1
|
Song J, Jian Y, Xie Y, Liang J, Shao C, Pan X, Chen Z, Gao Q, Kong Y, Xu Q, Ding Z. The Dietary Lipid Requirement for Ovarian Maturation and Health in Female Giant River Prawn, Macrobrachium rosenbergii Broodstock. AQUACULTURE NUTRITION 2024; 2024:7462841. [PMID: 39555550 PMCID: PMC11557180 DOI: 10.1155/2024/7462841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
The dietary lipid level is closely associated with ovarian maturation of broodstock. However, optimal lipid requirements during broodstock gonad development for aquatic animals remain limited. In order to assess the impact of dietary lipid levels (6%, 8%, 10%, 12%, and 14% lipid, denoted as L6%, L8%, L10%, L12%, and L14%) on the ovarian maturation, antioxidant status, and messenger RNA (mRNA) expression of genes involved in the lipid metabolism of Macrobrachium rosenbergii broodstock (initial weight 10.53 ± 1.97 g), this study carried out an 8-week feeding experiment. The findings showed that while there was no significant difference in the survival rate across the groups (p > 0.05), the weight gain observed in prawns fed the 8% lipid-level diet was significantly higher than those fed other diets (p < 0.05). The hepatosomatic index and the gonadosomatic index showed a significant increase with the rise in dietary lipid level (p < 0.05). More ovaries from M. rosenbergii broodstock reached stages Ⅲ and Ⅳ after being supplemented with dietary lipid levels between 8% and 14%. Serum glucose content did not show any significant difference among all groups (p > 0.05), but serum triglyceride and total cholesterol content increased followed by a decreasing trend with increasing levels of dietary lipids, both peaking in the prawns fed a 10% lipid-level diet. Furthermore, the progesterone (PROG) and 17β-estradiol (E2) content of prawns fed the 10% and 12% lipid-level diets were significantly higher compared to other groups (p < 0.05). Based on serum E2 and PROG content, the optimal lipid level needed for maximal ovarian maturation was determined to be 11.79% and 10.88%, respectively. Moreover, there were more endogenous vitellogenic oocytes in prawns fed 8% and 10% lipid-level diets, with a more compact arrangement compared to the less tightly arranged structure of the ovarian tissue in prawns fed other diets. With the increase in dietary lipid levels, there was a significant increase in the activity of superoxide dismutase. The activities of total antioxidant capacity and glutathione peroxidase initially increased and then decreased significantly, peaking at prawns fed 8% and 10% lipid-level diets, respectively (p < 0.05). The malondialdehyde content reached its lowest point in prawns fed a diet containing 10% lipid. In addition, the mRNA expressions of hepatopancreatic diacylglycerol acyltransferase and acetyl-CoA carboxylase showed the highest values in prawns fed a 10% lipid diet. Conversely, there was a significant decrease in the mRNA expression of carnitine palmitoyltransferase-1a in the hepatopancreatic as dietary lipid levels increased. The highest mRNA expression of fatty acid-binding proteins was observed in prawns fed an 8% lipid diet. In conclusion, dietary lipid levels ranging from 8% to 11.79% are beneficial for ovarian maturation and health of M. rosenbergii broodstock.
Collapse
Affiliation(s)
- Jiaxin Song
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Yonghui Jian
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Yuliang Xie
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Jinghao Liang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Chaowei Shao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xifang Pan
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Zhiyuan Chen
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Qiuyu Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Youqin Kong
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Qiyou Xu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Zhili Ding
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou 313000, Zhejiang, China
| |
Collapse
|
2
|
Lin MZ, Bi YH, Li SQ, Xie JH, Zhou ZG. The enzyme encoded by Myrmecia incisa, a green microalga, phospholipase A 2 gene preferentially hydrolyzes arachidonic acid at the sn-2 position of phosphatidylcholine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108806. [PMID: 38861822 DOI: 10.1016/j.plaphy.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.
Collapse
Affiliation(s)
- Mei-Zhi Lin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Yan-Hui Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Si-Qi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Jin-Hai Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, No. 999 Huchenghuan Road, Nanhui New City, Shanghai, 201306, China.
| |
Collapse
|
3
|
Dalmia A, Daga P, Datey A, Chakravortty D, Tumaney AW. Biochemical characterization of lipid metabolic genes of Aurantiochytrium limacinum. Int J Biol Macromol 2024; 259:129078. [PMID: 38176490 DOI: 10.1016/j.ijbiomac.2023.129078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Docosahexaenoic acid (DHA) is known to have numerous health benefits and immense dietary value. There is a pressing need to have a deeper understanding of DHA metabolism. Acyl CoA: Diacylglycerol Acyltransferase (DGAT) is an important enzyme of lipid anabolism and an essential piece of the puzzle. Aurantiochytrium limacinum, a primary producer of DHA, is a good model for studying DHA metabolism. Thus, we aimed to investigate important lipid metabolic genes from A. limacinum. We cloned four putative DGATs (DGAT2a, DGAT2b, DGAT2c, and DGAT2d) from A. limacinum and performed detailed in vivo and in vitro characterization. Functional characterization showed that not all the studied genes exhibited DGAT activity. DGAT2a and DGAT2d conferred DGAT activity whereas DGAT2b showed wax synthase (WS) activity and DGAT2c showed dual function of both WS and DGAT. Based on their identified function, DGAT2b and DGAT2c were renamed as AlWS and AlWS/DGAT respectively. DGAT2a was found to exhibit a preference for DHA as a substrate. DGAT2d was found to have robust activity and emerged as a promising candidate for genetic engineering aimed at increasing oil yield. The study enriches our knowledge of lipid biosynthetic enzymes in A. limacinum, which can be utilized to design suitable application strategies.
Collapse
Affiliation(s)
- Ayushi Dalmia
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palak Daga
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Ajay W Tumaney
- Department of Lipid Science, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
4
|
Liu K, Li J, Xing C, Yuan H, Yang J. Characterization of Auxenochlorella protothecoides acyltransferases and potential of their protein interactions to promote the enrichment of oleic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:69. [PMID: 37085915 PMCID: PMC10120206 DOI: 10.1186/s13068-023-02318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND After centuries of heavy reliance on fossil fuel energy, the world suffers from an energy crisis and global warming, calling for carbon emission reduction and a transition to clean energy. Microalgae have attracted much attention as a potential feedstock for biofuel production due to their high triacylglycerol content and CO2 sequestration ability. Many diacylglycerol acyltransferases (DGAT) species have been characterized, which catalyze the final committed step in triacylglycerol biosynthesis. However, the detailed structure-function features of DGATs and the role of the interactions among DGAT proteins in lipid metabolism remained largely unknown. RESULTS In this study, the three characterized DGATs of Auxenochlorella protothecoides 2341 showed distinct structural and functional conservation. Functional complementation analyses showed that ApDGAT1 had higher activity than ApDGAT2b in yeast and model microalgae, and ApDGAT2a had no activity in yeast. The N-terminus was not essential to the catalysis function of ApDGAT1 but was crucial to ApDGAT2b as its enzyme activity was sensitive to any N-terminus modifications. Similarly, when acyl-CoA binding proteins (ACBPs) were fused to the N-terminus of ApDGAT1 and ApDGAT2b, zero and significant activity changes were observed, respectively. Interestingly, the ApACBP3 + ApDGAT1 variant contributed to higher oil accumulation than the original DGAT1, and ApACBP1 + ApDGAT1 fusion boosted oleic acid content in yeast. Overexpression of the three DGATs and the variation of ApACBP3 + ApDGAT1 increased the content of C18:1 of Chlamydomonas reinhardtii CC-5235. Significantly, ApDGAT1 interacted with itself, ApDGAT2b, and ApACBP1, which indicated that these three lipid metabolic proteins might have been a part of a dynamic protein interactome that facilitated the enrichment of oleic acid. CONCLUSIONS This study provided new insights into the functional and structural characteristics of DGATs and elucidated the importance of these physical interactions in potential lipid channeling.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinyu Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chao Xing
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Ganesh Saratale R, Ponnusamy VK, Jeyakumar RB, Sirohi R, Piechota G, Shobana S, Dharmaraja J, Lay CH, Dattatraya Saratale G, Seung Shin H, Ashokkumar V. Microalgae cultivation strategies using cost-effective nutrient sources: Recent updates and progress towards biofuel production. BIORESOURCE TECHNOLOGY 2022; 361:127691. [PMID: 35926554 DOI: 10.1016/j.biortech.2022.127691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Scientists are grabbing huge attention as well as consciousness on non-renewable energy sources for the global energy crises because of gradual increase in oil price, fast depletion or low availability of resources, and the release of more toxic-gases (CO2, SOx, NxO) during exhaustion, etc. Due to such hitches, the key need is to find alternative biofuels or feedstocks to replace fossil fuel energy demands worldwide. Currently, microalgae have become intrigued feedstock candidates (3rd generation source of biofuel) to replace nearly 50-60 % of fossil fuels due to high production of biomass and oil, mitigating CO2 and wastewater remediation. The present work demonstrated the current developments and future perspectives on large-scale algal cultivation strategies for the biorefinery economy. In addition, various advanced cultivation techniques adopted for enhanced biomass production and cost-effective methods for bioenergy production were detailly discussed.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, and Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Grzegorz Piechota
- GP CHEM. Laboratory of Biogas Research and Analysis, Legionów 40a/3, 87-100 Toruń, Poland
| | - Sutha Shobana
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Jeyaprakash Dharmaraja
- Division of Chemistry, Faculty of Science and Humanities, AAA College of Engineering and Technology, Amathur 626005, Virudhunagar District, Tamil Nadu, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, Taiwan
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
6
|
Liu Y, Zhou X, Liu B, Gao Q, Sun C, Zhou Q, Zheng X, Liu B. Effects of high fat in the diet on growth, antioxidant, immunity and fat deposition of Macrobrachium rosenbergii post-larvae. FISH & SHELLFISH IMMUNOLOGY 2022; 129:13-21. [PMID: 35995371 DOI: 10.1016/j.fsi.2022.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Lipids are essential nutrients for organisms, and high-fat feeds for shrimp may cause oxidative stress. This study evaluated the effects of feeding high fat in the diet on the growth, antioxidant, immunity, and liver fat accumulation of Macrobrachium rosenbergii post-larvae. Five groups with an initial body weight of 0.0084 ± 0.001 g were fed five isonitrogenous and isoenergetic diets (47.01% crude protein and 18.40 kJ/g gross energy) containing 8%, 10%, 12%, 14% and 16% (named L8, L10, L12, L14 and L16) lipid for 8 weeks, respectively. The results showed that the weight gain rate (WGR) and specific growth rate (SGR) of L8 group were significantly higher than those of L10, L12, L14 and L16 group (P < 0.05), and the feed coefficient (FCR) of L8 group was significantly lower than that of other groups (P < 0.05). With the increase of dietary fat level, the content of MDA and the activity of SOD increased significantly, and the activities of T-AOC and CAT decreased significantly (P < 0.05). H&E staining clearly revealed the occurrence of hepatocyte swelling, hepatocyte vacuolization and nucleus displacement to the peripheral cell vacuolization in the L16 group, and hepatic lipid accumulation was further observed in the L14 and L16 group by Oil red O staining. In addition, high-fat diet significantly upregulated the expression of Dorsal, Relish and IκBα mRNA, and also upregulated the expression of fat synthesis-related genes FAS, ACC, DGAT and fat transport-related gene FABP (P < 0.05), and significantly downregulated the expression of fat metabolism-related genes AMPK and CPT-1 (P < 0.05) compared to that of the L8 group. In conclusion, this study showed that feeding a high-fat diet could induce oxidative stress, inhibit growth performance, alter antioxidant capacity, cause hepatic fat deposition and affect the immune system of M. rosenbergii post-larvae.
Collapse
Affiliation(s)
- Yunke Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Xixun Zhou
- Yueyang Yumeikang Biotechnology Co. Ltd, Yueyang, 414100, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Qiang Gao
- Zhejiang Institute of Freshwater Fishery, Huzhou, 313001, China.
| | - Cunxin Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
7
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
8
|
Carro MDLM, Gonorazky G, Soto D, Mamone L, Bagnato C, Pagnussat LA, Beligni MV. Expression of Chlamydomonas reinhardtii chloroplast diacylglycerol acyltransferase 3 is induced by light in concert with triacylglycerol accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:262-276. [PMID: 35043497 DOI: 10.1111/tpj.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Considerable progress has been made towards the understanding of triacylglycerol (TAG) accumulation in algae. One key aspect is finding conditions that trigger TAG production without reducing cell division. Previously, we identified a soluble diacylglycerol acyltransferase (DGAT), related to plant DGAT3, with heterologous DGAT activity. In this work, we demonstrate that Chlamydomonas reinhardtii DGAT3 localizes to the chloroplast and that its expression is induced by light, in correspondence with TAG accumulation. Dgat3 mRNAs and TAGs increase in both wild-type and starch-deficient cells grown with acetate upon transferring them from dark or low light to higher light levels, albeit affected by the particularities of each strain. The response of dgat3 mRNAs and TAGs to light depends on the pre-existing levels of TAGs, suggesting the existence of a negative regulatory loop in the synthesis pathway, although an effect of TAG turnover cannot be ruled out. Altogether, these results hint towards a possible role of DGAT3 in light-dependent TAG accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Gabriela Gonorazky
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Leandro Mamone
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable (IEDS), Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, 8400, San Carlos de Bariloche, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, B7620EMA, Balcarce, Argentina
| | - María Verónica Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| |
Collapse
|
9
|
Sanya DRA, Onésime D, Passoth V, Maiti MK, Chattopadhyay A, Khot MB. Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production. Appl Microbiol Biotechnol 2021; 105:4879-4897. [PMID: 34110474 DOI: 10.1007/s00253-021-11354-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/31/2022]
Abstract
Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes. Species of this genus are dimorphic, non-pathogenic, thermotolerant, and can assimilate a variety of hydrophilic and hydrophobic substrates. These can constitute a single-cell oil platform in an emerging bio-based economy as oleaginous traits have been discovered recently. However, the regulatory network of lipogenesis in these yeasts is poorly understood. To keep pace with the growing market demands for lipid-derived products, it is critical to understand the lipid biosynthesis in these unconventional yeasts to pinpoint what governs the preferential channelling of carbon flux into lipids instead of the competing pathways. This review summarizes information relevant to the regulation of lipid metabolic pathways and prospects of metabolic engineering in Blastobotrys yeasts for their application in food, feed, and beyond, particularly for fatty acid-based fuels and oleochemicals. KEY POINTS: • The production of biolipids by heterotrophic yeasts is reviewed. • Summary of information concerning lipid metabolism regulation is highlighted. • Special focus on the importance of diacylglycerol acyltransferases encoding genes in improving lipid production is made.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mahesh B Khot
- Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile
| |
Collapse
|
10
|
Sun LP, Ouyang LL, Bao H, Liu JG, Sun Z, Zhou ZG. Comparison between two isoforms of glycerol-3-phosphate acyltransferase in microalga Myrmecia incisa: Subcellular localization and role in triacylglycerol synthesis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Cui H, Zhao C, Xu W, Zhang H, Hang W, Zhu X, Ji C, Xue J, Zhang C, Li R. Characterization of type-2 diacylglycerol acyltransferases in Haematococcus lacustris reveals their functions and engineering potential in triacylglycerol biosynthesis. BMC PLANT BIOLOGY 2021; 21:20. [PMID: 33407140 PMCID: PMC7788937 DOI: 10.1186/s12870-020-02794-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. RESULTS Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. CONCLUSIONS Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.
Collapse
Affiliation(s)
- Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Hongjiang Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wei Hang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Xiaoli Zhu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
12
|
Mao X, Wu T, Kou Y, Shi Y, Zhang Y, Liu J. Characterization of type I and type II diacylglycerol acyltransferases from the emerging model alga Chlorella zofingiensis reveals their functional complementarity and engineering potential. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:28. [PMID: 30792816 PMCID: PMC6371474 DOI: 10.1186/s13068-019-1366-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The green alga Chlorella zofingiensis has been recognized as an industrially relevant strain because of its robust growth under multiple trophic conditions and the potential for simultaneous production of triacylglycerol (TAG) and the high-value keto-carotenoid astaxanthin. Nevertheless, the mechanism of TAG synthesis remains poorly understood in C. zofingiensis. Diacylglycerol acyltransferase (DGAT) is thought to catalyze the committed step of TAG assembly in the Kennedy pathway. C. zofingiensis genome is predicted to possess eleven putative DGAT-encoding genes, the greatest number ever found in green algae, pointing to the complexity of TAG assembly in the alga. RESULTS The transcription start site of C. zofingiensis DGATs was determined by 5'-rapid amplification of cDNA ends (RACE), and their coding sequences were cloned and verified by sequencing, which identified ten DGAT genes (two type I DGATs designated as CzDGAT1A and CzDGAT1B, and eight type II DGATs designated as CzDGTT1 through CzDGTT8) and revealed that the previous gene models of seven DGATs were incorrect. Function complementation in the TAG-deficient yeast strain confirmed the functionality of most DGATs, with CzDGAT1A and CzDGTT5 having the highest activity. In vitro DGAT assay revealed that CzDGAT1A and CzDGTT5 preferred eukaryotic and prokaryotic diacylglycerols (DAGs), respectively, and had overlapping yet distinctive substrate specificity for acyl-CoAs. Subcellular co-localization experiment in tobacco leaves indicated that both CzDGAT1A and CzDGTT5 were localized at endoplasmic reticulum (ER). Upon nitrogen deprivation, TAG was drastically induced in C. zofingiensis, accompanied by a considerable up-regulation of CzDGAT1A and CzDGTT5. These two genes were probably regulated by the transcription factors (TFs) bZIP3 and MYB1, as suggested by the yeast one-hybrid assay and expression correlation. Moreover, heterologous expression of CzDGAT1A and CzDGTT5 promoted TAG accumulation and TAG yield in different hosts including yeast and oleaginous alga. CONCLUSIONS Our study represents a pioneering work on the characterization of both type I and type II C. zofingiensis DGATs by systematically integrating functional complementation, in vitro enzymatic assay, subcellular localization, yeast one-hybrid assay and overexpression in yeast and oleaginous alga. These results (1) update the gene models of C. zofingiensis DGATs, (2) shed light on the mechanism of oleaginousness in which CzDGAT1A and CzDGTT5, have functional complementarity and probably work in collaboration at ER contributing to the abundance and complexity of TAG, and (3) provide engineering targets for future trait improvement via rational manipulation of this alga as well as other industrially relevant ones.
Collapse
Affiliation(s)
- Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Tao Wu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yaping Kou
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Ying Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yu Zhang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
13
|
Zienkiewicz K, Benning U, Siegler H, Feussner I. The type 2 acyl-CoA:diacylglycerol acyltransferase family of the oleaginous microalga Lobosphaera incisa. BMC PLANT BIOLOGY 2018; 18:298. [PMID: 30477429 PMCID: PMC6257963 DOI: 10.1186/s12870-018-1510-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/29/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising sources of energy-rich triacylglycerols (TAGs) for direct use for food, feed and industrial applications. Lobosphaera incisa is a fresh water unicellular alga, which in response to nutrient stress accumulates a high amount of TAGs with a high proportion of arachidonic acid (ARA). The final committed step of de novo TAG biosynthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs), which add a fatty acid (FA) to the final sn-3 position of diacylglycerol (DAG). RESULTS Genome analysis revealed the presence of five putative DGAT isoforms in L. incisa, including one DGAT of type 1, three DGATs of type 2 and a single isoform of a type 3 DGAT. For LiDGAT1, LiDGAT2.1, LiDGAT2.2 and LiDGAT2.3 enzyme activity was confirmed by expressing them in the TAG-deficient yeast strain H1246. Feeding experiments of yeast transformants with fatty acids suggest a broad substrate specificity spectrum for LiDGAT1. A significant TAG production in response to exogenous ARA was found for LiDGAT2.2. Cellular localization of the four type 1 and type 2 DGATs expressed in yeast revealed that they all localize to distinct ER domains. A prominent association of LiDGAT1 with ER domains in close proximity to forming lipid droplets (LDs) was also observed. CONCLUSIONS The data revealed a distinct molecular, functional and cellular nature of type 1 and type 2 DGATs from L. incisa, with LiDGAT1 being a major contributor to the TAG pool. LiDGATs of type 2 might be in turn involved in the incorporation of unusual fatty acids into TAG and thus regulate the composition of TAG. This report provides a valuable resource for the further research of microalgae DGATs oriented towards production of fresh-water strains with higher oil content of valuable composition, not only for oil industry but also for human and animal nutrition.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Urs Benning
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Heike Siegler
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077 Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077 Goettingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), University of Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
14
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
15
|
Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, Zhang L. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. BIORESOURCE TECHNOLOGY 2017; 239:87-96. [PMID: 28501687 DOI: 10.1016/j.biortech.2017.04.120] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Applying phytohormones has been considered a promising way to increase lipid productivity of microalgae recently. Eight dosages of auxin phytohormones were tested to exploit the effects and mechanism of such stimulants on microalgae. The optimal one was 20mgL-1, leading to an increase in biomass concentration of 59.3% for Scenedesmus sp. SDEC-8 and 76.6% for Chlorella sorokiniana SDEC-18, meanwhile the lipid content rose from 18.74% to 56.17% (SDEC-8) and from 19.69% to 55.76% (SDEC-18). Proton pumps were activated by the stimulants, causing excretion of H+, which resulted in pH decline and a favorable condition for growth. Pigments changes implied that hormones strengthened the dark reactions of photosynthesis. Auxin addition led to a 3μm increase in diameter for C. sorokiniana SDEC-18 and altered the cellular pattern of Scenedesmus sp. SDEC-8, which improved the cells elongation. Therefore, supplement of auxin phytohormones simultaneously increased the viability and lipid production of microalgae.
Collapse
Affiliation(s)
- Ze Yu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Mingming Song
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan 250061, China.
| | - Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| |
Collapse
|
16
|
|
17
|
Bagnato C, Prados MB, Franchini GR, Scaglia N, Miranda SE, Beligni MV. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway. BMC Genomics 2017; 18:223. [PMID: 28274201 PMCID: PMC5343412 DOI: 10.1186/s12864-017-3602-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
Background Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Results Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Conclusions Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3602-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina
| | - María B Prados
- Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina
| | - Gisela R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina
| | - Silvia E Miranda
- Universidad de Buenos Aires. CONICET Instituto de Investigaciones Cardiológicas (ININCA), - Laboratorio de Glico-Inmuno-Biología, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina
| | - María V Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
18
|
Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J. A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:174. [PMID: 28694845 PMCID: PMC5499063 DOI: 10.1186/s13068-017-0858-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic oleaginous microalgae are considered promising feedstocks for biofuels. The marine microalga, Nannochloropsis oceanica, has been attracting ever-increasing interest because of its fast growth, high triacylglycerol (TAG) content, and available genome sequence and genetic tools. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of TAG biosynthesis in the acyl-CoA-dependent pathway. Previous studies have identified 13 putative DGAT-encoding genes in the genome of N. oceanica, but the functional role of DGAT genes, especially type-I DGAT (DGAT1), remains ambiguous. RESULTS Nannochloropsis oceanica IMET1 possesses two DGAT1 genes: NoDGAT1A and NoDGAT1B. Functional complementation demonstrated the capability of NoDGAT1A rather than NoDGAT1B to restore TAG synthesis in a TAG-deficient yeast strain. In vitro DGAT assays revealed that NoDGAT1A preferred saturated/monounsaturated acyl-CoAs and eukaryotic diacylglycerols (DAGs) for TAG synthesis, while NoDGAT1B had no detectable enzymatic activity. Assisted with green fluorescence protein (GFP) fusion, fluorescence microscopy analysis indicated the localization of NoDGAT1A in the chloroplast endoplasmic reticulum (cER) of N. oceanica. NoDGAT1A knockdown caused ~25% decline in TAG content upon nitrogen depletion, accompanied by the reduced C16:0, C18:0, and C18:1 in TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. NoDGAT1A overexpression, on the other hand, led to ~39% increase in TAG content upon nitrogen depletion, accompanied by the enhanced C16:0 and C18:1 in the TAG sn-1/sn-3 positions and C18:1 in the TAG sn-2 position. Interestingly, NoDGAT1A overexpression also promoted TAG accumulation (by ~2.4-fold) under nitrogen-replete conditions without compromising cell growth, and TAG yield of the overexpression line reached 0.49 g L-1 at the end of a 10-day batch culture, 47% greater than that of the control line. CONCLUSIONS Taken together, our work demonstrates the functional role of NoDGAT1A and sheds light on the underlying mechanism for the biosynthesis of various TAG species in N. oceanica. NoDGAT1A resides likely in cER and prefers to transfer C16 and C18 saturated/monounsaturated fatty acids to eukaryotic DAGs for TAG assembly. This work also provides insights into the rational genetic engineering of microalgae by manipulating rate-limiting enzymes such as DGAT to modulate TAG biosynthesis and fatty acid composition for biofuel production.
Collapse
Affiliation(s)
- Hehong Wei
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Ying Shi
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Xiaonian Ma
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MA 21202 USA
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Henri Gerken
- School of Sustainable Engineering and the Built Environment, Arizona State University Polytechnic campus, Mesa, AZ 85212 USA
| | - Jin Liu
- Institute for Food and Bioresource Engineering, Department of Energy and Resources Engineering and BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
19
|
Liu XY, Ouyang LL, Zhou ZG. Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress. Sci Rep 2016; 6:26610. [PMID: 27216435 PMCID: PMC4877601 DOI: 10.1038/srep26610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
In addition to the Kennedy pathway for de novo biosynthesis, triacylglycerol (TAG), the most important stock for microalgae-based biodiesel production, can be synthesized by phospholipid: diacylglycerol acyltransferase (PDAT) that transfers an acyl group from phospholipids (PLs) to diacylglycerol (DAG). This study presents a novel gene that encodes PDAT from the green microalga Myrmecia incisa Reisigl H4301 (designated MiPDAT ). MiPDAT is localized on the plasma membrane (PM) via the agroinfiltration of tobacco leaves with a green fluorescent protein-fused construct. MiPDAT synthesizes TAG based on functional complementary experiments in the mutant yeast strain H1246 and the membrane lipid phosphatidylcholine (PC) is preferentially used as substrates as revealed by in vitro enzyme activity assay. The gradually increased transcription levels of MiPDAT in M. incisa during the cultivation under nitrogen starvation conditions is proposed to be responsible for the decrease and increase of the PC and TAG levels, respectively, as detected by liquid chromatography-mass spectrometry after 4 d of nitrogen starvation. In addition, the mechanism by which MiPDAT in this microalga uses PC to yield TAG is discussed. Accordingly, it is concluded that this PM-located PDAT contributes to the conversion of membrane lipids into TAG in M. incisa during the nitrogen starvation stress.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Ling Ouyang
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
20
|
Ooi TEK, Yeap WC, Daim LDJ, Ng BZ, Lee FC, Othman AM, Appleton DR, Chew FT, Kulaveerasingam H. Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis. Proteome Sci 2015; 13:28. [PMID: 26617468 PMCID: PMC4661986 DOI: 10.1186/s12953-015-0085-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/22/2015] [Indexed: 12/04/2022] Open
Abstract
Background The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps. Results From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield. Conclusions Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0085-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tony Eng Keong Ooi
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - Wan Chin Yeap
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - Leona Daniela Jeffery Daim
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - Boon Zean Ng
- Agro-Biotechnology Institute Malaysia, National Institutes of Biotechnology Malaysia, c/o MARDI Headquarters, 43400 Serdang, Selangor Malaysia
| | - Fong Chin Lee
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - Ainul Masni Othman
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - David Ross Appleton
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Kent Ridge Road, Singapore, 117543 Singapore
| | - Harikrishna Kulaveerasingam
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia
| |
Collapse
|