1
|
Kamens HM, Flarend G, Horton WJ. The role of nicotinic receptors in alcohol consumption. Pharmacol Res 2023; 190:106705. [PMID: 36813094 PMCID: PMC10083870 DOI: 10.1016/j.phrs.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The use of alcohol causes significant morbidity and mortality across the globe. Alcohol use disorder (AUD) is defined by the excessive use of this drug despite a negative impact on the individual's life. While there are currently medications available to treat AUD, they have limited efficacy and several side effects. As such, it is essential to continue to look for novel therapeutics. One target for novel therapeutics is nicotinic acetylcholine receptors (nAChRs). Here we systematically review the literature on the involvement of nAChRs in alcohol consumption. Data from both genetic and pharmacology studies provide evidence that nAChRs modulate alcohol intake. Interestingly, pharmacological modulation of all nAChR subtypes examined can decrease alcohol consumption. The reviewed literature demonstrates that nAChRs should continue to be investigated as novel therapeutics for AUD.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
2
|
Seemiller LR, Logue SF, Gould TJ. Inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes from adolescence to adulthood. Pharmacol Biochem Behav 2022; 218:173429. [PMID: 35820468 PMCID: PMC11524176 DOI: 10.1016/j.pbb.2022.173429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sheree F Logue
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
3
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Miller CN, Kamens HM. The role of nicotinic acetylcholine receptors in alcohol-related behaviors. Brain Res Bull 2020; 163:135-142. [PMID: 32707263 DOI: 10.1016/j.brainresbull.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder (AUD) causes an alarming economic and health burden in the United States. Unfortunately, this disease does not exist in isolation; AUD is highly comorbid with nicotine use. Results from both human and animal models demonstrate a genetic correlation between alcohol and nicotine behaviors. These data support the idea of shared genetic and neural mechanisms underlying these behaviors. Nicotine acts directly at nicotinic acetylcholine receptors (nAChR) to have its pharmacological effect. Interestingly, alcohol also acts both directly and indirectly at these receptors. Research utilizing genetically engineered rodents and pharmacological manipulations suggest a role for nAChR in several ethanol behaviors. The current manuscript collates this literature and discusses findings that implicate specific nAChR subunits in ethanol phenotypes. These data suggest future directions for targeting nAChR as novel therapeutics for AUD.
Collapse
Affiliation(s)
- C N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - H M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
5
|
Hauser SR, Knight CP, Truitt WA, Waeiss RA, Holt IS, Carvajal GB, Bell RL, Rodd ZA. Adolescent Intermittent Ethanol Increases the Sensitivity to the Reinforcing Properties of Ethanol and the Expression of Select Cholinergic and Dopaminergic Genes within the Posterior Ventral Tegmental Area. Alcohol Clin Exp Res 2019; 43:1937-1948. [DOI: 10.1111/acer.14150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Sheketha R. Hauser
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | | | - William A. Truitt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Robert Aaron Waeiss
- Program in Medical Neuroscience Paul and Carole Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis Indiana
| | - Ian S. Holt
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Gustavo B. Carvajal
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Richard L. Bell
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| | - Zachary A. Rodd
- Department of Psychiatry Indiana University School of Medicine Indianapolis Indiana
| |
Collapse
|
6
|
Weera MM, Agim ZS, Cannon JR, Chester JA. Genetic correlations between nicotine reinforcement-related behaviors and propensity toward high or low alcohol preference in two replicate mouse lines. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12515. [PMID: 30129253 PMCID: PMC6384161 DOI: 10.1111/gbb.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
Common genetic factors may contribute to the high comorbidity between tobacco smoking and alcohol use disorder. Here, we assessed behavioral and biological effects of nicotine in replicate mouse lines selectively bred for high (HAP2/3) or low alcohol preference (LAP2/3). In Experiment 1, free-choice (FC) oral nicotine and quinine intake were assessed in HAP2/3 and LAP2/3 mice. Effects of nicotinic acetylcholine receptor blockade by mecamylamine on nicotine intake in HAP2 mice were also examined. In Experiment 2, HAP2/3 and LAP2/3 mice were tested for differences in sensitivity to nicotine-induced taste conditioning. In Experiment 3, the effects of a single nicotine injection on nucleus accumbens (NAc) and dorsal striatum monoamine levels in HAP2/3 and LAP2/3 mice were tested. In Experiment 1, HAP2/3 mice showed greater nicotine intake and intake ratio than LAP2/3 mice. There were no line differences in quinine intake. Mecamylamine reduced nicotine intake and intake ratio in HAP2 mice. In Experiment 2, HAP2/3 mice showed weaker nicotine-induced conditioned taste aversion (CTA) compared with LAP2/3 mice. In Experiment 3, nicotine treatment increased NAc dopamine turnover across both HAP2/3 and LAP2/3 mouse lines. These results show that there is a positive genetic correlation between oral alcohol intake (high alcohol intake/preference selection phenotype) and oral nicotine intake and a negative genetic correlation between oral alcohol intake and sensitivity to nicotine-induced CTA.
Collapse
Affiliation(s)
- Marcus M. Weera
- Department of Psychology, Purdue University, West Lafayette, IN 47907
| | - Zeynep S. Agim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Julia A. Chester
- Department of Psychology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
7
|
Dawson A, Wolstenholme JT, Roni MA, Campbell VC, Jackson A, Slater C, Bagdas D, Perez EE, Bettinger JC, De Biasi M, Miles MF, Damaj MI. Knockout of alpha 5 nicotinic acetylcholine receptors subunit alters ethanol-mediated behavioral effects and reward in mice. Neuropharmacology 2018; 138:341-348. [PMID: 29944862 DOI: 10.1016/j.neuropharm.2018.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023]
Abstract
Evidence suggests that there is an association between polymorphisms in the α5 nicotinic acetylcholine receptor (nAChR) subunit and risk of developing alcohol dependence in humans. The α5 nAChR subunit has also recently been shown to modulate some of the acute response to ethanol in mice. The aim of the current study was to further characterize the role of α5-containing (α5*) nAChRs in acute ethanol responsive behaviors, ethanol consumption and ethanol preference in mice. We conducted a battery of tests in male α5 knockout (KO) mice for a range of ethanol-induced behaviors including hypothermia, hypnosis, and anxiolysis. We also investigated the effects of α5* nAChR on ethanol reward using the Conditioned Place Preference (CPP) assay. Further, we tested the effects of gene deletion on drinking behaviors using the voluntary ethanol consumption in a two-bottle choice assay and Drinking in the Dark (DID, with or without stress) paradigm. We found that deletion of the α5 nAChR subunit enhanced ethanol-induced hypothermia, hypnosis, and an anxiolytic-like response in comparison to wild-type controls. The α5 KO mice showed reduced CPP for ethanol, suggesting that the rewarding properties of ethanol are decreased in mutant mice. Interestingly, Chrna5 gene deletion had no effect on basal ethanol drinking behavior, or ethanol metabolism, but did decrease ethanol intake in the DID paradigm following restraint stress. Taken together, we provide new evidence that α5 nAChRs are involved in some but not all of the behavioral effects of ethanol. Our results highlight the importance of nAChRs as a possible target for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Monzurul A Roni
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Vera C Campbell
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Cassandra Slater
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Erika E Perez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
8
|
Cippitelli A, Brunori G, Schoch J, Armishaw CJ, Wu J, Zaveri NT, Giulianotti MA, Welmaker GS, Toll L. Differential regulation of alcohol taking and seeking by antagonism at α4β2 and α3β4 nAChRs. Psychopharmacology (Berl) 2018; 235:1745-1757. [PMID: 29572652 PMCID: PMC5949259 DOI: 10.1007/s00213-018-4883-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Alcoholism is a serious public health problem throughout the world. Current pharmacotherapies for the treatment of this disorder are poorly effective. Preclinical and clinical findings point to nicotinic acetylcholine receptors (nAChRs) as a promising target for the development of novel and effective medications. Assuage Pharmaceuticals, in collaboration with Torrey Pines Institute for Molecular Studies, has discovered a new class of potent and selective α4β2 nAChR antagonists. OBJECTIVE Here, it was hypothesized that α4β2 nAChR antagonism is a viable approach for treatment of alcohol use disorders. RESULTS When tested in rats, one lead compound, AP-202, attenuated both operant alcohol and nicotine self-administration in a paradigm in which the two reinforcers were concurrently available. The conotoxin TP2212-59, a selective α3β4 nAChR antagonist, was only effective in reducing nicotine self-administration. AP-202 also reduced alcohol but not food responding when alcohol was presented as the only reinforcer, whereas the commercially available α4β2 nAChR antagonist dihydro-β-erythroidine failed to alter alcohol self-administration. AP-202 did not block relapse-like behavior induced by previously alcohol-associated stimuli or yohimbine stress. In a reinstatement paradigm, in which alcohol seeking was triggered by a nicotine challenge, a behavior successfully inhibited by the nonselective nAChR antagonist mecamylamine, AP-202 was not effective, while pretreatment with TP2212-59 abolished nicotine-induced reinstatement of alcohol seeking. CONCLUSIONS These findings suggest differential roles for α4β2 and α3β4 nAChR on alcohol taking and seeking with selective blockade of α4β2 nAChR being more implicated in modulating alcohol taking while selective blockade of α3β4 nAChR is involved in nicotine-induced alcohol seeking.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL, 34987, USA.
| | - Gloria Brunori
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Christopher J. Armishaw
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Jinhua Wu
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Nurulain T. Zaveri
- Astraea Therapeutics, LLC, 320 Logue Avenue, Mountain View, CA 94043, USA
| | - Marc A. Giulianotti
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Gregory S. Welmaker
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA,Assuage Pharmaceuticals, Inc., 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| |
Collapse
|
9
|
Qian J, Mummalaneni S, Larsen J, Grider JR, Spielman AI, Özdener MH, Lyall V. Nicotinic acetylcholine receptor (CHRN) expression and function in cultured human adult fungiform (HBO) taste cells. PLoS One 2018. [PMID: 29513745 PMCID: PMC5841828 DOI: 10.1371/journal.pone.0194089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In rodents, CHRNs are involved in bitter taste transduction of nicotine and ethanol. Currently, it is not clear if CHRNs are expressed in human taste cells and if they play a role in transducing the bitter taste of nicotine and ethanol or in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of CHRNs in HBO cells. Using molecular techniques, we demonstrate that a subset of HBO cells express CHRNs that also co-express TRPM5, T1R3 or T2R38. Exposing HBO cells to nicotine or ethanol acutely or to nicotine chronically induced a differential increase in the expression of CHRN mRNA and protein in a dose- and time-dependent manner. Acutely exposing HBO cells to a mixture containing nicotine plus ethanol induced a smaller increase in CHRN mRNAs relative to nicotine or ethanol treatment alone. A subset of HBO cells responded to nicotine, acetylcholine and ATP with a transient increase in [Ca2+]i. Nicotine effects on [Ca2+]i were mecamylamine sensitive. Brain-derived neurotrophic factor (BDNF) protein was detected in HBO cells using ELISA. Acute nicotine exposure decreased BDNF in HBO cells and increased BDNF release in the medium. CHRNs were also detected in HEK293 cells by RT-PCR. Unlike HBO cells, CHRNs were localized in most of HEK293 cells and majority of HEK293 cells responded to nicotine and ethanol stimulation with a transient increase in [Ca2+]i. BDNF levels in HEK293 cells were significantly higher than in HBO cells but the nicotine induced release of BDNF in the media was a fraction of the BDNF cellular content. We conclude that CHRNs are expressed in TRPM5 positive HBO cells. CHRN mRNA expression is modulated by exposure to nicotine and ethanol in a dose- and time-dependent manner. Nicotine induces the synthesis and release of BDNF in HBO cells.
Collapse
Affiliation(s)
- Jie Qian
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shobha Mummalaneni
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - James Larsen
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kamens HM, Silva C, McCarthy R, Cox RJ, Ehringer MA. No evidence of a role of the β4 subunit of the nicotinic acetylcholine receptor in alcohol-related behaviors. BMC Res Notes 2017; 10:151. [PMID: 28381286 PMCID: PMC5382442 DOI: 10.1186/s13104-017-2470-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nicotinic acetylcholine receptors have gained attention in the last several years as mediators of alcohol-related behaviors. The genes that code for the α5, α3, and β4 subunits (Chrna5, Chrna3, and Chrnb4, respectively) map adjacent to each other on human chromosome 15/mouse chromosome 9. Genetic variants in this region have been associated with alcohol phenotypes and mice that overexpress these three subunits have reduced ethanol intake. In the present experiments, we examined the role of the Chrnb4 gene in three ethanol behaviors: consumption, ataxia, and sedation. Wildtype, heterozygous, and knockout mice were tested for ethanol consumption with a 2-bottle choice procedure and the drinking-in-the-dark paradigm. Ethanol-induced ataxia was measured with the balance beam and dowel test. Finally, the sedative effects of ethanol were measured with the loss of righting reflex paradigm. Results We observed no significant genotypic effects on any of the ethanol behaviors examined, suggesting that the β4 subunit is not involved in mediating these responses. Conclusions While we found no evidence for the involvement of the β4 subunit in ethanol responses, it is possible that this subunit modulates other behaviors not tested and further work should address this before completely ruling out its involvement. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA. .,Center for Brain, Behavior, and Cognition, Penn State University, University Park, PA, USA.
| | - Constanza Silva
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Riley McCarthy
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Ryan J Cox
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| |
Collapse
|
11
|
Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells. PLoS One 2016; 11:e0166565. [PMID: 27846263 PMCID: PMC5112875 DOI: 10.1371/journal.pone.0166565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.
Collapse
|
12
|
The effect of varenicline on binge-like ethanol consumption in mice is β4 nicotinic acetylcholine receptor-independent. Neurosci Lett 2016; 633:235-239. [PMID: 27693436 DOI: 10.1016/j.neulet.2016.09.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our laboratory has previously shown that the smoking-cessation agent varenicline, an agonist/partial agonist of α4β2*, α3β4*, α3β2*, α6β2* (* indicates the possibility of additional subunits) and α7 subunits of nicotinic acetylcholine receptors (nAChRs), reduces ethanol consumption in rats only after long-term exposure (12 weeks). As compounds having partial agonistic activity on α3β4* nAChRs were shown to decrease ethanol consumption in rodents, we assessed here the involvement of the β4 subunit in the effect of varenicline in the reduction of short- and long-term binge-like ethanol drinking in mice. METHODS We used the well-validated drinking-in-the-dark (DID) paradigm to model chronic binge-like ethanol drinking in β4-/- and β4+/+ littermate mice and compare the effect of intraperitoneal injection of varenicline (2mg/kg) on ethanol intake following short- (4 weeks) or long-term (12 weeks) exposure. RESULTS Drinking pattern and amounts of ethanol intake were similar in β4-/- and β4+/+ mice. Interestingly, our results showed that varenicline reduces ethanol consumption following short- and long-term ethanol exposure in the DID. Although the effect of varenicline on the reduction of ethanol consumption was slightly more pronounced in β4-/- mice than their β4+/+ littermates no significant differences were observed between genotypes. CONCLUSION In mice, varenicline reduces binge-like ethanol consumption both after short- and long-term exposure in the DID and this effect is independent of β4 nAChR subunit.
Collapse
|
13
|
Cross SJ, Lotfipour S, Leslie FM. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:171-185. [PMID: 27532746 DOI: 10.1080/00952990.2016.1209512] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.
Collapse
Affiliation(s)
- Sarah J Cross
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA
| | - Shahrdad Lotfipour
- b Department of Emergency Medicine , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| | - Frances M Leslie
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
14
|
Obsada N, Zalewska-Kaszubska J. Wareniklina – częściowy agonista receptorów nikotynowych w terapii zespołu uzależnienia od alkoholu. ALCOHOLISM AND DRUG ADDICTION 2016. [DOI: 10.1016/j.alkona.2016.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Van Skike CE, Maggio SE, Reynolds AR, Casey EM, Bardo MT, Dwoskin LP, Prendergast MA, Nixon K. Critical needs in drug discovery for cessation of alcohol and nicotine polysubstance abuse. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:269-87. [PMID: 26582145 PMCID: PMC4679525 DOI: 10.1016/j.pnpbp.2015.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/29/2023]
Abstract
Polysubstance abuse of alcohol and nicotine has been overlooked in our understanding of the neurobiology of addiction and especially in the development of novel therapeutics for its treatment. Estimates show that as many as 92% of people with alcohol use disorders also smoke tobacco. The health risks associated with both excessive alcohol consumption and tobacco smoking create an urgent biomedical need for the discovery of effective cessation treatments, as opposed to current approaches that attempt to independently treat each abused agent. The lack of treatment approaches for alcohol and nicotine abuse/dependence mirrors a similar lack of research in the neurobiology of polysubstance abuse. This review discusses three critical needs in medications development for alcohol and nicotine co-abuse: (1) the need for a better understanding of the clinical condition (i.e. alcohol and nicotine polysubstance abuse), (2) the need to better understand how these drugs interact in order to identify new targets for therapeutic development and (3) the need for animal models that better mimic this human condition. Current and emerging treatments available for the cessation of each drug and their mechanisms of action are discussed within this context followed by what is known about the pharmacological interactions of alcohol and nicotine. Much has been and will continue to be gained from studying comorbid alcohol and nicotine exposure.
Collapse
Affiliation(s)
- C E Van Skike
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - S E Maggio
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - A R Reynolds
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States
| | - E M Casey
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States
| | - M T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - L P Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Center for Drug Abuse and Research Translation, University of Kentucky, Lexington, KY 40536, United States
| | - M A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States
| | - K Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, United States; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
16
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
17
|
Rahman S, Engleman EA, Bell RL. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:183-201. [PMID: 26810002 PMCID: PMC4754113 DOI: 10.1016/bs.pmbts.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA.
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Stankiewicz AM, Goscik J, Dyr W, Juszczak GR, Ryglewicz D, Swiergiel AH, Wieczorek M, Stefanski R. Novel candidate genes for alcoholism--transcriptomic analysis of prefrontal medial cortex, hippocampus and nucleus accumbens of Warsaw alcohol-preferring and non-preferring rats. Pharmacol Biochem Behav 2015; 139:27-38. [PMID: 26455281 DOI: 10.1016/j.pbb.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Wanda Dyr
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Danuta Ryglewicz
- First Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Artur H Swiergiel
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA71130, USA.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Roman Stefanski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
19
|
Perez E, Quijano-Cardé N, De Biasi M. Nicotinic Mechanisms Modulate Ethanol Withdrawal and Modify Time Course and Symptoms Severity of Simultaneous Withdrawal from Alcohol and Nicotine. Neuropsychopharmacology 2015; 40:2327-36. [PMID: 25790020 PMCID: PMC4538347 DOI: 10.1038/npp.2015.80] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 02/03/2023]
Abstract
Alcohol and nicotine are among the top causes of preventable death in the United States. Unfortunately, people who are dependent on alcohol are more likely to smoke than individuals in the general population. Similarly, smokers are more likely to abuse alcohol. Alcohol and nicotine codependence affects health in many ways and leads to poorer treatment outcomes in subjects who want to quit. This study examined the interaction of alcohol and nicotine during withdrawal and compared abstinence symptoms during withdrawal from one of the two drugs only vs both. Our results indicate that simultaneous withdrawal from alcohol and nicotine produces physical symptoms that are more severe and last longer than those experienced during withdrawal from one of the two drugs alone. In animals experiencing withdrawal after chronic ethanol treatment, acute nicotine exposure was sufficient to prevent abstinence symptoms. Similarly, symptoms were prevented when alcohol was injected acutely in mice undergoing nicotine withdrawal. These experiments provide evidence for the involvement of the nicotinic cholinergic system in alcohol withdrawal. Furthermore, the outcomes of intracranial microinfusions of mecamylamine, a nonselective nicotinic receptor antagonist, highlight a major role for the nicotinic receptors expressed in medial habenula and interpeduncular nucleus during withdrawal. Overall, the data support the notion that modulating the nicotinic cholinergic system might help to maintain long-term abstinence from alcohol.
Collapse
Affiliation(s)
- Erika Perez
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 415 Curie Boulevard, CRB-217, Philadelphia, PA 19104, USA, Tel: +1 215 898 9579, Fax: +1 215 573 0833, E-mail:
| |
Collapse
|
20
|
Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015; 8:426. [PMID: 25642160 PMCID: PMC4295535 DOI: 10.3389/fnins.2014.00426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Alcohol and drug dependence are serious public health problems worldwide. The prevalence of alcohol and drug dependence in the United States and other parts of the world is significant. Given the limitations in the efficacy of current pharmacotherapies to treat these disorders, research in developing alternative pharmacotherapies continues. Preclinical and clinical evidence thus far has indicated that brain nicotinic acetylcholine receptors (nAChRs) are important pharmacological targets for the development of medications to treat alcohol and drug dependence. The nAChRs are a super family of ligand gated ion channels, and are expressed throughout the brain with twelve neuronal nAChR subunits (α2–α10 and β2–β4) identified. Here, we review preclinical and clinical evidence involving a number of nAChR ligands that target different nAChR subtypes in alcohol and nicotine addiction. The important ligands include cytisine, lobeline, mecamylamine, varenicline, sazetidine A and others that target α4β2* nAChR subtypes as small molecule modulators of the brain nicotinic cholinergic system are also discussed. Taken together, both preclinical and clinical data exist that support nAChR–based ligands as promising therapeutic agents for the treatment of alcohol and drug dependence.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University Brookings, SD, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
21
|
Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015. [DOI: https://doi.org/10.3389/fnins.2014.00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Weng JTY, Wu LSH, Lee CS, Hsu PWC, Cheng ATA. Integrative epigenetic profiling analysis identifies DNA methylation changes associated with chronic alcohol consumption. Comput Biol Med 2014; 64:299-306. [PMID: 25555412 DOI: 10.1016/j.compbiomed.2014.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/27/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
Abstract
Alcoholism has always been a major public health concern in Taiwan, especially in the aboriginal communities. Emerging evidence supports the association between DNA methylation and alcoholism, though very few studies have examined the effect of chronic alcohol consumption on the epignome. Since 1986, we have been following up on the mental health conditions of four major aboriginal peoples of Taiwan. The 993 aboriginal people who underwent the phase 1 (1986) clinical interviews were followed up through phase 2 (1990-1992), and phase 3 (2003-2009). Selected individuals for the current study included 10 males from the phase 1 normal cohort who remained normal at phase 2 and became dependent on alcohol by phase 3 and 10 control subjects who have not had any drinking problems throughout the study. We profiled the DNA methylation changes in the blood samples collected at phases 2 and 3. Enrichment analyses have identified several biological processes related to immune system responses and aging in the control group. In contrast, differentially methylated genes in the case group were mostly associated with susceptibility to infections, as well as pathways related to muscular contraction and neural degeneration. The methylation levels of six genes were found to correlate with alcohol consumption. These include genes involved in neurogenesis (NPDC1) and inflammation (HERC5), as well as alcoholism-associated genes ADCY9, CKM, and PHOX2A. Given the limited sample size, our approach uncovered genes and disease pathways associated with chronic alcohol consumption at the epigenetic level. The results offer a preliminary methylome map that enhances our understanding of alcohol-induced damages and offers new targets for alcohol injury research.
Collapse
Affiliation(s)
- Julia Tzu-Ya Weng
- Department of Computer Science & Engineering, Yuan Ze University, Chung-Li, Taiwan; Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Chung-Li, Taiwan.
| | | | - Chau-Shoun Lee
- Department of Psychiatry, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Paul Wei-Che Hsu
- Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Andrew T A Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Molas S, Gener T, Güell J, Martín M, Ballesteros-Yáñez I, Sanchez-Vives MV, Dierssen M. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. Acta Neuropathol Commun 2014; 2:147. [PMID: 25384568 PMCID: PMC4236452 DOI: 10.1186/s40478-014-0147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.
Collapse
|
24
|
Gallego X, Cox RJ, Laughlin JR, Stitzel JA, Ehringer MA. Alternative CHRNB4 3'-UTRs mediate the allelic effects of SNP rs1948 on gene expression. PLoS One 2013; 8:e63699. [PMID: 23691088 PMCID: PMC3653846 DOI: 10.1371/journal.pone.0063699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022] Open
Abstract
Common genetic factors strongly contribute to both nicotine, the main addictive component of tobacco, and alcohol use. Several lines of evidence suggest nicotinic acetylcholine receptors as common sites of action for nicotine and alcohol. Specifically, rs1948, a single-nucleotide polymorphism (SNP) located in the CHRNB4 3′-untranslated region (UTR), has been associated to early age of initiation for both alcohol and tobacco use. To determine the allelic effects of rs1948 on gene expression, two rs1948-containing sequences of different lengths corresponding to the CHRNB4 3′-UTR were cloned into pGL3-promoter luciferase reporter vectors. Data obtained showed that the allelic effects of SNP rs1948 on luciferase expression are mediated by the length and species of transcripts generated. In addition, it was found that miR-3157 increased the overall luciferase expression while miR-138, a microRNA known to play a role in neuroadaptation to drug abuse, decreased luciferase expression when compared to basal conditions. These findings demonstrate the importance of SNP rs1948 on the regulation of CHRNB4 expression and provide the first evidence of CHRNB4 down-regulation by miR-138.
Collapse
Affiliation(s)
- Xavier Gallego
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Ryan J. Cox
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - James R. Laughlin
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States of America
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Dawson A, Miles MF, Damaj MI. The β2 nicotinic acetylcholine receptor subunit differentially influences ethanol behavioral effects in the mouse. Alcohol 2013; 47:85-94. [PMID: 23419392 DOI: 10.1016/j.alcohol.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/15/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022]
Abstract
The high co-morbidity between alcohol (ethanol) and nicotine abuse suggests that nicotinic acetylcholine receptors (nAChRs), thought to underlie nicotine dependence, may also be involved in alcohol dependence. The β2* nAChR subtype serves as a potential interface for these interactions since they are the principle mediators of nicotine dependence and have recently been shown to modulate some acute responses to ethanol. Therefore, the aim of this study was to more fully characterize the role of β2* nAChRs in ethanol-responsive behaviors in mice after acute exposure to the drug. We conducted a battery of tests in mice lacking the β2* coding gene (Chrnb2) or pretreated with a selective β2* nAChR antagonist for a range of ethanol-induced behaviors including locomotor depression, hypothermia, hypnosis, and anxiolysis. We also tested the effect of deletion on voluntary escalated ethanol consumption in an intermittent access two-bottle choice paradigm to determine the extent of these effects on drinking behavior. Our results showed that antagonism of β2* nAChRs modulated some acute behaviors, namely by reducing recovery time from hypnosis and enhancing the anxiolytic-like response produced by acute ethanol in mice. Chrnb2 deletion had no effect on ethanol drinking behavior, however. We provide further evidence that β2* nAChRs have a measurable role in mediating specific behavioral effects induced by acute ethanol exposure without affecting drinking behavior directly. We conclude that these receptors, along with being key components in nicotine dependence, may also present viable candidates in the discovery of the molecular underpinnings of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, MCV Campus, Box 980613, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|
26
|
|
27
|
The α6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation. Alcohol 2012; 46:463-71. [PMID: 22572056 DOI: 10.1016/j.alcohol.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
Alcohol and nicotine are often co-used and data from human and animals studies have demonstrated that common genes underlie responses to these two drugs. Recently, the genes that code for the subunits of the nicotinic acetylcholine receptors have been implicated as a common genetic mediator for alcohol and nicotine responses. The mammalian genes that code for the α6 and β3 subunits of the nicotinic acetylcholine receptor (Chrna6 and Chrnb3, respectively) are located adjacent to each other on human and mouse chromosome 8. These subunits have gained attention as potential regulators of drug behaviors because of their expression in the striatum where they have been shown to modulate dopamine release. Human genetic studies have shown that variation in these genes is associated with alcohol phenotypes. In the current experiments, mice lacking the Chrna6 or Chrnb3 gene were tested for three ethanol behaviors: choice ethanol consumption, ataxia, and sedation. Wildtype (WT), heterozygous (HET), and knockout (KO) mice of each strain went through a standard 2-bottle choice drinking paradigm, the balance beam, and the Loss of Righting Reflex (LORR) paradigm. No genotypic effects on any of the 3 behavioral tasks were observed in Chrnb3 animals. While the Chrna6 gene did not significantly influence ethanol consumption (g/kg) or ataxia, mice lacking the α6 subunit took significantly longer to recover their righting reflex than WT animals. These data provide evidence that receptors containing this subunit modulate the sedative effects of ethanol. Further work examining other models of ethanol consumption and behavioral responses to ethanol is needed to fully characterize the role of these receptor subunits in modulating ethanol responses.
Collapse
|