1
|
McCoy MT, Jayanthi S, Cadet JL. Potassium Channels and Their Potential Roles in Substance Use Disorders. Int J Mol Sci 2021; 22:1249. [PMID: 33513859 PMCID: PMC7865894 DOI: 10.3390/ijms22031249] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/12/2023] Open
Abstract
Substance use disorders (SUDs) are ubiquitous throughout the world. However, much remains to be done to develop pharmacotherapies that are very efficacious because the focus has been mostly on using dopaminergic agents or opioid agonists. Herein we discuss the potential of using potassium channel activators in SUD treatment because evidence has accumulated to support a role of these channels in the effects of rewarding drugs. Potassium channels regulate neuronal action potential via effects on threshold, burst firing, and firing frequency. They are located in brain regions identified as important for the behavioral responses to rewarding drugs. In addition, their expression profiles are influenced by administration of rewarding substances. Genetic studies have also implicated variants in genes that encode potassium channels. Importantly, administration of potassium agonists have been shown to reduce alcohol intake and to augment the behavioral effects of opioid drugs. Potassium channel expression is also increased in animals with reduced intake of methamphetamine. Together, these results support the idea of further investing in studies that focus on elucidating the role of potassium channels as targets for therapeutic interventions against SUDs.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD 21224, USA; (M.T.M.); (S.J.)
| |
Collapse
|
2
|
Bajo M, Madamba SG, Roberto M, Blednov YA, Sagi VN, Roberts E, Rice KC, Harris RA, Siggins GR. Innate immune factors modulate ethanol interaction with GABAergic transmission in mouse central amygdala. Brain Behav Immun 2014; 40:191-202. [PMID: 24675033 PMCID: PMC4126651 DOI: 10.1016/j.bbi.2014.03.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 12/30/2022] Open
Abstract
Excessive ethanol drinking in rodent models may involve activation of the innate immune system, especially toll-like receptor 4 (TLR4) signaling pathways. We used intracellular recording of evoked GABAergic inhibitory postsynaptic potentials (eIPSPs) in central amygdala (CeA) neurons to examine the role of TLR4 activation by lipopolysaccharide (LPS) and deletion of its adapter protein CD14 in acute ethanol effects on the GABAergic system. Ethanol (44, 66 or 100mM) and LPS (25 and 50μg/ml) both augmented eIPSPs in CeA of wild type (WT) mice. Ethanol (44mM) decreased paired-pulse facilitation (PPF), suggesting a presynaptic mechanism of action. Acute LPS (25μg/ml) had no effect on PPF and significantly increased the mean miniature IPSC amplitude, indicating a postsynaptic mechanism of action. Acute LPS pre-treatment potentiated ethanol (44mM) effects on eIPSPs in WT mice and restored ethanol's augmenting effects on the eIPSP amplitude in CD14 knockout (CD14 KO) mice. Both the LPS and ethanol (44-66mM) augmentation of eIPSPs was diminished significantly in most CeA neurons of CD14 KO mice; however, ethanol at the highest concentration tested (100mM) still increased eIPSP amplitudes. By contrast, ethanol pre-treatment occluded LPS augmentation of eIPSPs in WT mice and had no significant effect in CD14 KO mice. Furthermore, (+)-naloxone, a TLR4-MD-2 complex inhibitor, blocked LPS effects on eIPSPs in WT mice and delayed the ethanol-induced potentiation of GABAergic transmission. In CeA neurons of CD14 KO mice, (+)-naloxone alone diminished eIPSPs, and subsequent co-application of 100mM ethanol restored the eIPSPs to baseline levels. In summary, our results indicate that TLR4 and CD14 signaling play an important role in the acute ethanol effects on GABAergic transmission in the CeA and support the idea that CD14 and TLR4 may be therapeutic targets for treatment of alcohol abuse.
Collapse
Affiliation(s)
- Michal Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA.
| | - Samuel G. Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Vasudeva N. Sagi
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, USA
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - George R. Siggins
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Farris SP, Miles MF. Fyn-dependent gene networks in acute ethanol sensitivity. PLoS One 2013; 8:e82435. [PMID: 24312422 PMCID: PMC3843713 DOI: 10.1371/journal.pone.0082435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022] Open
Abstract
Studies in humans and animal models document that acute behavioral responses to ethanol are predisposing factor for the risk of long-term drinking behavior. Prior microarray data from our laboratory document strain- and brain region-specific variation in gene expression profile responses to acute ethanol that may be underlying regulators of ethanol behavioral phenotypes. The non-receptor tyrosine kinase Fyn has previously been mechanistically implicated in the sedative-hypnotic response to acute ethanol. To further understand how Fyn may modulate ethanol behaviors, we used whole-genome expression profiling. We characterized basal and acute ethanol-evoked (3 g/kg) gene expression patterns in nucleus accumbens (NAC), prefrontal cortex (PFC), and ventral midbrain (VMB) of control and Fyn knockout mice. Bioinformatics analysis identified a set of Fyn-related gene networks differently regulated by acute ethanol across the three brain regions. In particular, our analysis suggested a coordinate basal decrease in myelin-associated gene expression within NAC and PFC as an underlying factor in sensitivity of Fyn null animals to ethanol sedation. An in silico analysis across the BXD recombinant inbred (RI) strains of mice identified a significant correlation between Fyn expression and a previously published ethanol loss-of-righting-reflex (LORR) phenotype. By combining PFC gene expression correlates to Fyn and LORR across multiple genomic datasets, we identified robust Fyn-centric gene networks related to LORR. Our results thus suggest that multiple system-wide changes exist within specific brain regions of Fyn knockout mice, and that distinct Fyn-dependent expression networks within PFC may be important determinates of the LORR due to acute ethanol. These results add to the interpretation of acute ethanol behavioral sensitivity in Fyn kinase null animals, and identify Fyn-centric gene networks influencing variance in ethanol LORR. Such networks may also inform future design of pharmacotherapies for the treatment and prevention of alcohol use disorders.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | |
Collapse
|
4
|
Strat YL, Ramoz N, Schumann G, Gorwood P. Molecular genetics of alcohol dependence and related endophenotypes. Curr Genomics 2011; 9:444-51. [PMID: 19506733 PMCID: PMC2691669 DOI: 10.2174/138920208786241252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
Abstract
Alcohol dependence is a worldwide public health problem, and involves both environmental and genetic vulnerability factors. The heritability of alcohol dependence is rather high, ranging between 50% and 60%, although alcohol dependence is a polygenic, complex disorder. Genome-wide scans on large cohorts of multiplex families, including the collaborative study on genetics of alcoholism (COGA), emphasized the role of many chromosome regions and some candidate genes. The genes encoding the alcohol-metabolizing enzymes, or those involved in brain reward pathways, have been involved. Since dopamine is the main neurotransmitter in the reward circuit, genes involved in the dopaminergic pathway represent candidates of interest. Furthermore, gamma-amino-butyric acid (GABA) neurotransmitter mediates the acute actions of alcohol and is involved in withdrawal symptomatology. Numerous studies showed an association between variants within GABA receptors genes and the risk of alcohol dependence. In accordance with the complexity of the “alcohol dependence” phenotype, another field of research, related to the concept of endophenotypes, received more recent attention. The role of vulnerability genes in alcohol dependence is therefore re-assessed focusing on different phenotypes and endophenotypes. The latter include brain oscillations, EEG alpha and beta variants and alpha power, and amplitude of P300 amplitude elicited from a visual oddball task. Recent enhancement on global characterizations of the genome by high-throughput approach for genotyping of polymorphisms and studies of transcriptomics and proteomics in alcohol dependence is also reviewed.
Collapse
Affiliation(s)
- Yann L Strat
- INSERM U675, IFR02, Université Paris 7, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | | | |
Collapse
|
5
|
Werner DF, Kumar S, Criswell HE, Suryanarayanan A, Fetzer JA, Comerford CE, Morrow AL. PKCγ is required for ethanol-induced increases in GABA(A) receptor α4 subunit expression in cultured cerebral cortical neurons. J Neurochem 2011; 116:554-63. [PMID: 21155805 DOI: 10.1111/j.1471-4159.2010.07140.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethanol exposure produces alterations in GABA(A) receptor function and expression associated with CNS hyperexcitability, but the mechanisms of these effects are unknown. Ethanol is known to increase both GABA(A) receptor α4 subunits and protein kinase C (PKC) isozymes in vivo and in vitro. Here, we investigated ethanol regulation of GABA(A) receptor α4 subunit expression in cultured cortical neurons to delineate the role of PKC. Cultured neurons were prepared from rat pups on postnatal day 0-1 and tested after 18 days. GABA(A) receptor α4 subunit surface expression was assessed using P2 fractionation and surface biotinylation following ethanol exposure for 4 h. Miniature inhibitory post-synaptic currents were measured using whole cell patch clamp recordings. Ethanol increased GABA(A) receptor α4 subunit expression in both the P2 and biotinylated fractions, while reducing the decay time constant in miniature inhibitory post-synaptic currents, with no effect on γ2 or δ subunits. PKC activation mimicked ethanol effects, while the PKC inhibitor calphostin C prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression. PKCγ siRNA knockdown prevented ethanol-induced increases in GABA(A) receptor α4 subunit expression, but inhibition of the PKCβ isoform with PKCβ pseudosubstrate had no effect. We conclude that PKCγ regulates ethanol-induced alterations in α4-containing GABA(A) receptors.
Collapse
Affiliation(s)
- David F Werner
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Lee DH, Jeong JY, Kim YS, Kim JS, Cho YW, Roh GS, Kim HJ, Kang SS, Cho GJ, Choi WS. Ethanol down regulates the expression of myelin proteolipid protein in the rat hippocampus. Anat Cell Biol 2010; 43:194-200. [PMID: 21212859 PMCID: PMC3015037 DOI: 10.5115/acb.2010.43.3.194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 12/03/2022] Open
Abstract
It is well known that chronic ethanol treatment affects the synthesis of RNA and protein in the brain and the maintenance and function of nervous system. The changes in myelination-related genes are most prominent in human alcoholics. Previously, our cDNA microarray study showed altered Proteolipid protein (PLP), a major protein of central myelin. The present study aimed to gain more understanding of the expression of PLP after chronic ethanol treatment. Male Sprague-Dawley rats were daily treated with ethanol (15% in saline, 3 g/kg, i.p.) or saline for 14 days. Messenger RNAs from hippocampus of each group were subjected to cDNA expression array hybridization to determine the differential gene expressions. Among many ethanol responsive genes, PLP was negatively regulated by ethanol treatment, which is one of the most abundant proteins in the CNS and has an important role in the stabilization of myelin sheath. Using northern blot and immunohistochemical analysis, we showed the change in expression level of PLP mRNA and protein after ethanol treatment. PLP mRNA and protein were decreased in hippocampus of rat with chronic ethanol exposure, suggesting that ethanol may affect the stabilization of myelin sheath through the modulation of PLP expression and induce the pathophysiology of alcoholic brain.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Department of Anatomy & Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Effect of mild restriction of food intake on gene expression profile in the liver of young rats: reference data for in vivo nutrigenomics study. Br J Nutr 2010; 104:941-50. [PMID: 20447325 DOI: 10.1017/s0007114510001625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent transcriptomics studies on the effect of long-term or severe energy restriction (ER) have revealed that many genes are dynamically modulated by this condition in rodents. The present study was conducted to define the global gene expression profile in response to mild ER treatment. Growing rats were fed with reduced amount of diet (5-30 % ER) for 1 week or 1 month. Using DNA microarray analysis of the liver, seventy-two genes that were consistently changed through the different ER levels were identified. Many were related to lipid metabolism including genes encoding key enzymes such as carnitine palmitoyltransferase 1 and fatty acid synthase. Interestingly, a number of genes were altered even by 5 % ER for 1 week where no differences in weight gain were observed. The information obtained in the present study can be used as a valuable reference data source in the transcriptomics studies of food and nutrition in which subtle differences in food intake sometimes hinder appropriate interpretation of the data.
Collapse
|
8
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 642] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
9
|
Björk K, Hansson AC, Sommer WH. Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:129-71. [DOI: 10.1016/s0074-7742(10)91005-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Farris SP, Wolen AR, Miles MF. Using expression genetics to study the neurobiology of ethanol and alcoholism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:95-128. [PMID: 20813241 PMCID: PMC3427772 DOI: 10.1016/s0074-7742(10)91004-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research.
Collapse
Affiliation(s)
- Sean P Farris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
11
|
Masuo Y, Imai T, Shibato J, Hirano M, Jones OAH, Maguire ML, Satoh K, Kikuchi S, Rakwal R. Omic analyses unravels global molecular changes in the brain and liver of a rat model for chronic Sake (Japanese alcoholic beverage) intake. Electrophoresis 2009; 30:1259-75. [PMID: 19382137 DOI: 10.1002/elps.200900045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of chronic administration of Sake (Japanese alcoholic beverage, Nihonshu) on brain and liver of female F334 (Fisher) rats were surveyed via global omic analyses using DNA microarray, 2-DE, and proton nuclear magnetic resonance. Rats weaned at 4 wk of age were given free access to Sake (15% alcohol), instead of water. At 13 months of age, and 24 h after withdrawal of Sake supply, rats were sacrificed, and the whole brain and liver tissues dissected for analyses. In general, molecular changes in brain were found to be less than those in liver. Transcriptomics data revealed 36 and 9, and 80 and 62 up- and down-regulated genes, in the brain and liver, respectively, with binding and catalytic activity gene categories the most prominently changed. Results suggested Sake-induced fragility of brain and liver toxicity/damage, though no significant abnormalities in growth were seen. At protein level, a striking decrease was found in the expression of NADH dehydrogenase (ubiquinone) Fe-S protein 1 in brain, suggesting attenuation of mitochondrial metabolism. In liver, results again suggested an attenuation of mitochondrial function and, in addition, glycoproteins with unknown function were induced at protein and gene levels, suggesting possible changes in glycoprotein binding in that organ. Metabolomic analysis of brain revealed significant increases in valine, arginine/ornithine, alanine, glutamine, and choline with decreases in isoleucine, N-acetyl aspartate, taurine, glutamate, and gamma aminobutyric acid. Our results provide a detailed inventory of molecular components of both brain and liver after Sake intake, and may help to better understand effects of chronic Sake drinking.
Collapse
Affiliation(s)
- Yoshinori Masuo
- Health Technology Research Center (HTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bell RL, Kimpel MW, McClintick JN, Strother WN, Carr LG, Liang T, Rodd ZA, Mayfield RD, Edenberg HJ, McBride WJ. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption. Pharmacol Biochem Behav 2009; 94:131-47. [PMID: 19666046 DOI: 10.1016/j.pbb.2009.07.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 07/21/2009] [Accepted: 07/28/2009] [Indexed: 12/16/2022]
Abstract
The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-h dark cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24h/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hours after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p<0.01; Storey false discovery rate=0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein coupled receptor signaling. Ingenuity analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University Purdue University at Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crabbe JC. Review. Neurogenetic studies of alcohol addiction. Philos Trans R Soc Lond B Biol Sci 2008; 363:3201-11. [PMID: 18640917 DOI: 10.1098/rstb.2008.0101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurogenetic studies of alcohol dependence have relied substantially on genetic animal models, particularly rodents. Studies of inbred strains, selectively bred lines and mutants bearing genes whose function has been targeted for over or under expression are reviewed. Studies focused on gene expression changes are the most recent contributors to this literature, and some genetic effects may work through epigenetic mechanisms. In a few instances, interesting parallels have been revealed between genetic risk in humans and studies in non-human animal models. Future approaches are likely to be increasingly complex.
Collapse
Affiliation(s)
- John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, VA Medical Center R&D 12, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008; 118:36-57. [PMID: 18394710 DOI: 10.1016/j.pharmthera.2008.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.
Collapse
Affiliation(s)
- Margaret I Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Lovinger DM. Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2008; 31:196-214. [PMID: 23584863 PMCID: PMC3860493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Nerve cells (i.e., neurons) communicate via a combination of electrical and chemical signals. Within the neuron, electrical signals driven by charged particles allow rapid conduction from one end of the cell to the other. Communication between neurons occurs at tiny gaps called synapses, where specialized parts of the two cells (i.e., the presynaptic and postsynaptic neurons) come within nanometers of one another to allow for chemical transmission. The presynaptic neuron releases a chemical (i.e., a neurotransmitter) that is received by the postsynaptic neuron's specialized proteins called neurotransmitter receptors. The neurotransmitter molecules bind to the receptor proteins and alter postsynaptic neuronal function. Two types of neurotransmitter receptors exist-ligand-gated ion channels, which permit rapid ion flow directly across the outer cell membrane, and G-protein-coupled receptors, which set into motion chemical signaling events within the cell. Hundreds of molecules are known to act as neurotransmitters in the brain. Neuronal development and function also are affected by peptides known as neurotrophins and by steroid hormones. This article reviews the chemical nature, neuronal actions, receptor subtypes, and therapeutic roles of several transmitters, neurotrophins, and hormones. It focuses on neurotransmitters with important roles in acute and chronic alcohol effects on the brain, such as those that contribute to intoxication, tolerance, dependence, and neurotoxicity, as well as maintained alcohol drinking and addiction.
Collapse
|