaches to target and silence this miRNA, to permit the correct expression of the wild type menin, and thereby prevent the development of cancers in the target tissues.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/pharmacology
- Antagomirs/therapeutic use
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA Damage
- Feedback, Physiological
- Forecasting
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genetic Therapy
- Humans
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Multiple Endocrine Neoplasia Type 1/genetics
- Multiple Endocrine Neoplasia Type 1/metabolism
- Multiple Endocrine Neoplasia Type 1/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Isoforms/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Rats
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence: or ; Tel.: +39-055-23-36-663
| |
Collapse
|
9
|
Hendaoui I, Lahmar A, Campo L, Mebarki S, Bichet S, Hess D, Degen M, Kchir N, Charrada-Ben Farhat L, Hefaiedh R, Ruiz C, Terracciano LM, Tucker RP, Hendaoui L, Chiquet-Ehrismann R. Tenascin-W Is a Novel Stromal Marker in Biliary Tract Cancers. Front Immunol 2021; 11:630139. [PMID: 33692777 PMCID: PMC7937617 DOI: 10.3389/fimmu.2020.630139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023] Open
Abstract
Extrahepatic cancers of the biliary system are typically asymptomatic until after metastasis, which contributes to their poor prognosis. Here we examined intrahepatic cholangiocarcinomas (n = 8), carcinomas of perihilar bile ducts (n = 7), carcinomas of the gallbladder (n = 11) and hepatic metastasis from carcinomas of the gallbladder (n = 4) for the expression of the extracellular matrix glycoproteins tenascin-C and tenascin-W. Anti-tenascin-C and anti-tenascin-W immunoreactivity was found in all biliary tract tumors examined. Unlike tenascin-C, tenascin-W was not detected in normal hepatobiliary tissue. Tenascin-W was also expressed by the cholangiocarcinoma-derived cell line Huh-28. However, co-culture of Huh-28 cells with immortalized bone marrow-derived stromal cells was necessary for the formation and organization of tenascin-W fibrils in vitro. Our results indicate that tenascin-W may be a novel marker of hepatobiliary tumor stroma, and its absence from many normal tissues suggests that it may be a potential target for biotherapies.
Collapse
Affiliation(s)
- Ismaïl Hendaoui
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahlem Lahmar
- Department of Pathology, Mongi Slim University Hospital, La Marsa, Tunisia
- Medical School, University of Tunis El Manar, Tunis, Tunisia
| | - Luca Campo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sihem Mebarki
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sandrine Bichet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Nidhameddine Kchir
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Pathology Department, La Rabta University Hospital, Tunis, Tunisia
| | - Leila Charrada-Ben Farhat
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Department of Diagnostic and Interventional Radiology, Mongi Slim University Hospital, La Marsa, Tunisia
| | - Rania Hefaiedh
- Department of Hepato-gastro-enterology, Mongi Slim University Hospital, Tunis, Tunisia
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| | - Lotfi Hendaoui
- Medical School, University of Tunis El Manar, Tunis, Tunisia
- Department of Diagnostic and Interventional Radiology, Mongi Slim University Hospital, La Marsa, Tunisia
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Shi T, Gong J, Fujita K, Nishiyama N, Iwama H, Liu S, Nakahara M, Yoneyama H, Morishita A, Nonura T, Kobara H, Okano K, Suzuki Y, Masaki T. Aspirin inhibits cholangiocarcinoma cell proliferation via cell cycle arrest in vitro and in vivo. Int J Oncol 2020; 58:199-210. [PMID: 33491760 PMCID: PMC7864011 DOI: 10.3892/ijo.2020.5165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma is the most common biliary duct malignancy and the second most common primary liver cancer, accounting for 10-20% of hepatic malignancies. With high mortality and poor prognosis, the 5-year survival rate of cholangiocarcinoma is only 10%. A previous study demonstrated a significant association between aspirin use and a decreased risk of cholangiocarcinoma. However, the effect of aspirin on cholangiocarcinoma remains unknown. Therefore, the aim of the present study was to investigate the effects of aspirin on cholangiocarcinoma in vitro and in vivo. Three cholangiocarcinoma cell lines were used to analyze the effect of aspirin on cell proliferation, cell cycle progression, apoptosis, and the regulation of microRNAs. MicroRNAs are known to regulate the development and progression of various types of cancer. An HuCCT-1 xenograft model was used for the in vivo study. It was determined that aspirin inhibited the proliferation of human cholangiocarcinoma cells (except TKKK cells). Aspirin induced cell cycle arrest in the G0/G1 phase and regulated cell-cycle related proteins in cholangiocarcinoma cells (HuCCT-1 cells) but did not induce apoptosis. The expression of miR-340-5p was significantly upregulated after treatment, and overexpression of miR-340-5p inhibited the proliferation of HuCCT-1 cells and decreased the levels of cyclin D1. TKKK cells had low miR-340-5p expression, which may explain why aspirin had no effect on their proliferation. In vivo, aspirin reduced the growth of xenografted tumors. In conclusion, the present study indicated that aspirin partially inhibited cholangiocarcinoma cell proliferation and tumor growth by inducing G0/G1 phase cell cycle arrest, potentially through the miR-340-5p/cyclin D1 axis.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Jian Gong
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Shi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Takako Nonura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Keiichi Okano
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Yasuyuki Suzuki
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| |
Collapse
|
11
|
Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020; 13:E12. [PMID: 33375055 PMCID: PMC7792779 DOI: 10.3390/cancers13010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biliary tract cancer (BTC) is characterised by poor prognosis and low overall survival in patients. This is generally due to minimal understanding of its pathogenesis, late diagnosis and limited therapeutics in preventing or treating BTC patients. Non-coding RNA (ncRNA) are small RNAs (mRNA) that are not translated to proteins. ncRNAs were considered to be of no importance in the genome, but recent studies have shown they play essential roles in biology and oncology such as transcriptional repression and degradation, thus regulating mRNA transcriptomes. This has led to investigations into the role of ncRNAs in the pathogenesis of BTC, and their clinical implications. In this review, the mechanisms of action of ncRNA are discussed and the role of microRNAs in BTC is summarised. The scope of this review will be limited to miRNA as they have been shown to play the most significant roles in BTC progression. There is huge potential in miRNA-based biomarkers and therapeutics in BTC, but more studies, research and technological advancements are required before it can be translated into clinical practice for patients.
Collapse
Affiliation(s)
- Nduka Ofoeyeno
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | | | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 Y0N, UK
| |
Collapse
|
12
|
Donati S, Ciuffi S, Marini F, Palmini G, Miglietta F, Aurilia C, Brandi ML. Multiple Endocrine Neoplasia Type 1: The Potential Role of microRNAs in the Management of the Syndrome. Int J Mol Sci 2020; 21:ijms21207592. [PMID: 33066578 PMCID: PMC7589704 DOI: 10.3390/ijms21207592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare inherited tumor syndrome, characterized by the development of multiple neuroendocrine tumors (NETs) in a single patient. Major manifestations include primary hyperparathyroidism, gastro-entero-pancreatic neuroendocrine tumors, and pituitary adenomas. In addition to these main NETs, various combinations of more than 20 endocrine and non-endocrine tumors have been described in MEN1 patients. Despite advances in diagnostic techniques and treatment options, which are generally similar to those of sporadic tumors, patients with MEN1 have a poor life expectancy, and the need for targeted therapies is strongly felt. MEN1 is caused by germline heterozygous inactivating mutations of the MEN1 gene, which encodes menin, a tumor suppressor protein. The lack of a direct genotype–phenotype correlation does not permit the determination of the exact clinical course of the syndrome. One of the possible causes of this lack of association could be ascribed to epigenetic factors, including microRNAs (miRNAs), single-stranded non-coding small RNAs that negatively regulate post-transcriptional gene expression. Some miRNAs, and their deregulation, have been associated with MEN1 tumorigenesis. Recently, an extracellular class of miRNAs has also been identified (c-miRNAs); variations in their levels showed association with various human diseases, including tumors. The aim of this review is to provide a general overview on the involvement of miRNAs in MEN1 tumor development, to be used as possible targets for novel molecular therapies. The potential role of c-miRNAs as future non-invasive diagnostic and prognostic biomarkers of MEN1 will be discussed as well.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
- Unit of Bone and Mineral Diseases, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy
- Fondazione Italiana Ricerca Sulle Malattie Dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-7946304
| |
Collapse
|
13
|
Wang S, Liu N, Tang Q, Sheng H, Long S, Wu W. MicroRNA-24 in Cancer: A Double Side Medal With Opposite Properties. Front Oncol 2020; 10:553714. [PMID: 33123467 PMCID: PMC7566899 DOI: 10.3389/fonc.2020.553714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-24 (miR-24) has been widely studied in a variety of human cancers, which plays different roles in specific type of cancers. In the present review, we summarized the recent surveys regarding the role of miR-24 in different human cancers. On the one hand, miR-24 was reported to be down-regulated in some types of cancer, indicating its role as a tumor suppressor. On the other hand, it has shown that miR-24 was up-regulated in some other types of cancer, even in the same type of cancer, suggesting the role of miR-24 being as an oncogene. Firstly, miR-24 was dysregualted in human cancers, which is related to the clinical performance of cancer patients. Thus miR-24 could be used as a potential non-invasive diagnostic marker in human cancers. Secondly, miR-24 was associated with the tumor initiation and progression, being as a promoter or inhibitor. Therefore, miR-24 might be an effective prognostic biomarker in different type of cancers. Lastly, the abnormal expression of miR-24 was involved in the chemo- and radio- therapies of cancer patients, indicating the role of miR-24 being as a predictive biomarker to cancer treatment. Totally, miR-24 contributes to tumorigenesis, tumor progression, and tumor therapy, which closely related to clinic. The present review shows that miR-24 plays a double role in human cancers and provides plenty of evidences to apply miR-24 as a potential novel therapeutic target in treating human cancers.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Nayan Liu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Tang
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Honghao Sheng
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Shunqin Long
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wanyin Wu
- Department of Oncology, Clinical and Basic Research Team of Traditional Chinese Medicine Prevention and Treatment of Non-Small Cell Lung Cancer, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
14
|
Mamedova EO, Dimitrova DA, Belaya ZE, Melnichenko GA. [The role of non-coding RNAs in the pathogenesis of multiple endocrine neoplasia syndrome type 1]. ACTA ACUST UNITED AC 2020; 66:4-12. [PMID: 33351343 DOI: 10.14341/probl12413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023]
Abstract
Changes in the expression of non-coding ribonucleic acids (ncRNAs) take part in the formation of various tumors. Multiple endocrine neoplasia syndrome type 1 (MEN1) is a rare autosomal dominant disease caused by mutations of the MEN1 gene encoding the menin protein. This syndrome is characterized by the occurrence of parathyroid tumors, gastroenteropancreatic neuroendocrine tumors, pituitary adenomas, as well as other endocrine and non-endocrine tumors. The pathogenesis of MEN-1 associated tumors due to MEN1 mutations remains unclear. In the absence of mutations of the MEN1 gene in patients with phenotypically similar features, this condition is regarded as a phenocopy of this syndrome. The cause of the combination of several MEN-1-related tumors in these patients remains unknown. The possible cause is that changes in the expression of ncRNAs affect the regulation of signaling pathways in which menin participates and may contribute to the development of MEN-1-related tumors. The identification of even a small number of agents interacting with menin makes a significant contribution to the improvement of knowledge about its pathophysiological influence and ways of developing tumors within the MEN-1 syndrome and its phenocopies.
Collapse
|
15
|
The Effect of Methylselenocysteine and Sodium Selenite Treatment on microRNA Expression in Liver Cancer Cell Lines. Pathol Oncol Res 2020; 26:2669-2681. [PMID: 32656599 PMCID: PMC7471166 DOI: 10.1007/s12253-020-00870-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The unique character of selenium compounds, including sodium selenite and Se-methylselenocysteine (MSC), is that they exert cytotoxic effects on neoplastic cells, providing a great potential for treating cancer cells being highly resistant to cytostatic drugs. However, selenium treatment may affect microRNA (miRNA) expression as the pattern of circulating miRNAs changed in a placebo-controlled selenium supplement study. This necessitates exploring possible changes in the expression profiles of miRNAs. For this, miRNAs being critical for liver function were selected and their expression was measured in hepatocellular carcinoma (HLE and HLF) and cholangiocarcinoma cell lines (TFK-1 and HuH-28) using individual TaqMan MicroRNA Assays following selenite or MSC treatments. For establishing tolerable concentrations, IC50 values were determined by performing SRB proliferation assays. The results revealed much lower IC50 values for selenite (from 2.7 to 11.3 μM) compared to MSC (from 79.5 to 322.6 μM). The treatments resulted in cell line-dependent miRNA expression patterns, with all miRNAs found to show fold change differences; however, only a few of these changes were statistically different in treated cells compared to untreated cells below IC50. Namely, miR-199a in HLF, miR-143 in TFK-1 upon MSC treatment, miR-210 in HLF and TFK-1, miR-22, -24, -122, -143 in HLF upon selenite treatment. Fold change differences revealed that miR-122 with both selenium compounds, miR-199a with MSC and miR-22 with selenite were affected. The miRNAs showing minimal alterations included miR-125b and miR-194. In conclusion, our results revealed moderately altered miRNA expression in the cell lines (less alterations following MSC treatment), being miR-122, -199a the most affected and miR-125b, -194 the least altered miRNAs upon selenium treatment.
Collapse
|
16
|
Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers (Basel) 2019; 11:cancers11111652. [PMID: 31731549 PMCID: PMC6896146 DOI: 10.3390/cancers11111652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is a devastating cancer that ranges from relatively rare (around 2% of all cancers in the United States) to commonplace (up to 50% of cancers in underdeveloped countries). Depending upon the stage of pathogenesis, prognosis, or functional liver tissue present, transplantation or partial hepatectomy may be the only available treatment option. However, due to the rise in metabolic syndrome and the increasing demand for livers, patients often wait months or years for available organs. Due to this shortage, doctors must have other treatment options available. One promising area of cancer research lies in understanding the role of regulatory non-coding RNAs (ncRNAs) as oncogenic drivers and potential targets for prospective therapies. While the role of these ncRNAs was not initially clear, many of them have since been recognized to function as important players in the regulation of gene expression, epigenetic modification, and signal transduction in both normal and cancer cell cycles. Dysregulation of these different ncRNA subtypes has been implicated in the pathogenesis and progression of many major cancers including hepatocellular carcinoma. This review summarizes current findings on the roles noncoding RNAs play in the progression of liver cancer and the various animal models used in current research to elucidate those data.
Collapse
|
17
|
Liu H, Ma L, Wang J. Overexpression of miR-25 is associated with progression and poor prognosis of cholangiocarcinoma. Exp Ther Med 2019; 18:2687-2694. [PMID: 31555370 DOI: 10.3892/etm.2019.7844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly aggressive type of malignancy. MicroRNA (miR)-25 has been demonstrated to be involved in the genesis of numerous cancer types. The aim of the present study was to investigate the prognostic value and functional role of miR-25 in CCA. The expression of miR-25 was determined by reverse transcription-quantitative (RT-q)PCR. The association between miR-25 expression and clinicopathological features was analyzed using the χ2 test. Kaplan-Meier survival analysis and Cox linear regression were performed to explore the prognostic value of miR-25. The effects of miR-25 on the biological behavior of CCA cells were determined using loss-and gain-of-function experiments in CCA cell lines. Upregulated miR-25 expression was observed in CCA tissues and cell lines compared with that in the respective controls (all P<0.05). Patients with high expression of miR-25 in CCA tissues had a comparatively higher tumor-nodes-metastasis stage (P=0.026), a higher rate of lymph node metastasis (P=0.032) and a shorter overall survival rate (log-rank P=0.022). miR-25 was determined to be an independent prognostic factor for CCA patients (P=0.036). In vitro, transfection with miR-25 inhibitor suppressed cell viability, migration and invasion, while miR-25 mimics had the opposite effect. These results indicated that miR-25 functions as an oncogene and is involved in tumor progression in CCA. miR-25 may serve as a prognostic biomarker and a potential therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Lujuan Ma
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Jian Wang
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
18
|
Qiaoqiao C, Li H, Liu X, Yan Z, Zhao M, Xu Z, Wang Z, Shi K. MiR-24-3p regulates cell proliferation and milk protein synthesis of mammary epithelial cells through menin in dairy cows. J Cell Physiol 2019; 234:1522-1533. [PMID: 30221364 PMCID: PMC6282567 DOI: 10.1002/jcp.27017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 01/04/2023]
Abstract
MiR-24-3p, a broadly conserved, small, noncoding RNA, is abundantly expressed in mammary tissue. However, its regulatory role in this tissue remains poorly understood. It was predicted that miR-24-3p targets the 3' untranslated region (3'-UTR) of multiple endocrine neoplasia type 1 (MEN1), an important regulatory factor in mammary tissue. The objective of this study was to investigate the function of miR-24-3p in mammary cells. Using a luciferase assay in mammary epithelial cells (MAC-T), miR-24-3p was confirmed to target the 3'-UTR of MEN1. Furthermore, miR-24-3p negatively regulated the expression of the MEN1 gene and its encoded protein, menin. miR-24-3p enhanced proliferation of MAC-T by promoting G1/S phase progression. MiR-24-3p also regulated the expression of key factors involved in phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin and Janus kinase/signal transducer and activators of transcription signaling pathways, therefore controlling milk protein synthesis in epithelial cells. Thus, miR-24-3p appears to act on MAC-T by targeting MEN1. The expression of miR-24-3p was controlled by MEN1/menin, indicating a negative feedback loop between miR-24-3p and MEN1/menin. The negatively inhibited expression pattern of miR-24-3p and MEN1 was active in mammary tissues at different lactation stages. The feedback mechanism is a new concept to further understand the lactation cycle of mammary glands and can possibly to be manipulated to improve milk yield and quality.
Collapse
Affiliation(s)
- Cao Qiaoqiao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Honghui Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Xue Liu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhengui Yan
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhongjin Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Zhonghua Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural UniversityTai’anShandongChina
| |
Collapse
|
19
|
Lines KE, Newey PJ, Yates CJ, Stevenson M, Dyar R, Walls GV, Bowl MR, Thakker RV. MiR-15a/miR-16-1 expression inversely correlates with cyclin D1 levels in Men1 pituitary NETs. J Endocrinol 2018; 240:JOE-18-0278.R2. [PMID: 30389902 PMCID: PMC6347280 DOI: 10.1530/joe-18-0278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Multiple Endocrine Neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. MicroRNAs (miRNA) are non-coding single stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative 'tumour suppressor' miRNAs, miR-15a, miR-16-1 and let-7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knock out of the Men1 gene (Men1+/- mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, p<0.05; 2.1-fold p<0.01 and 1.6-fold p<0.05, respectively) of Men1+/- mice, compared to normal wild type pituitaries. MiR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knock down of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (p<0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - P J Newey
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - C J Yates
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - R Dyar
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - G V Walls
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - M R Bowl
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, UK
| |
Collapse
|
20
|
MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
|
21
|
Wangyang Z, Daolin J, Yi X, Zhenglong L, Lining H, Yunfu C, Xingming J. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9:100-107. [PMID: 29290774 PMCID: PMC5743716 DOI: 10.7150/jca.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with poor prognosis. Less understanding of its etiology and pathogenesis makes the diagnosis and therapy difficult. Recently, accumulating evidences have demonstrated that deregulated expression of non-coding RNAs (ncRNAs) is closely associated with the etiopathogenesis of CCA. NcRNAs which lack open reading frame are a heterogeneous class of transcribed RNA molecules, including microRNAs, long non-coding RNAs and circular RNAs. Several studies have shown ncRNAs dysregulation is a common central event occurring in CCA and has the potential of being therapy targets. Moreover, ncRNAs can be easily detected in cancer tissues and biofluids, representing valuable tools for diagnosis. In this review, we illustrate the role of ncRNA in the CCA and discuss their potential clinical value.
Collapse
Affiliation(s)
- Zheng Wangyang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Ji Daolin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xu Yi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Li Zhenglong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Huang Lining
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Cui Yunfu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Jiang Xingming
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
22
|
Wu YF, Li ZR, Cheng ZQ, Yin XM, Wu JS. Decrease of miR-622 expression promoted the proliferation, migration and invasion of cholangiocarcinoma cells by targeting regulation of c-Myc. Biomed Pharmacother 2017; 96:7-13. [PMID: 28961507 DOI: 10.1016/j.biopha.2017.09.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To explore the mechanism of miR-622 in regulating the proliferation, migration and invasion of cholangiocarcinoma (CCA) cells. MATERIALS AND METHODS Quantitative real-time PCR was conducted to measure the expression of miR-622 and c-Myc in CCA tissues and cell lines. Protein level of c-Myc was measured by Western blot. The effect of miR-622 on cell proliferation, migration and invasion was analyzed by MTT assay and Transwell chamber migration assay. Luciferase reporter assay was performed to measure the effect of miR-622 on c-Myc. RESULTS miR-622 expression was downregulated in both CCA tissues and cell lines, while c-Myc expression was uregulated. Overexpression of miR-622 in CCA cells was statistically correlated with a decrease of cell proliferation, migration and invasion, while inhibition of miR-622 made an inverse result. We also proved c-Myc was identified as a target gene of miR-622 in CCA. Moreover, we found overexpression of c-Myc can strengthen the effects of miR-622 on the proliferation, migration and invasion of CCA cells. CONCLUSION Decrease of miR-622 promotes the proliferation, migration and invasion of CCA cells by directly targeting c-Myc.
Collapse
Affiliation(s)
- Yi-Fei Wu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, 410005, China.
| | - Zhuo-Ri Li
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, Haikou, 570311, China
| | - Zhi-Qi Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Xin-Min Yin
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jin-Shu Wu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, Changsha, 410005, China
| |
Collapse
|
23
|
Kennedy L, Hargrove L, Demieville J, Francis N, Seils R, Villamaria S, Francis H. Recent Advances in Understanding Cholangiocarcinoma. F1000Res 2017; 6:1818. [PMID: 29067165 PMCID: PMC5635438 DOI: 10.12688/f1000research.12118.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy that arises from damaged epithelial cells, cholangiocytes, and possibly de-differentiated hepatocytes. CCA has a poor overall survival rate and limited therapeutic options. Based on this data, it is imperative that new diagnostic and therapeutic interventions be developed. Recent work has attempted to understand the pathological mechanisms driving CCA progression. Specifically, recent publications have delved into the role of cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and microRNAs (miRNAs) during CCA pathology. CSCs are a specific subset of cells within the tumor environment that are derived from a cell with stem-like properties and have been shown to influence recurrence and chemoresistance during CCA. MSCs are known for their anti-inflammatory activity and have been postulated to influence malignancy during CCA, but little is known about their exact functions. miRNAs exert various functions via gene regulation at both the transcriptional and the translational levels, giving miRNAs diverse roles in CCA progression. Additionally, current miRNA-based therapeutic approaches are in clinical trials for various liver diseases, giving hope for similar approaches for CCA. However, the interactions among these three factors in the context of CCA are unknown. In this review, we focus on recently published data (within the last 3 years) that discuss the role of CSCs, MSCs, and miRNAs and their possible interactions during CCA pathogenesis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Laura Hargrove
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | | | - Nicole Francis
- Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| | - Rowan Seils
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Sara Villamaria
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA
| | - Heather Francis
- Department of Internal Medicine, Texas A&M Health Science Center, College of Medicine, Bryan, TX, USA.,Research, Central Texas Veterans Health Care System, Temple, TX, USA.,Baylor Scott & White Health Digestive Disease Research Center, Temple, TX, USA
| |
Collapse
|
24
|
Feng Z, Ma J, Hua X. Epigenetic regulation by the menin pathway. Endocr Relat Cancer 2017; 24:T147-T159. [PMID: 28811300 PMCID: PMC5612327 DOI: 10.1530/erc-17-0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.
Collapse
Affiliation(s)
- Zijie Feng
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Ma
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianxin Hua
- Department of Cancer BiologyAbramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Hall C, Ehrlich L, Meng F, Invernizzi P, Bernuzzi F, Lairmore TC, Alpini G, Glaser S. Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2 -/- mice. J Surg Res 2017; 217:160-169. [PMID: 28602220 PMCID: PMC5760243 DOI: 10.1016/j.jss.2017.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liver transplantation remains the primary treatment for primary sclerosing cholangitis (PSC). Mdr2-/- mice provide a reliable in vivo model of PSC and develop characteristic biliary inflammation and fibrosis. We tested the hypothesis that the tumor suppressor protein menin is implicated in the progression of liver fibrosis and that menin expression can be regulated in the liver via microRNA-24 (miR-24). MATERIALS AND METHODS Menin expression was measured in human PSC and Mdr2-/- mice. Twelve-week-old FVB/NJ wild-type (WT) and Mdr2-/- mice were treated with miR-24 Vivo-Morpholino to knockdown miR-24 expression levels. Liver fibrosis was evaluated by Sirius Red staining and quantitative polymerase chain reaction (qPCR) for genes associated with liver fibrosis, such as fibronectin 1, collagen type 1 alpha 1, transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin. Studies were also performed in vitro using immortalized murine cholangiocyte lines treated with miR-24 hairpin inhibitor and mimic. RESULTS Menin gene expression was increased in Mdr2-/- mice and late-stage human PSC samples. Treatment of FVB/NJ WT and Mdr2-/- mice with miR-24 Vivo-Morpholino increased menin expression, which correlated with increased expression of fibrosis genes. In vitro, inhibition of miR-24 also significantly increased the expression of fibrosis genes. CONCLUSIONS Inhibition of miR-24 increases menin and TGF-β1 expression, subsequently increasing hepatic fibrosis in FVB/NJ WT and Mdr2-/- mice. Modulation of the menin/miR-24 axis may provide novel targeted therapies to slow the progression of hepatic fibrosis into cirrhosis in PSC patients by altering TGF-β1 expression.
Collapse
Affiliation(s)
- Chad Hall
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Laurent Ehrlich
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Fanyin Meng
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Terry C Lairmore
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Shannon Glaser
- Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; Research, Central Texas Veterans Health Care System, Temple, Texas.
| |
Collapse
|
26
|
Magnusson L, Hansen N, Saba KH, Nilsson J, Fioretos T, Rissler P, Nord KH. Loss of the tumour suppressor gene AIP mediates the browning of human brown fat tumours. J Pathol 2017; 243:160-164. [PMID: 28722204 DOI: 10.1002/path.4945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
Human brown fat tumours (hibernomas) show concomitant loss of the tumour suppressor genes MEN1 and AIP. We hypothesized that the brown fat phenotype is attributable to these mutations. Accordingly, in this study, we demonstrate that silencing of AIP in human brown preadipocytic and white fat cell lines results in the induction of the brown fat marker UCP1. In human adipocytic tumours, loss of MEN1 was found both in white (one of 51 lipomas) and in brown fat tumours. In contrast, concurrent loss of AIP was always accompanied by a brown fat morphology. We conclude that this white-to-brown phenotype switch in brown fat tumours is mediated by the loss of AIP. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Linda Magnusson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nils Hansen
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karim H Saba
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pehr Rissler
- Department of Pathology, Skåne University and Regional Laboratories, Sweden
| | - Karolin H Nord
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Ehrlich L, Hall C, Meng F, Lairmore T, Alpini G, Glaser S. A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology. Gene Expr 2017; 17:251-263. [PMID: 28485270 PMCID: PMC5765438 DOI: 10.3727/105221617x695744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a familial cancer syndrome with neuroendocrine tumorigenesis of the parathyroid glands, pituitary gland, and pancreatic islet cells. The MEN1 gene codes for the canonical tumor suppressor protein, menin. Its protein structure has recently been crystallized, and it has been investigated in a multitude of other tissues. In this review, we summarize recent advancements in understanding the structure of the menin protein and its function as a scaffold protein in histone modification and epigenetic gene regulation. Furthermore, we explore its role in hepatobiliary autoimmune diseases, cancers, and metabolic diseases. In particular, we discuss how menin expression and function are regulated by extracellular signaling factors and nuclear receptor activation in various hepatic cell types. How the many signaling pathways and tissue types affect menin's diverse functions is not fully understood. We show that small-molecule inhibitors affecting menin function can shed light on menin's broad role in pathophysiology and elucidate distinct menin-dependent processes. This review reveals menin's often dichotomous function through analysis of its role in multiple disease processes and could potentially lead to novel small-molecule therapies in the treatment of cholangiocarcinoma or biliary autoimmune diseases.
Collapse
Affiliation(s)
- Laurent Ehrlich
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Chad Hall
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Fanyin Meng
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Terry Lairmore
- †Department of Surgery, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
| | - Gianfranco Alpini
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| | - Shannon Glaser
- *Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, USA
- ‡Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, USA
| |
Collapse
|