1
|
Chauhan G, Shaik AA, Sawant SS, Diwan R, Mokashi M, Goyal M, Shukla SK, Kunda NK, Gupta V. Continuously producible aztreonam-loaded inhalable lipid nanoparticles for cystic fibrosis-associated Pseudomonas aeruginosa infections - Development and in-vitro characterization. BIOMATERIALS ADVANCES 2025; 166:214027. [PMID: 39255571 DOI: 10.1016/j.bioadv.2024.214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting nearly 105,000 patients worldwide and is characterized by poor respiratory function due to accumulation of thick mucus in the lungs, which not just acts as a physical barrier, but also provides a breeding ground for bacterial infections. These infections can be controlled with the help of antibiotics which can be delivered directly into the lungs for amplifying the local anti-bacterial effect. More than 50 % of CF patients are associated with Pseudomonas aeruginosa infection in their lungs which requires antibiotics such as Aztreonam (AZT). In this study, we prepared inhalable AZT-loaded lipid nanoparticles using Hot-melt extrusion (HME) coupled with probe sonication to target Pseudomonas aeruginosa infection in the lungs. The optimized nanoparticles were tested for physicochemical properties, stability profile, in-vitro aerosolization, and antimicrobial activity against Pseudomonas aeruginosa. The optimized nanoparticles with a PEI concentration of 0.1 % demonstrated a uniform particle size of <50 nm, a spherical shape observed under a transmission electron microscope, and >70 % drug entrapment. Incorporating cationic polymer, PEI, resulted in sustained drug release from the lipid nanoparticles. The in-vitro aerosolization studies exhibited a mass median aerodynamic diameter (MMAD) of <4.3 μm, suggesting deposition of the nanoparticles in the respirable airway. The antimicrobial activity against Pseudomonas aeruginosa showed the minimum inhibitory concentration of the formulation is 2-fold lower than plain AZT. Stability profile showed the formulations are stable after exposure to accelerated conditions. In conclusion, hot-melt extrusion in combination with probe sonication can be used as a potential method for the continuous production of AZT-loaded lipid nanoparticles with enhanced anti-bacterial activity.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shruti S Sawant
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Meghana Mokashi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Bolsan AC, Sampaio GV, Rodrigues HC, Silva De Souza S, Edwiges T, Celant De Prá M, Gabiatti NC. Phage formulations and delivery strategies: Unleashing the potential against antibiotic-resistant bacteria. Microbiol Res 2024; 282:127662. [PMID: 38447457 DOI: 10.1016/j.micres.2024.127662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Bacterial control promoted by bacteriophages (phages) is an attractive tool in the face of the antibiotic crisis triggered by the exacerbated use of these drugs. Despite the growing interest in using these viruses, some gaps still need answers, such as the protection and delivery of phages. Some limitation points involve the degradation of phage proteins by enzymes or inactivation in low-pH environments. In this review, a literature search using keywords related to the field of virus delivery formulations was done to understand the current scenario of using delivery techniques and phage formulations. A total of 2096 raw results were obtained, which resulted in 140 publications after refinement. These studies were analyzed for main application techniques and areas, keywords, and countries. Of the total, 57% of the publications occurred in the last five years, and the encapsulation technique was the most used among the articles analyzed. As excipient agents, lactose, trehalose, mannitol, PEG, and Leucine stand out. The development of phage formulations, protection approaches, their delivery routes, and the knowledge about the best application strategy enables the use of these organisms in several sectors. It can act as a powerful tool against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Alice Chiapetti Bolsan
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Gabrielli Vaz Sampaio
- Laboratório de Genética, Instituto Butantan - Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Heloisa Campeão Rodrigues
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Samara Silva De Souza
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Thiago Edwiges
- Programa de Pós Graduação em Sustentabilidade Ambiental Urbana (PPGSAU) - Universidade Tecnológica Federal do Paraná, Curitiba, PR 81280-340, Brazil
| | - Marina Celant De Prá
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil
| | - Naiana Cristine Gabiatti
- Programa de Pós Graduação em Biotecnologia (PPGBIOTEC) - Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR 85660-000, Brazil.
| |
Collapse
|
3
|
Singh V, Son YJ, Dolovich M, Xing Z, Cranston ED, Thompson MR. Screening amino acid additives as aerosolization modifiers for spray dried inhalable viral-vectored vaccines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ricardo PC, Serudo RL, Ţălu Ş, Lamarão CV, da Fonseca Filho HD, de Araújo Bezerra J, Sanches EA, Campelo PH. Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation. Molecules 2022; 27:6364. [PMID: 36234901 PMCID: PMC9570880 DOI: 10.3390/molecules27196364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems.
Collapse
Affiliation(s)
- Philipi Cavalcante Ricardo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Ricardo Lima Serudo
- Higher School of Technology (EST), State University of Amazonas (UEA), Av. Djalma Batista 2470, Manaus 69050-300, AM, Brazil
| | - Ştefan Ţălu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, 15 Constantin Daicoviciu St., 400020 Cluj-Napoca, Romania
| | - Carlos Victor Lamarão
- School of Agrarian Science, Federal University of Amazonas, Manaus 69067-005, AM, Brazil
| | - Henrique Duarte da Fonseca Filho
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Laboratory of Synthesis of Nanomaterials and Nanoscopy (LSNN), Department of Physics, Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Federal Institute of Education, Science and Technology of Amazonas (IFAM), IFAM Analytical Center, Manaus Centro Campus, Manaus 69067-005, AM, Brazil
| | - Edgar Aparecido Sanches
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Pedro Henrique Campelo
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Department of Food Technology, Federal University of Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| |
Collapse
|
5
|
Mehta N, Pai R. Amalgamation of Nanoparticles within Drug Carriers: A Synergistic Approach or a Futile Attempt? Pharm Nanotechnol 2022; 10:PNT-EPUB-126127. [PMID: 36056844 DOI: 10.2174/2211738510666220902150449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
In recent years, nanotechnology has gained much attention from scientists and significant advances in therapeutic potential. Nano-delivery systems have emerged as an effective way in order to improve the therapeutic properties of drugs including solubility, stability, prolongation of half-life as well as promoting the accumulation of drug at the target site. The nanoparticles have also been incorporated into various conventional drug delivery systems. This review study aims to introduce the amalgamation of nanoparticles into drug carriers. To overcome the limitations of single nanoparticles such as toxicity, high instability, rapid drug release as well as limited drug loading capacity, a multi-component system is developed. Liposomes, microparticles, nanofibers, dendrimers etc., are promising drug carriers, having some limitations that can be minimized, and the compilation of nanoparticles synergizes the properties. The amalgamated nanocarriers are used for the diagnostic purpose as well as treatment of various chronic diseases. It also increases the solubility of hydrophobic drugs. However, each system has its advantages and disadvantages based on its physicochemical properties, efficacy, and other parameters. This review details the past and present state of development for the fusion of nanoparticles within drug carriers and from which we identify future research works needed for the same.
Collapse
Affiliation(s)
- Nikhil Mehta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM\\\'s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai- 400056, India
| |
Collapse
|
6
|
Adhikari BR, Dummer J, Gordon KC, Das SC. An expert opinion on respiratory delivery of high dose powders for lung infections. Expert Opin Drug Deliv 2022; 19:795-813. [PMID: 35695722 DOI: 10.1080/17425247.2022.2089111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION High dose powder inhalation is evolving as an important approach to to treat lung infections. It is important to its identify applications, consider the factors affecting high dose powder delivery, and assess the effect of high dose drugs in patients. AREA COVERED Both current and pipeline high dose inhalers and their applications have been summarized. Challenges and opportunities to high dose delivery have been highlighted after reviewing formulation techniques in the context of factors affecting aerosolization, devices, and patient factors. EXPERT OPINION High dose inhaled delivery of antimicrobials is an innovative way to increase treatment efficacy of respiratory infections, tackle drug resistance, and the scarcity of new antimicrobials. The high dose inhaled technology also has potential for systemic action; however, innovations in formulation strategies and devices are required to realize its full potential. Advances in formulation strategies include the use of excipients or the engineering of particles to decrease the cohesive property of microparticles and their packing density. Similarly, selection of a synergistic drug instead of an excipient can be considered to increase aerosolization and stability. Device development focused on improving dispersion and loading capacity is also important, and modification of existing devices for high dose delivery can also be considered.
Collapse
Affiliation(s)
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Remadevi R, AV Morton D, Hapgood K, Rashida N, Rajkhowa R. Improving the dynamic properties of silk particles by co-spray drying with L-leucine. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Ordoubadi M, Gregson FKA, Wang H, Carrigy NB, Nicholas M, Gracin S, Lechuga-Ballesteros D, Reid JP, Finlay WH, Vehring R. Trileucine as a dispersibility enhancer of spray-dried inhalable microparticles. J Control Release 2021; 336:522-536. [PMID: 34229002 DOI: 10.1016/j.jconrel.2021.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
The formation of trileucine-containing spray-dried microparticles intended for pulmonary delivery was studied in depth. A single-particle method was employed to study the shell formation characteristics of trileucine in the presence of trehalose as a glass former, and an empirical correlation was proposed to predict the instance of shell formation. A droplet chain instrument was used to produce and collect monodisperse particles to examine morphology and calculate particle density for different levels of trileucine. It was observed that the addition of only 0.5 mg/mL (10% w/w) trileucine to a trehalose system could lower dried particle densities by approximately 1 g/cm3. In addition, a laboratory-scale spray dryer was used to produce batches of trileucine/trehalose powders in the respirable range. Raman spectroscopy demonstrated that both components were completely amorphous. Scanning electron microscopy and time-of-flight secondary ion mass spectrometry were used to study the particle morphologies and surface compositions. For all cases with trileucine, highly rugose particles with trileucine coverages of more than 60% by mass were observed with trileucine feed fractions of as little as 2% w/w. Moreover, it was seen that at lower trileucine content, smaller and larger particles of a polydisperse powder had slightly different surface compositions. The surface activity of trileucine was also modeled via a modified form of the diffusion equation inside an evaporating droplet that took into account initial surface adsorption and eventual surface desorption due to droplet shrinkage. Finally, using the Flory-Huggins theory, it was estimated that at room temperature, liquid-liquid phase separation would start when the trileucine reached an aqueous concentration of about 18 mg/mL. Besides the surface activity of trileucine, this low concentration was assumed to explain the substantial effect of trileucine on the morphology of spray-dried particles due to early phase separation. The methodology proposed in this study can be used in the rational design of trileucine-containing microparticles.
Collapse
Affiliation(s)
- Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nicholas B Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Sandra Gracin
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, South San Francisco, California, USA
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
11
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Xu Y, Thakur A, Zhang Y, Foged C. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021; 13:pharmaceutics13020177. [PMID: 33525500 PMCID: PMC7912103 DOI: 10.3390/pharmaceutics13020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide. However, the efficacy of currently available inhaled therapeutics is not sufficient for arresting disease progression and decreasing mortality, hence providing an urgent need for development of novel therapeutics. Local delivery to the airways via inhalation is promising for novel drugs, because it allows for delivery directly to the target site of action and minimizes systemic drug exposure. In addition, novel drug modalities like RNA therapeutics provide entirely new opportunities for highly specific treatment of airway diseases. Here, we review state of the art of conventional inhaled drugs used for the treatment of COPD and asthma with focus on quality attributes of inhaled medicines, and we outline the therapeutic potential and safety of novel drugs. Subsequently, we present recent advances in manufacturing of thermostable solid dosage forms for pulmonary administration, important quality attributes of inhalable dry powder formulations, and obstacles for the translation of inhalable solid dosage forms to the clinic. Delivery challenges for inhaled RNA therapeutics and delivery technologies used to overcome them are also discussed. Finally, we present future prospects of novel inhaled RNA-based therapeutics for treatment of obstructive airways diseases, and highlight major knowledge gaps, which require further investigation to advance RNA-based medicine towards the bedside.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Correspondence: ; Tel.: +45-3533-6402
| |
Collapse
|
14
|
Adhikari BR, Bērziņš K, Fraser-Miller SJ, Gordon KC, Das SC. Co-Amorphization of Kanamycin with Amino Acids Improves Aerosolization. Pharmaceutics 2020; 12:pharmaceutics12080715. [PMID: 32751553 PMCID: PMC7465208 DOI: 10.3390/pharmaceutics12080715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Different formulation techniques have been investigated to prepare highly aerosolizable dry powders to deliver a high dose of antibiotics to the lung for treating local infections. In this study, we investigated the influence of the co-amorphization of a model drug, kanamycin, with selected amino acids (valine, methionine, phenylalanine, and tryptophan) by co-spray drying on its aerosolization. The co-amorphicity was confirmed by thermal technique. The physical stability was monitored using low-frequency Raman spectroscopy coupled with principal component analysis. Except for the kanamycin-valine formulation, all the formulations offered improved fine particle fraction (FPF) with the highest FPF of 84% achieved for the kanamycin-methionine formulation. All the co-amorphous formulations were physically stable for 28 days at low relative humidity (25 °C/<15% RH) and exhibited stable aerosolization. At higher RH (53%), even though methionine transformed into its crystalline counterpart, the kanamycin-methionine formulation offered the best aerosolization stability without any decrease in FPF. While further studies are warranted to reveal the underlying mechanism, this study reports that the co-amorphization of kanamycin with amino acids, especially with methionine, has the potential to be developed as a high dose kanamycin dry powder formulation.
Collapse
Affiliation(s)
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Sara J. Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Keith C. Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand; (K.B.); (S.J.F.-M.); (K.C.G.)
| | - Shyamal C. Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand;
- Correspondence: ; Tel.: +64-34794262
| |
Collapse
|
15
|
Zhang Y, Zhang H, Ghosh D. The Stabilizing Excipients in Dry State Therapeutic Phage Formulations. AAPS PharmSciTech 2020; 21:133. [PMID: 32415395 DOI: 10.1208/s12249-020-01673-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Phage therapy has gained prominence due to the increasing pathogenicity of "super bugs" and the rise of their multidrug resistance to conventional antibiotics. Dry state formulation of therapeutic phage is attractive to improve their "druggability" by increasing their shelf life, improving their ease of handling, and ultimately retaining their long-term potency. The use and selection of excipients are critical to stabilize phage in solid formulations and protect their viability from stresses encountered during the solidification process and long-term storage prior to use. Here, this review focuses on the current classes of excipients used to manufacture dry state phage formulations and their ability to stabilize and protect phage throughout the process, as discussed in the literature. We provide perspective of outstanding challenges involved in the formulation of dry state phage. We suggest strategies to improve excipient identification and selection, optimize the potential excipient combinations to improve phage viability during formulation, and evaluate new methodologies that can provide greater insight into phage-excipient interactions to improve design criteria to improve formulation of dry state phage therapeutics. Addressing these challenges opens up new opportunities to re-design and re-imagine phage formulations for improved efficacy as a pharmaceutical product.
Collapse
Affiliation(s)
- Yajie Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Formulation Development Department, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, New York, 10591, USA
| | - Hairui Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA
- Analytical Development Department, Ultragenyx Pharmaceutical Inc., 5000 Marina Blvd., Brisbane, California, 94005, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave, Stop A1920, Austin, Texas, 78712, USA.
| |
Collapse
|
16
|
Lechanteur A, Evrard B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A review. Pharmaceutics 2020; 12:pharmaceutics12010055. [PMID: 31936628 PMCID: PMC7022846 DOI: 10.3390/pharmaceutics12010055] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022] Open
Abstract
Although dry powder inhalers (DPIs) have attracted great interest compared to nebulizers and metered-dose inhalers (MDIs), drug deposition in the deep lung is still insufficient to enhance therapeutic activity. Indeed, it is estimated that only 10–15% of the drug reaches the deep lung while 20% of the drug is lost in the oropharyngeal sphere and 65% is not released from the carrier. The potentiality of the powders to disperse in the air during the patient’s inhalation, the aerosolization, should be optimized. To do so, new strategies, in addition to classical lactose-carrier, have emerged. The lung deposition of carrier-free particles, mainly produced by spray drying, is higher due to non-interparticulate forces between the carrier and drug, as well as better powder uniformity and aerosolization. Moreover, the association of two or three active ingredients within the same powder seems easier. This review is focused on a new type of carrier-free particles which are characterized by a sugar-based core encompassed by a corrugated shell layer produced by spray drying. All excipients used to produce such particles are dissected and their physico-chemical properties (Péclet number, glass transition temperature) are put in relation with the lung deposition ability of powders. The importance of spray-drying parameters on powders’ properties and behaviors is also evaluated. Special attention is given to the relation between the morphology (characterized by a corrugated surface) and lung deposition performance. The understanding of the closed relation between particle material composition and spray-drying process parameters, impacting the final powder properties, could help in the development of promising DPI systems suitable for local or systemic drug delivery.
Collapse
|
17
|
The effect of metal salts on aerosol performance of spray dried carrier-free formulations of levofloxacin. ACTA ACUST UNITED AC 2019; 28:75-85. [PMID: 31808069 DOI: 10.1007/s40199-019-00317-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Metal salts are used in formulation of dry powder inhalers (DPIs) for different purposes. Recently the role of these salts in production of small, dense but highly dispersible particles has emerged. In this study the effect of some such salts on dispersibility and respirability of spray dried levofloxacin formulations was evaluated in normal and reduced inhalation air flow or by increasing powder filling in capsules. METHODS levofloxacin was co-spray dried with different concentrations of common metal chlorides (NaCl, KCl, CaCl2 and MgCl2) either with or without leucine as dispersibility enhancer. Particle size, moisture, morphology, triboelectrification tendency and fine particle fraction (FPF) of resulting powders were evaluated. In addition, the effect of these salts and leucine on dispersibility of resulting powders in reduced air flow rate and increased capsule filling mass were evaluated. RESULTS Presence of higher tested concentrations of divalent cations increased water content, and reduced FPF significantly. Addition of leucine reduced water content and electrostatic charge, increased particle size and FPF and improved spray drying yield significantly. Lower concentrations of salts did not affect FPF of leucine containing powders significantly, but presence of 2.5% NaCl or MgCl2 preserved the dispersibility in higher capsule fillings. A 2.5% concentration of NaCl in such formulations preserved dispersibility in lower air flows. CONCLUSION Higher amounts of divalent salts increases triboelectrification and moisture absorption, and reduces FPF. Lower concentrations of NaCl could not improve FPF of leucine containing formulations significantly, but preserves dispersibility in low air flows and high capsule fillings. Graphical abstract.
Collapse
|
18
|
Chakraborty A, Royce SG, Plebanski M, Selomulya C. Glycine microparticles loaded with functionalized nanoparticles for pulmonary delivery. Int J Pharm 2019; 570:118654. [DOI: 10.1016/j.ijpharm.2019.118654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/24/2023]
|
19
|
Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi AS. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying. Int J Pharm 2019; 565:1-8. [DOI: 10.1016/j.ijpharm.2019.04.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 11/21/2022]
|
21
|
The effect of l -leucine on the stabilization and inhalability of spray-dried solid lipid nanoparticles for pulmonary drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Novel dry powder inhaler formulation containing antibiotic using combined technology to improve aerodynamic properties. Eur J Pharm Sci 2018; 123:20-27. [PMID: 30016647 DOI: 10.1016/j.ejps.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/01/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022]
Abstract
Dry Powder Inhaler (DPI) could offer a propellant-free, easy-to-use powder form ensuring better stability than liquid dosage forms. Therefore the development of traditional carrier-based and carrier-free new generation systems is a determinative factor in the field of DPI formulation. The purpose of our research work was to combine these two systems, utilizing their beneficial properties to produce a novel pulmonary drug delivery system containing ciprofloxacin hydrochloride (CIP). Co-spray drying, surface smoothing and the preparation of an interactive physical mixture were applied as the technological procedures of sample preparation. The carrier-based and carrier-free formulations, as well as the developed novel product were compared to each other. Structural investigations were made by X-ray powder diffraction and micrometric properties (habit, bulk density) were determined. Particle interactions were also evaluated to investigate surface free energy, cohesive-adhesive forces, and spreading coefficient. In vitro aerodynamic properties (mass median aerodynamic diameter), fine particle fraction (FPF) and emitted dose of DPIs were measured using Andersen Cascade Impactor. A novel in silico Stochastic Lung Model was also used to quantify the amount of particles deposited at the target area. The novel-formulated composition presented amorphous spherical particles with an average size of about 2 μm. The in vitro aerodynamic investigations showed a variance in FPF as a function of formulation method (carrier-based: 24%, carrier-free: 54% and applying the novel combination method: 63%). The in silico deposition results were in line with the in vitro measurements and yielded increased lung doses for the sample prepared by the combined technology. This novel DPI formulation provides an opportunity for a more effective therapy with deeper deposition of CIP.
Collapse
|
23
|
Effect of pH and leucine concentration on aerosolization properties of carrier-free formulations of levofloxacin. Eur J Pharm Sci 2018; 118:13-23. [DOI: 10.1016/j.ejps.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
|
24
|
Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Pápay ZE, Kósa A, Böddi B, Merchant Z, Saleem IY, Zariwala MG, Klebovich I, Somavarapu S, Antal I. Study on the Pulmonary Delivery System of Apigenin-Loaded Albumin Nanocarriers with Antioxidant Activity. J Aerosol Med Pulm Drug Deliv 2017; 30:274-288. [DOI: 10.1089/jamp.2016.1316] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Zsófia Edit Pápay
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| | - Annamária Kósa
- Department of Plant Anatomy, Institute of Biology, Eötvös Lóránd University, Budapest, Hungary
| | - Béla Böddi
- Department of Plant Anatomy, Institute of Biology, Eötvös Lóránd University, Budapest, Hungary
| | - Zahra Merchant
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Imran Y Saleem
- Formulation and Drug Delivery Research, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohammed Gulrez Zariwala
- Department of Biomedical Science, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Imre Klebovich
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| | | | - István Antal
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Wang Z, Cuddigan JL, Gupta SK, Meenach SA. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm 2016; 512:305-313. [PMID: 27568494 DOI: 10.1016/j.ijpharm.2016.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
Abstract
Tacrolimus (TAC) has exhibited promising therapeutic potential in the treatment of pulmonary arterial hypertension (PAH); however, its application is prevented by its poor solubility, instability, poor bioavailability, and negative systemic side effects. To overcome the obstacles of using TAC for the treatment of PAH, we developed nanocomposite microparticles (nCmP) for the pulmonary delivery of tacrolimus in the form of dry powder aerosols. These particles can provide targeted pulmonary delivery, improved solubility of tacrolimus, the potential of penetration through mucus barrier, and controlled drug release. In this system, tacrolimus-loaded polymeric nanoparticles (NP) were prepared via emulsion solvent evaporation and nCmP were prepared by spray drying these NP with mannitol. The NP were approximately 200nm in diameter with narrow size distribution both before loading into and after redispersion from nCmP. The NP exhibited smooth, spherical morphology and the nCmP were raisin-like spheres. High encapsulation efficacy was achieved both in the encapsulation of tacrolimus in NP and that of NP in nCmP. nCmP exhibited desirable aerosol dispersion properties, allowing them to deposit into the deep lung regions for effective drug delivery. A549 cells were used as in vitro models to demonstrate the non-cytotoxicity of TAC nCmP. Overall, the designed nCmP have the potential to aid in the delivery of tacrolimus for the treatment of PAH.
Collapse
Affiliation(s)
- Zimeng Wang
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Julie L Cuddigan
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Sweta K Gupta
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA
| | - Samantha A Meenach
- University of Rhode Island, College of Engineering, Department of Chemical Engineering, Kingston, RI, 02881, USA; University of Rhode Island, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Kingston, RI, 02881, USA.
| |
Collapse
|
27
|
Li L, Sun S, Parumasivam T, Denman JA, Gengenbach T, Tang P, Mao S, Chan HK. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders. Eur J Pharm Biopharm 2016; 102:132-41. [PMID: 26970252 DOI: 10.1016/j.ejpb.2016.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
Abstract
L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w/w) of LL in the bulk powders) could minimize moisture-induced deterioration in the aerosol performance. In conclusion, particle surface coverage of LL can offer short-term protection against moisture on dispersion of hygroscopic powders.
Collapse
Affiliation(s)
- Liang Li
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siping Sun
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Thomas Gengenbach
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|