1
|
Jones JK, Moyer QJ, Sudhof LS, Soufi K, Mashouf LA, Warf BC, Sadegh C. "Dangling choroid" with contralateral glomus displacement and ischemic torsion in congenital hydrocephalus: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24505. [PMID: 39622046 PMCID: PMC11616145 DOI: 10.3171/case24505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND "Dangling choroid" is a prenatal sonographic marker of ventriculomegaly that measures the angle of choroid plexus (ChP) displacement in the lateral ventricle. To the authors' knowledge, postnatal sequelae related to this pathology, besides hydrocephalus, have never been reported. OBSERVATIONS A female fetus was diagnosed with bilateral ventriculomegaly. Postnatally, the patient was diagnosed with hydrocephalus and macrocephaly secondary to aqueductal stenosis and underwent endoscopic third ventriculostomy with ChP cauterization. Intraoperatively, the septum pellucidum was incomplete, and the right-sided ChP glomus was contralaterally displaced and entangled with the left, with evidence of ischemic torsion and hemorrhage. LESSONS In this case of an ischemic ChP secondary to transventricular displacement of the glomus, at least two biomechanical events are relevant. First, the choroid fissure and velum interpositum can be thinned in the setting of ventriculomegaly. Second, stretching and perforation of the septum pellucidum can occur. Both changes can increase the mobility of a dangling choroid, occasionally leading to entanglement of the vascular pedicles. Preoperative recognition of this complication can help optimize surgical planning, e.g., using flexible endoscopy to facilitate complete ChP cauterization and changing the surgical approach if the ChP has been displaced. https://thejns.org/doi/10.3171/CASE24505.
Collapse
Affiliation(s)
- Jill K. Jones
- Harvard Medical School, Boston, Massachusetts
- Departments of Pathology, Boston Children’s Hospital, Boston, Massachusetts
| | - Quentin J. Moyer
- Harvard Medical School, Boston, Massachusetts
- Department of Radiology & Diagnostic Medical Imaging, Lehigh Valley Health Network, Allentown, Pennsylvania
| | - Leanna S. Sudhof
- Departments of Obstetrics & Gynecology, UC Davis Medical Center, Sacramento, California
| | - Khadija Soufi
- Departments of Neurosurgery, UC Davis Medical Center, Sacramento, California
| | | | - Benjamin C. Warf
- Departments of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Cameron Sadegh
- Departments of Neurosurgery, UC Davis Medical Center, Sacramento, California
| |
Collapse
|
2
|
Hill AD, Okonechnikov K, Herr MK, Thomas C, Thongjuea S, Hasselblatt M, Patrizi A. Single-nucleus RNA-seq dissection of choroid plexus tumor cell heterogeneity. EMBO J 2024; 43:6766-6791. [PMID: 39482394 DOI: 10.1038/s44318-024-00283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
The genomic, genetic and cellular events regulating the onset, growth and survival of rare, choroid plexus neoplasms remain poorly understood. Here, we examine the heterogeneity of human choroid plexus tumors by single-nucleus transcriptome analysis of 23,906 cells from four disease-free choroid plexus and eleven choroid plexus tumors. The resulting expression atlas profiles cellular and transcriptional diversity, copy number alterations, and cell-cell interaction networks in normal and cancerous choroid plexus. In choroid plexus tumor epithelial cells, we observe transcriptional changes that correlate with genome-wide methylation profiles. We further characterize tumor type-specific stromal microenvironments that include altered macrophage and mesenchymal cell states, as well as changes in extracellular matrix components. This first single-cell dataset resource from such scarce samples should be valuable for divising therapies against these little-studied neoplasms.
Collapse
Affiliation(s)
- Anthony D Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Konstantin Okonechnikov
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Marla K Herr
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Supat Thongjuea
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Ho KH, Trapp M, Guida C, Ivanova EL, De Jaime-Soguero A, Jabali A, Thomas C, Salasova A, Bernatík O, Salio C, Horschitz S, Hasselblatt M, Sassoe-Pognetto M, Čajánek L, Ishikawa H, Schroten H, Schwerk C, Acebrón SP, Angel P, Koch P, Patrizi A. Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus. Neuro Oncol 2024:noae176. [PMID: 39215664 DOI: 10.1093/neuonc/noae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) is the secretory epithelial structure located in brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of the tumor pathology and limited availability of valid models. METHODS Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and over-expression of Wnt/β-catenin pathway genes. 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knock-out of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelia cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catello Guida
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Ekaterina L Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | | | - Ammar Jabali
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE, and Center of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ondřej Bernatík
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Chiara Salio
- Department of Veterinary Sciences, Turin University, Grugliasco, Italy
| | - Sandra Horschitz
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Philipp Koch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
4
|
Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, Shipley FB, Dani N, Grant B, Pragana A, Head JP, Gupta S, Shannon ML, Chifamba FF, Hawks-Mayer H, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Andermann ML, Kanarek N, Lipton JO, Lehtinen MK. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. Nat Commun 2023; 14:3720. [PMID: 37349305 PMCID: PMC10287727 DOI: 10.1038/s41467-023-39326-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Transmission and secretion of signals via the choroid plexus (ChP) brain barrier can modulate brain states via regulation of cerebrospinal fluid (CSF) composition. Here, we developed a platform to analyze diurnal variations in male mouse ChP and CSF. Ribosome profiling of ChP epithelial cells revealed diurnal translatome differences in metabolic machinery, secreted proteins, and barrier components. Using ChP and CSF metabolomics and blood-CSF barrier analyses, we observed diurnal changes in metabolites and cellular junctions. We then focused on transthyretin (TTR), a diurnally regulated thyroid hormone chaperone secreted by the ChP. Diurnal variation in ChP TTR depended on Bmal1 clock gene expression. We achieved real-time tracking of CSF-TTR in awake TtrmNeonGreen mice via multi-day intracerebroventricular fiber photometry. Diurnal changes in ChP and CSF TTR levels correlated with CSF thyroid hormone levels. These datasets highlight an integrated platform for investigating diurnal control of brain states by the ChP and CSF.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Peter N Kalugin
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paul A Soden
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bradford Grant
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Suhasini Gupta
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hannah Hawks-Mayer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Amanda Vernon
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Gao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Lyterian Therapeutics, South San Francisco, 94080, CA, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark L Andermann
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan O Lipton
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
6
|
Martin B, Garman T, Laramee M, Wang A, Zhang X, Beck E, Wilson K, Klumpp-Thomas C, McKnight C, Xu X, Hagen N, Holland D, Dahmane N, Thomas CJ, Souweidane M. Preclinical validation of a novel therapeutic strategy for choroid plexus carcinoma. J Control Release 2023; 357:580-590. [PMID: 37054779 PMCID: PMC10174050 DOI: 10.1016/j.jconrel.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Choroid plexus carcinoma (CPC) is a rare infantile brain tumor with an aggressive clinical course that often leaves children with debilitating side effects due to aggressive and toxic chemotherapies. Development of novel therapeutical strategies for this disease have been extremely limited owing to the rarity of the disease and the paucity of biologically relevant substrates. We conducted the first high-throughput screen (HTS) on a human patient-derived CPC cell line (Children Cancer Hospital Egypt, CCHE-45) and identified 427 top hits highlighting key molecular targets in CPC. Furthermore, a combination screen with a wide variety of targets revealed multiple synergistic combinations that may pave the way for novel therapeutical strategies against CPC. Based on in vitro efficiency, central nervous system (CNS) penetrance ability and feasible translational potential, two combinations using a DNA alkylating or topoisomerase inhibitors in combination with an ataxia telangiectasia mutated and rad3 (ATR) inhibitor (topotecan/elimusertib and melphalan/elimusertib respectively) were validated in vitro and in vivo. Pharmacokinetic assays established increased brain penetrance with intra-arterial (IA) delivery over intra-venous (IV) delivery and demonstrated a higher CNS penetrance for the combination melphalan/elimusertib. The mechanisms of synergistic activity for melphalan/elimusertib were assessed through transcriptome analyses and showed dysregulation of key oncogenic pathways (e.g. MYC, mammalian target of rapamycin mTOR, p53) and activation of critical biological processes (e.g. DNA repair, apoptosis, hypoxia, interferon gamma). Importantly, IA administration of melphalan combined with elimusertib led to a significant increase in survival in a CPC genetic mouse model. In conclusion, this study is, to the best of our knowledge, the first that identifies multiple promising combinatorial therapeutics for CPC and emphasizes the potential of IA delivery for the treatment of CPC.
Collapse
Affiliation(s)
- Brice Martin
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Tyler Garman
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Madeline Laramee
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Amy Wang
- Division of National Toxicology, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erin Beck
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kelli Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Xu
- Division of National Toxicology, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Natalie Hagen
- Division of National Toxicology, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
8
|
Li Q, Han Z, Singh N, Terré B, Fame RM, Arif U, Page TD, Zahran T, Abdeltawab A, Huang Y, Cao P, Wang J, Lu H, Lidov HGW, Surendran K, Wu L, Virga JQ, Zhao YT, Schüller U, Wechsler-Reya RJ, Lehtinen MK, Roy S, Liu Z, Stracker TH, Zhao H. Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death Differ 2022; 29:1596-1610. [PMID: 35322202 PMCID: PMC9345885 DOI: 10.1038/s41418-022-00950-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Multiciliated cells (MCCs) in the brain reside in the ependyma and the choroid plexus (CP) epithelia. The CP secretes cerebrospinal fluid that circulates within the ventricular system, driven by ependymal cilia movement. Tumors of the CP are rare primary brain neoplasms mostly found in children. CP tumors exist in three forms: CP papilloma (CPP), atypical CPP, and CP carcinoma (CPC). Though CPP and atypical CPP are generally benign and can be resolved by surgery, CPC is a particularly aggressive and little understood cancer with a poor survival rate and a tendency for recurrence and metastasis. In contrast to MCCs in the CP epithelia, CPCs in humans are characterized by solitary cilia, frequent TP53 mutations, and disturbances to multiciliogenesis program directed by the GMNC-MCIDAS transcriptional network. GMNC and MCIDAS are early transcriptional regulators of MCC fate differentiation in diverse tissues. Consistently, components of the GMNC-MCIDAS transcriptional program are expressed during CP development and required for multiciliation in the CP, while CPC driven by deletion of Trp53 and Rb1 in mice exhibits multiciliation defects consequent to deficiencies in the GMNC-MCIDAS program. Previous studies revealed that abnormal NOTCH pathway activation leads to CPP. Here we show that combined defects in NOTCH and Sonic Hedgehog signaling in mice generates tumors that are similar to CPC in humans. NOTCH-driven CP tumors are monociliated, and disruption of the NOTCH complex restores multiciliation and decreases tumor growth. NOTCH suppresses multiciliation in tumor cells by inhibiting the expression of GMNC and MCIDAS, while Gmnc-Mcidas overexpression rescues multiciliation defects and suppresses tumor cell proliferation. Taken together, these findings indicate that reactivation of the GMNC-MCIDAS multiciliogenesis program is critical for inhibiting tumorigenesis in the CP, and it may have therapeutic implications for the treatment of CPC.
Collapse
Affiliation(s)
- Qun Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhiyuan Han
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Navleen Singh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Berta Terré
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Uzayr Arif
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Thomas D Page
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Tasneem Zahran
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ahmed Abdeltawab
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ping Cao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Jun Wang
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Explora Biolabs, 11175 Flintkote Avenue, Suite B, San Diego, CA, 92121, USA
| | - Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th Street North, Sioux Falls, SD, 57104, USA
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, PR China
| | - James Q Virga
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ying-Tao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119288, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Zhongmin Liu
- Department of Cardio-vascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, PR China.
- The Institute of Biomedical Engineering & Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, Barcelona, 08028, Spain.
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Bethesda, MD, 20892, USA.
| | - Haotian Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, 11568, USA.
| |
Collapse
|
9
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Dani N, Herbst RH, McCabe C, Green GS, Kaiser K, Head JP, Cui J, Shipley FB, Jang A, Dionne D, Nguyen L, Rodman C, Riesenfeld SJ, Prochazka J, Prochazkova M, Sedlacek R, Zhang F, Bryja V, Rozenblatt-Rosen O, Habib N, Regev A, Lehtinen MK. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 2021; 184:3056-3074.e21. [PMID: 33932339 DOI: 10.1016/j.cell.2021.04.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1β (IL-1β) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.
Collapse
Affiliation(s)
- Neil Dani
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca H Herbst
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Cristin McCabe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gilad S Green
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02115, USA
| | - Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christopher Rodman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Michaela Prochazkova
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague 142 20, Czech Republic
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Naomi Habib
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
11
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
13
|
Fame RM, Shannon ML, Chau KF, Head JP, Lehtinen MK. A concerted metabolic shift in early forebrain alters the CSF proteome and depends on MYC downregulation for mitochondrial maturation. Development 2019; 146:dev.182857. [PMID: 31575649 DOI: 10.1242/dev.182857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
Massive, coordinated cellular changes accompany the transition of central nervous system (CNS) progenitors from forebrain neurectodermal cells to specified neuroepithelial cells. We have previously found that MYC regulates the changing ribosomal and proteostatic landscapes in mouse forebrain precursors at embryonic days E8.5 and E10.5 (before and after neural tube closure; NTC) (Chau et al., 2018). Here, we demonstrate parallel coordinated transcriptional changes in metabolic machinery during this same stage of forebrain specification. Progenitors showed striking mitochondrial structural changes transitioning from glycolytic cristae at E8.5, to more traditional mitochondria at E10.5. Accordingly, glucose use shifted in progenitors such that E8.5 progenitors relied on glycolysis, and after NTC increasingly used oxidative phosphorylation. This metabolic shift was matched by changes in surrounding amniotic and cerebrospinal fluid proteomes. Importantly, these mitochondrial morphological shifts depend on MYC downregulation. Together, our findings demonstrate that metabolic shifting accompanies dynamic organelle and proteostatic remodeling of progenitor cells during the earliest stages of forebrain development.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA .,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Merve A, Zhang X, Pomella N, Acquati S, Hoeck JD, Dumas A, Rosser G, Li Y, Jeyapalan J, Vicenzi S, Fan Q, Yang ZJ, Sabò A, Sheer D, Behrens A, Marino S. c-MYC overexpression induces choroid plexus papillomas through a T-cell mediated inflammatory mechanism. Acta Neuropathol Commun 2019; 7:95. [PMID: 31142360 PMCID: PMC6540455 DOI: 10.1186/s40478-019-0739-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus tumours (CPTs) account for 2–5% of brain tumours in children. They can spread along the neuraxis and can recur after treatment. Little is known about the molecular mechanisms underlying their formation and only few high fidelity mouse models of p53-deficient malignant CPTs are available. We show here that c-MYC overexpression in the choroid plexus epithelium induces T-cell inflammation-dependent choroid plexus papillomas in a mouse model. We demonstrate that c-MYC is expressed in a substantial proportion of human choroid plexus tumours and that this subgroup of tumours is characterised by an inflammatory transcriptome and significant inflammatory infiltrates. In compound mutant mice, overexpression of c-MYC in an immunodeficient background led to a decreased incidence of CPP and reduced tumour bulk. Finally, reduced tumour size was also observed upon T-cell depletion in CPP-bearing mice. Our data raise the possibility that benign choroid plexus tumours expressing c-MYC could be amenable to medical therapy with anti-inflammatory drugs.
Collapse
|
15
|
Wang J, Merino DM, Light N, Murphy BL, Wang YD, Guo X, Hodges AP, Chau LQ, Liu KW, Dhall G, Asgharzadeh S, Kiehna EN, Shirey RJ, Janda KD, Taylor MD, Malkin D, Ellison DW, VandenBerg SR, Eberhart CG, Sears RC, Roussel MF, Gilbertson RJ, Wechsler-Reya RJ. Myc and Loss of p53 Cooperate to Drive Formation of Choroid Plexus Carcinoma. Cancer Res 2019; 79:2208-2219. [PMID: 30885981 PMCID: PMC6497574 DOI: 10.1158/0008-5472.can-18-2565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 02/03/2023]
Abstract
Choroid plexus carcinoma (CPC) is a rare brain tumor that occurs most commonly in very young children and has a dismal prognosis despite intensive therapy. Improved outcomes for patients with CPC depend on a deeper understanding of the mechanisms underlying the disease. Here we developed transgenic models of CPCs by activating the Myc oncogene and deleting the Trp53 tumor suppressor gene in murine neural stem cells or progenitors. Murine CPC resembled their human counterparts at a histologic level, and like the hypodiploid subset of human CPC, exhibited multiple whole-chromosome losses, particularly of chromosomes 8, 12, and 19. Analysis of murine and human CPC gene expression profiles and copy number changes revealed altered expression of genes involved in cell cycle, DNA damage response, and cilium function. High-throughput drug screening identified small molecule inhibitors that decreased the viability of CPC. These models will be valuable tools for understanding the biology of choroid plexus tumors and for testing novel approaches to therapy. SIGNIFICANCE: This study describes new mouse models of choroid plexus carcinoma and uses them to investigate the biology and therapeutic responsiveness of this highly malignant pediatric brain tumor.
Collapse
Affiliation(s)
- Jun Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Diana M Merino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas Light
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Brian L Murphy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaohui Guo
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrew P Hodges
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lianne Q Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kun-Wei Liu
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Girish Dhall
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Erin N Kiehna
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles
| | - Ryan J Shirey
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
- Department of Immunology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
- Department of Immunology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Michael D Taylor
- Division of Neurosurgery and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Malkin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R VandenBerg
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rosalie C Sears
- Molecular and Medical Genetics Department, Oregon Health and Sciences University, Portland, Oregon
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Centre, CRUK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
16
|
Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 2019; 8:43257. [PMID: 30932813 PMCID: PMC6443350 DOI: 10.7554/elife.43257] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/17/2019] [Indexed: 12/29/2022] Open
Abstract
The brain, spinal cord, and retina are supplied by capillaries that do not permit free diffusion of molecules between serum and parenchyma, a property that defines the blood-brain and blood-retina barriers. Exceptions to this pattern are found in circumventricular organs (CVOs), small midline brain structures that are supplied by high permeability capillaries. In the eye and brain, high permeability capillaries are also present in the choriocapillaris, which supplies the retinal pigment epithelium and photoreceptors, and the ciliary body and choroid plexus, the sources of aqueous humor and cerebrospinal fluid, respectively. We show here that (1) endothelial cells in these high permeability vascular systems have very low beta-catenin signaling compared to barrier-competent endothelial cells, and (2) elevating beta-catenin signaling leads to a partial conversion of permeable endothelial cells to a barrier-type state. In one CVO, the area postrema, high permeability is maintained, in part, by local production of Wnt inhibitory factor-1.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xiaowu Gu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
17
|
Chau KF, Shannon ML, Fame RM, Fonseca E, Mullan H, Johnson MB, Sendamarai AK, Springel MW, Laurent B, Lehtinen MK. Downregulation of ribosome biogenesis during early forebrain development. eLife 2018; 7:36998. [PMID: 29745900 PMCID: PMC5984036 DOI: 10.7554/elife.36998] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
Forebrain precursor cells are dynamic during early brain development, yet the underlying molecular changes remain elusive. We observed major differences in transcriptional signatures of precursor cells from mouse forebrain at embryonic days E8.5 vs. E10.5 (before vs. after neural tube closure). Genes encoding protein biosynthetic machinery were strongly downregulated at E10.5. This was matched by decreases in ribosome biogenesis and protein synthesis, together with age-related changes in proteomic content of the adjacent fluids. Notably, c-MYC expression and mTOR pathway signaling were also decreased at E10.5, providing potential drivers for the effects on ribosome biogenesis and protein synthesis. Interference with c-MYC at E8.5 prematurely decreased ribosome biogenesis, while persistent c-MYC expression in cortical progenitors increased transcription of protein biosynthetic machinery and enhanced ribosome biogenesis, as well as enhanced progenitor proliferation leading to subsequent macrocephaly. These findings indicate large, coordinated changes in molecular machinery of forebrain precursors during early brain development.
Collapse
Affiliation(s)
- Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Erin Fonseca
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Hillary Mullan
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Matthew B Johnson
- Division of Genetics, Boston Children's Hospital, Boston, United States
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Mark W Springel
- Department of Pathology, Boston Children's Hospital, Boston, United States
| | - Benoit Laurent
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States
| |
Collapse
|