1
|
Ran J, Xiang R, Zheng B. Effects of extracellular organic matter from bacteria on the growth, physiology, photosynthesis, and transcriptome of the bloom-forming algal species. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137558. [PMID: 39952128 DOI: 10.1016/j.jhazmat.2025.137558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Cyanobacterial blooms pose one of the most severe ecological challenges in aquatic systems. However, the mechanism through which bacterial dissolved organic matter influences the formation of algal blooms remains unclear. In this study, extracellular organic matter (EOM) was extracted from Flavobacterium sp., a common bacterial group in bloom, and the impacts of this EOM on the growth, physiology, photosynthesis, and transcriptome of Anabaena sp. were investigated. The results indicated that flavobacterium-derived EOM (F-EOM) inhibited Anabaena sp. growth, physiological activity, and photosynthesis, with greater inhibition at higher concentrations. Meanwhile, transcriptome analysis showed that 803 genes in Anabaena sp. were differentially expressed after being exposed to 10 mg/L F-EOM, with simultaneously the majority being down-regulated. The down-regulation of genes in photochemical reactions, the synthesis of photosynthetic pigment, and light-trapping antenna protein inhibited photosynthesis. While ATP synthesis was reduced due to the genes related to oxidative phosphorylation and the tricarboxylic acid cycle was downregulated. Moreover, the down-regulated genes in amino acid synthesis affected the synthesis of proteins and metabolic regulatory factors. This may be the main reason why F-EOM could hinder the growth and metabolism of Anabaena sp. These results provide scientific insights into the formation and control of cyanobacteria blooms.
Collapse
Affiliation(s)
- Jiao Ran
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Rong Xiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Zhou W, Zheng H, Wu Y, Lin J, Ma X, Xing Y, Ou H, Vasquez HE, Zheng X, Yu F, Gu Z. Microplastic-Enhanced Cadmium Toxicity: A Growing Threat to the Sea Grape, Caulerpa lentillifera. Antioxidants (Basel) 2024; 13:1268. [PMID: 39456520 PMCID: PMC11505291 DOI: 10.3390/antiox13101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The escalating impact of human activities has led to the accumulation of microplastics (MPs) and heavy metals in marine environments, posing serious threats to marine ecosystems. As essential components of oceanic ecosystems, large seaweeds such as Caulerpa lentillifera play a crucial role in maintaining ecological balance. This study investigated the effects of MPs and cadmium (Cd) on the growth, physiology, biochemistry, and Cd accumulation in C. lentillifera while elucidating the underlying molecular regulatory mechanisms. The results demonstrated that exposure to MPs alone significantly promoted the growth. In contrast, exposure to Cd either alone or in combination with MPs significantly suppressed growth by reducing stem and stolon length, bud count, weight gain, and specific growth rates. Combined exposure to MPs and Cd exhibited the most pronounced inhibitory effect on growth. MPs had negligible impact while Cd exposure either alone or combined with MPs impaired antioxidant defenses and exacerbated oxidative damage; with combined exposure being the most detrimental. Analysis of Cd content revealed that MPs significantly increased Cd accumulation in algae intensifying its toxic effects. Gene expression analysis revealed that Cd exposure down-regulated key genes involved in photosynthesis, impairing both photosynthetic efficiency and energy conversion. The combined exposure of MPs and Cd further exacerbated these effects. In contrast, MPs alone activated the ribosome pathway, supporting ribosomal stability and protein synthesis. Additionally, both Cd exposure alone or in combination with MPs significantly reduced chlorophyll B and soluble sugar content, negatively impacting photosynthesis and nutrient accumulation. In summary, low concentrations of MPs promoted C. lentillifera growth, but the presence of Cd hindered it by disrupting photosynthesis and antioxidant mechanisms. Furthermore, the coexistence of MPs intensified the toxic effects of Cd. These findings enhance our understanding of how both MPs and Cd impact large seaweed ecosystems and provide crucial insights for assessing their ecological risks.
Collapse
Affiliation(s)
- Weilong Zhou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Haolong Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Yingyin Wu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Junyi Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xiaofei Ma
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi 214000, China;
| | - Yixuan Xing
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570228, China;
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
| | - Hebert Ely Vasquez
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
| | - Xing Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| | - Feng Yu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| | - Zhifeng Gu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (W.Z.); (H.Z.); (Y.W.); (J.L.); (H.O.); (H.E.V.); (X.Z.)
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, China
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572024, China
| |
Collapse
|
3
|
Amjadi T, Razeghi J, Motafakkerazad R, Zareipour R. Interaction between Haematococcus pluvialis microalgae and lead nitrate: lead adsorption from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1168-1179. [PMID: 38165083 DOI: 10.1080/15226514.2023.2298773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Our study aims to investigate the response of the unicellular alga, Haematococcus pluvialis, to the toxicity of lead and propose a low-cost, highly efficient biological adsorbent for the purification of wastewater and lead-contaminated water. The first part examines the effects of lead toxicity on certain physiological indicators of this alga. In the second part, the potential of this alga in lead removal and its adsorption capacity was assessed. The alga was cultivated in a BG11 medium and treated with lead nitrate concentrations of 10, 50, and 200 mg/L during its exponential growth. The results showed that with an increase in lead concentration up to 200 mg/L, the growth rate, chlorophyll a, chlorophyll b, carotenoid and total protein content decreased, while malondialdehyde (MDA) content increased. The astaxanthin content slightly increased at the 10 mg/L but decreased at the 200 mg/L treatment. Maximum lead adsorption was observed at 98.69% under optimal conditions, including a pH of 6, an adsorbent dose of 1 g/L, a lead concentration of 25 mg/L, a temperature of 25 °C, and an exposure time of 120 min. The results of this study demonstrate that Haematococcus pluvialis has the potential for effective lead removal from aquatic environments.
Collapse
Affiliation(s)
- Tayebeh Amjadi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rouhollah Motafakkerazad
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Zareipour
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
4
|
Xu P, Tu X, An Z, Mi W, Wan D, Bi Y, Song G. Cadmium-Induced Physiological Responses, Biosorption and Bioaccumulation in Scenedesmus obliquus. TOXICS 2024; 12:262. [PMID: 38668485 PMCID: PMC11054603 DOI: 10.3390/toxics12040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.
Collapse
Affiliation(s)
- Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tu
- Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430056, China;
| | - Zhengda An
- College of Life Science, Wuhan University, Wuhan 430072, China;
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| |
Collapse
|
5
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
6
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
Metabolic and Oxidative Changes in the Fern Adiantum raddianum upon Foliar Application of Metals. Int J Mol Sci 2022; 23:ijms232314736. [PMID: 36499062 PMCID: PMC9740585 DOI: 10.3390/ijms232314736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) or nickel (Ni) were applied as a foliar spray (1 µM solution over one month) to mimic air pollution and to monitor metabolic responses and oxidative stress in the pteridophyte species. Exogenous metals did not affect the metal content of the soil and had relatively little effect on the essential elements in leaves or rhizomes. The amounts of Cd and Ni were similar in treated leaves (7.2 µg Cd or 5.3 µg Ni/g DW in mature leaves compared with 0.4 µg Cd or 1.2 µg Ni/g DW in the respective control leaves), but Ni was more abundant in rhizomes (56.6 µg Ni or 3.4 µg Cd/g DW), resulting in a higher Cd translocation and bioaccumulation factor. The theoretical calculation revealed that ca. 4% of Cd and 5.5% of Ni from the applied solution per plant/pot was absorbed. Excess Cd induced stronger ROS production followed by changes in SOD and CAT activities, whereas nitric oxide (NO) stimulation was less intense, as detected by confocal microscopy. The hadrocentric vascular bundles in the petioles also showed higher ROS and NO signals under metal excess. This may be a sign of increased ROS formation, and high correlations were observed. Proteins and amino acids were stimulated by Cd or Ni application in individual organs, whereas phenols and flavonols were almost unaffected. The data suggest that even low levels of exogenous metals induce an oxidative imbalance, although no visible damage is observed, and that the responses of ferns to metals are similar to those of seed plants or algae.
Collapse
|
8
|
Kováčik J, Dresler S, Sowa I, Babula P, Antunes E. Calcium-enriched biochar modulates cadmium uptake depending on external cadmium dose. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120178. [PMID: 36116567 DOI: 10.1016/j.envpol.2022.120178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The impact of calcium-enriched biochar (BC, containing Ca, Al, Fe and P as dominant elements in the range of 6.9-1.3% with alkaline pH) obtained from sewage sludge (0.1 or 0.5% in the final soil) on cadmium-induced toxicity (final dose of 1.5 mg Cd/kg in control and 4.5 or 16.5 mg Cd/kg soil in low and high Cd treatment) was tested in medicinal plant Matricaria chamomilla. Low Cd dose had typically less negative impact than high Cd dose at the level of minerals and metabolites and the effect of BC doses often differed. Contrary to expectations, 0.5% BC with a high Cd dose increased Cd accumulation in plants about 2-fold. This was reflected in higher signals of reactive oxygen species, but especially the high dose of BC increased the amount of antioxidants (ascorbic acid and non-protein thiols), minerals and amino acids in shoots and/or roots and usually mitigated the negative effect of Cd. Surprisingly, the relationship between BC and soluble phenols was negative at high BC + high Cd dose, whereas the effect of Cd and BC on organic acids (mainly tartaric acid) differed in shoots and roots. Interestingly, BC alone applied to the control soil (1.5 mg total Cd/kg) reduced the amount of Cd in the plants by about 30%. PCA analyses confirmed that metabolic changes clearly distinguished the high Cd + high BC treatment from the corresponding Cd/BC treatments in both shoots and roots. Thus, it is clear that the effect of biochar depends not only on its dose but also on the amount of Cd in the soil, suggesting the use of Ca-rich biochar both for phytoremediation and safer food production.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, 1 James Cook Dr, QLD 4814 Townsville, Australia
| |
Collapse
|
9
|
Tripathi S, Arora N, Pruthi V, Poluri KM. Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. CHEMOSPHERE 2021; 283:131196. [PMID: 34146883 DOI: 10.1016/j.chemosphere.2021.131196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a non-biodegradable pollutant that has become a global threat due to its bioaccumulation and biomagnification in higher trophic levels of the food chain. Green technologies such as phycoremediation is an emerging approach and possess edge over conventional methods to remediate Cd from the environment. The present investigation elucidates the adaptive mechanism of a freshwater microalga, Scenedesmus sp. IITRIND2 under Cd stress. The microalga showed excellent tolerance to Cd stress with IC50 value of ~32 ppm. The microalga showed phenomenal removal efficiency (~80%) when exposed to 25 ppm of Cd. Such a high uptake of Cd by the cells was accompanied with increased total lipid content (~33% of dry cell weight). Additionally, the elevated level of ROS, lipid peroxidation, glycine-betaine, and antioxidant enzymes evidenced the activation of efficient antioxidant machinery for alleviating the Cd stress. Further, analysis of the fatty acid methyl ester (FAME) presented a steady increase in saturated and polyunsaturated fatty acids with biodiesel properties complying the American and European fuel standards. The study proposes an integrated approach for bioremediation of toxic Cd using hyper-tolerant microalgal strains along with biodiesel production from the generated algal biomass.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Zhu Q, Zhang M, Bao J, Liu J. Physiological, metabolomic, and transcriptomic analyses reveal the dynamic redox homeostasis upon extended exposure of Dunaliella salina GY-H13 cells to Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112593. [PMID: 34358929 DOI: 10.1016/j.ecoenv.2021.112593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The study was done to elucidate the molecular mechanisms underlying the steady maintenance of the green microalga Dunaliella salina GY-H13 in successive subcultures in F/2 medium supplemented with the high cadmium (Cd) concentration (5 mg L-1) for 3 months or 84 days using physiological, metabolomic, and transcriptomic methodologies. Physiological analysis indicated that Cd suppressed growth rate, photosynthetic efficiency, and pigment contents and promoted Cd accumulation, reactive oxygen species (ROS) generation and lipid peroxidation. UPLC-MS/MS-based metabolic analysis identified the top most upregulated and downregulated metabolites, the 5'-dehydroxyadenosine and thiamine acetic acid that were associated with the formation and removal of H2O2. RNA-seq-based transcriptomic analysis showed the overrepresentation of low-CO2-inducible genes in the most downregulated gene set. Metabolomic and transcriptomic analyses further showed that the decreased GSSG/GSH-based redox potential, increased oxidative-phosphorylation gene expression, and reduced activity of TCA cycle in cells after extended exposure to Cd. Taken together, our results imply that cellular defense to Cd in D. salina is achieved by upregulation of ROS-scavenging activities including depletion of thiamine acetic acid. Dynamic redox homeostasis is maintained in cells with extended exposure to Cd by production of both oxidants and antioxidants through multiple pathways.
Collapse
Affiliation(s)
- Qingling Zhu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Mengmeng Zhang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jingjing Bao
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang 316000, China
| | - Jianhua Liu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
11
|
Hu Y, Huang Y, Xu Z, Ma Y, Chen H, Cui D, Su J, Nan Z. Redistribution of calcium and sodium in calcareous soil profile and their effects on copper and lead uptake: A poplar-based phytomanagement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142535. [PMID: 33032137 DOI: 10.1016/j.scitotenv.2020.142535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Poplar serves as a phytostabilizator in phytomanagement of the trace metals (TMs) copper (Cu) and lead (Pb) contaminated land. In the process of long-term phytomanagement, it is not clear how the cycling of the mineral nutrients calcium (Ca) and sodium (Na) in calcareous soil will affect poplar remediation mechanisms. We selected a site contaminated by Cu and Pb and phytomanaged by Populus simonii Carr. stands of different ages (7, 14, and 28 years) to study the influencing mechanisms. The results showed that after afforestation, the Ca in the subsoil returned to the topsoil through fallen leaves, whereas the Na in the topsoil migrated downward to the subsoil by leaching, resulting in the redistribution of mineral nutrients in the soil profile. In addition, the Ca content in soil solution of the root-zone was significantly lower relative to that of the bulk soil, whereas the Na content in soil solution was significantly higher in all stands. As a result, because of the competitive adsorption of mineral nutrient and TM cations on the soil surface, the pool of bioavailable TM in root-zone soils did not significantly decrease with stand age. On the contrary, the TM content in poplar leaves (Cu: 31-37 mg kg-1; Pb: 62-84 mg kg-1) and litter (Cu: 230-790 mg kg-1; Pb: 394-1366 mg kg-1) increased significantly with stand age. Nevertheless, the TM content in poplar wood (Cu < 3 mg kg-1; Pb < 12 mg kg-1) remained at an extremely low level in all stands. Our results highlighted that strengthening leaf collection is necessary to eliminate ecological risks and ensure the safe production of poplar wood in the long-term phytomanagement of TM-contaminated land.
Collapse
Affiliation(s)
- Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yu Huang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Ma
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haibin Chen
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dan Cui
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongren Nan
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Toranzo R, Ferraro G, Beligni MV, Perez GL, Castiglioni D, Pasquevich D, Bagnato C. Natural and acquired mechanisms of tolerance to chromium in a Scenedesmus dimorphus strain. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Li J, Wang J, Hou S, Huang Y, Chen H, Sun Z, Chen D. Exposure to bisphenol analogues interrupts growth, proliferation, and fatty acid compositions of protozoa Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122643. [PMID: 32334280 DOI: 10.1016/j.jhazmat.2020.122643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
A number of bisphenol A (BPA) analogues are increasingly used as its industrial alternatives. However, their effects on aquatic organisms at both individual and population levels have not been well understood. In this study, effects of five bisphenol analogues (i.e., BPA, BPAF, BPB, BPE and BPS) were investigated by using the unicellular eukaryote Tetrahymena thermophila as a model organism. All of them inhibited individual growth and population proliferation at a concentration of 2.6 μM or 13.0 μM during the 60-h exposure period, with the population suppression capacify ranked as: BPB > BPA ≈ BPAF > BPE > BPS. These analogues also exhibited chemical-specific disruption of fatty acid profiles in single-cell eukaryotes and the transcriptional levels of enzymes involved in fatty acid metabolism/biosynthesis. For example, exposure to BPA and BPE significantly increased the ratio of saturated fatty acids to unsaturated fatty acids, contrary to the desaturation effects exhibited by BPAF and BPB. Overall, our results clearly indicated that these bisphenol analogues could pose chemical-specific effects on low-trophic level aquatic organisms, particularly disruption of endogenous metabolic balances. Selected analogues (i.e., BPB and BPAF) could result in effects similar to or even greater than that of BPA.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jie Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Sen Hou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhiqiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Xu C, Huang S, Huang Y, Effiong K, Yu S, Hu J, Xiao X. New insights into the harmful algae inhibition by Spartina alterniflora: Cellular physiology and metabolism of extracellular secretion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136737. [PMID: 31982752 DOI: 10.1016/j.scitotenv.2020.136737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 05/11/2023]
Abstract
This study investigated the response of three toxic harmful algal blooms (HABs) species, Heterosigma akashiwo, Chattonella marina, and Alexandrium tamarense to coastal invasive plant, Spartina alterniflora. In this study, the growth of three HABs species were suppressed significantly by S. alterniflora extracts, showing a dose-response relationship. The raphidophyte H. akashiwo and C. marina exhibited higher inhibitory response with EC50,7d decreased by 14% and 75% as compared to the dinoflagellate A. tamarense. C. marina was the most sensitive among the three species. S. alterniflora extracts disrupted algal cellular integrity and photosynthesis. Furthermore, the extracellular organic matters were detected by fluorescence excitation-emission matrix. Algal metabolites, protein-like substances (tyrosine-like peak and tryptophan-like peak) decreased as time prolonged and the humic-like substances (UVA marine humic-like peak) increased when algal cells were exposed to S. alterniflora extracts. These results provide new insights to the inhibition mechanism of S. alterniflora extracts on HABs species.
Collapse
Affiliation(s)
- Caicai Xu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Shitao Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Yuzhou Huang
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Kokoette Effiong
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Shumiao Yu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Jing Hu
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China
| | - Xi Xiao
- Department of Marine Science, Ocean College, Zhejiang University, Zhou Shan 316021, People's Republic of China; Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms, S.O.A., MATHAB, Shanghai 200137, People's Republic of China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, MNR, Hangzhou 310012, People's Republic of China.
| |
Collapse
|
15
|
Kováčik J, Dresler S, Babula P. Long-term impact of cadmium in protonema cultures of Physcomitrella patens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110333. [PMID: 32088551 DOI: 10.1016/j.ecoenv.2020.110333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Antioxidative responses of axenic protonema cultures of the moss Physcomitrella patens exposed to 10 μM Cd over 40 d were studied. Cd treatment suppressed growth by ca. 75% with concomitant browning of some filaments and suppression of chlorophyll autofluorescence but had no impact on tissue water content. Despite this negative growth responses which could be related to enhanced ROS formation (as detected using fluorescence staining reagents for total ROS, hydroperoxides and lipid peroxidation), some metabolites revealed strong elevation by Cd which could contribute to attenuation of long-term Cd stress (elevation of ascorbic, malic and citric acids). Molar ratio of malate to Cd was 12.7 and citrate to Cd 2.5, thus potentially contributing to Cd chelation. Interestingly, GSH/GSSG pool and nitric oxide formation remained unaltered by Cd. Accumulation of Cd reached 82 μg/g DW with bioaccumulation factor of 73. Data indicate that Cd induces elevation of potentially protective metabolites even after prolonged exposure though they do not prevent oxidative stress sufficiently.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
16
|
Ameri M, Baron-Sola A, Khavari-Nejad RA, Soltani N, Najafi F, Bagheri A, Martinez F, Hernández LE. Aluminium triggers oxidative stress and antioxidant response in the microalgae Scenedesmus sp. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153114. [PMID: 31958684 DOI: 10.1016/j.jplph.2020.153114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Aluminium (Al) water pollution is an increasing environmental problem and comprehensive analysis of toxic responses of aquatic primary producer organisms is imperative. We characterized the antioxidant response of Scenedesmus sp. microalga to Al-induced oxidative stress. After 72 h of exposure to Al (0, 10, and 100 μM) in a modified Bold Basal Medium (pH 5.0), we observed cell aggregation and alterations in the subcellular structure, strong lipid peroxidation and oxidative stress induction (detected with the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate) in parallel with Al accumulation in cells. At the same time, Al toxicity caused depletion of important macronutrients like Ca, which is important for cell-wall structure. Analysis of antioxidant enzymatic activities in Al-treated Scenedesmus cells revealed that catalase, ascorbate peroxidase, as well as different isoforms of superoxide dismutase were inhibited especially at the highest Al dose (100 μM), cells that accumulated the highest concentration of Al. On the other hand, glutathione reductase activity increased at that Al concentration. Immunodetection after Western-blotting confirmed that only ascorbate peroxidase inhibition was apparently due to a decrease in enzyme levels. However, the inhibition of catalase and activation of glutathione reductase activities seemed related with post-translational modifications in protein function as protein expression decreased or increased, respectively under Al stress. Our results may help to understand toxic mechanisms triggered by Al in freshwater microalgae, which in turn could aid to select suitable biomarkers of Al contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Maryam Ameri
- Department of Plant Science, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
| | - Angel Baron-Sola
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Ramazan Ali Khavari-Nejad
- Department of Plant Science, Faculty of Biological Science, Kharazmi University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Neda Soltani
- Department of Petroleum Microbiology, Research Institute of Applied Science, ACECR, Tehran, Iran
| | - Farzaneh Najafi
- Department of Plant Science, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Abdolreza Bagheri
- Faculty of Agriculture, Ferdowsi University of Mashhad, Khorasan, Iran
| | - Flor Martinez
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Luis E Hernández
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain.
| |
Collapse
|
17
|
Strejckova A, Dvorak M, Klejdus B, Krystofova O, Hedbavny J, Adam V, Huska D. The strong reaction of simple phenolic acids during oxidative stress caused by nickel, cadmium and copper in the microalga Scenedesmus quadricauda. N Biotechnol 2019; 48:66-75. [DOI: 10.1016/j.nbt.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/15/2018] [Accepted: 07/22/2018] [Indexed: 02/06/2023]
|
18
|
Kováčik J, Micalizzi G, Dresler S, Babula P, Hladký J, Chemodanov A, Mondello L. Metabolic responses of Ulva compressa to single and combined heavy metals. CHEMOSPHERE 2018; 213:384-394. [PMID: 30241083 DOI: 10.1016/j.chemosphere.2018.08.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of metals and metabolic responses were studied for two Cd and Cu concentrations (1 and 10 μM) either alone or as a combination in marine macroalga after 7 days of exposure. Cd accumulated more at a low dose (115 μg of Cd/g DW) but Cu at a high dose (378 μg of Cu/g DW); Cu suppressed Cd accumulation (by 57%). Na and Zn levels were unaffected, but higher metal doses depleted K and Ca levels. Higher metal concentrations strongly stimulated reactive oxygen species and depleted nitric oxide (NO) formation, but differences between the action of Cd and Cu were not extensive. Higher metal doses increased cell wall thickness with a potential relation to NO signal that is visible mainly in the apoplast in those treatments. A higher Cu dose depleted proline, ascorbic acid, and phenol levels more than Cd, whereas Cd elevated nonprotein thiols and ascorbic acid in combined treatments. An eventual role of malic or citric acid in metal chelation was not evident: malic acid level decreased in all treatments. The total content of fatty acids reached 16.7 mg/g DW in control with the quantitative order of PUFAs > SFAs > MUFAs; palmitic, vaccenic, linoleic, and α-linolenic acids were the major compounds. Cu was more toxic for fatty acids than Cd (even at 1 μM); mainly, PUFA levels strongly decreased (from 43% of total acids in control to 28.9% and 5.4% at 1 and 10 μM Cu treatment, respectively). Results are precisely and critically discussed in relation to limited literature focused on macroalgae, and a comparison with microalgae is also provided.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Giuseppe Micalizzi
- "Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina, Polo Annunziata, 98168, Messina, Italy
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Juraj Hladký
- Faculty of Education, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic
| | | | - Luigi Mondello
- "Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina, Polo Annunziata, 98168, Messina, Italy; Chromaleont s.r.l., c/o "Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina, Polo Annunziata, 98168, Messina, Italy; Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
19
|
Kováčik J, Antoš V, Micalizzi G, Dresler S, Hrabák P, Mondello L. Accumulation and toxicity of organochlorines in green microalgae. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:168-175. [PMID: 29310039 DOI: 10.1016/j.jhazmat.2017.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Toxicity of mine dump effluent containing five hexachlorocyclohexane (α, β, γ, δ and ε-HCH, sum 159.4 μg/L) and two trichlorobenzene (TCB, sum 65.2 μg/L) isomers to two microalgae (Scenedesmus quadricauda and Coccomyxa subellipsoidea) was studied over 24 h exposure and also with 2- and 10-fold diluted stock solution (i.e. 1×, 0.5× and 0.1× strength). Individual isomers revealed rather dose-dependent accumulation typically higher in Scenedesmus than in Coccomyxa (max. sum of HCH 14.99 μg/g DW with bioaccumulation factor 94) and δ-HCH was dominant isomer. TCB isomers showed low accumulation in algae. 0.1× dose elevated chlorophylls and carotenoids in Coccomyxa while enzymatic activities (SOD, CAT, and APX), thiols (glutathione and phytochelatin 2) and ascorbic acid were rather elevated by 1× dose in both species. Malic acid, rather than citric acid, increased in response to 0.5× and 1× concentration. Sum of fatty acids was higher in Coccomyxa than in Scenedesmus with palmitic, oleic, linoleic and α-linolenic acids being dominant compounds in both species. Detailed profiling revealed that saturated and monounsaturated fatty acids increased in Coccomyxa while polyunsaturated fatty acids in Scenedesmus in response to increasing dose of organochlorines. Accumulation of organochlorines and metabolic responses in algae are reported here for the first time.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Vojtěch Antoš
- Technical University of Liberec, CxI, Studentská 2, 461 17 Liberec, Czech Republic
| | - Giuseppe Micalizzi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Pavel Hrabák
- Technical University of Liberec, CxI, Studentská 2, 461 17 Liberec, Czech Republic
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, 98168 Messina, Italy; Chromaleont s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Polo Annunziata, 98168 Messina, Italy; Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
20
|
Kováčik J, Bujdoš M, Babula P. Impact of humic acid on the accumulation of metals by microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10792-10798. [PMID: 29396826 DOI: 10.1007/s11356-018-1362-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Indirect impact of humic acid (HA) on metal accumulation and toxicity (Cd, Ni, Pb, and Hg; 100 μM; 24 h of exposure) in Scenedesmus quadricauda was studied. Algae were pre-cultured on solid (10 and 100 mg HA/L) or in liquid media (1, 5, and 10 mg HA/L) over 30 days and then exposed to metals mentioned above. Accumulation of applied metals irrespective of pre-culture increased in the order Ni < Cd < Pb < Hg. Algae pre-cultured on solid HA-enriched media accumulated more Cd (+ 46% at 10 mg HA/L), Ni (+ 50 and + 81% at 10 and 100 mg HA/L, respectively), and Pb (+ 15% at 100 mg HA/L) but the impact on Hg amount was not detected. Potassium and calcium decreased in response to all metals (K strongly under Hg excess) and HA had negligible impact. Interestingly, fluorescence microscopy detection of reactive oxygen species/nitric oxide (ROS/NO) balance showed that HA pre-culture suppressed ROS signal and stimulated NO signal in response to Cd (indicating positive impact of HA) while ROS signal in Ni and Pb treatments rather increased but NO signal decreased as expected from elevated Ni and Pb accumulation. Hg had clearly the most toxic impact on the ROS/NO balance. Algae pre-cultured in liquid HA-enriched media showed significantly increased Ni accumulation only (+ 14% at a dose 10 mg HA/L). Present study for the first time showed that humic acid may indirectly affect accumulation of metals and that solid HA-enriched medium used for pre-culture is more suitable to increase accumulation of metals by algae.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43, Trnava, Slovak Republic.
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina - Ilkovičova 6, 842 15, Bratislava 4, Slovak Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
21
|
Abstract
Abstract
Microalgae are unicellular free living entities and therefore their responses to excess of heavy metals must be faster and more efficient than those in vascular plants protected by various types of tissues. Up to date, numerous studies reported metal bioaccumulation potential of algae but metabolic responses have relatively rarely been monitored. Here I provide basic overview of quantitative changes of ascorbic acid (AA), reduced glutathione (GSH), phytochelatins (PCs) and selected related enzymes (ascorbate peroxidase and glutathione reductase) in some common microalgae exposed to various metals (cadmium mainly). Despite various culture and exposure conditions, some common signs of metal toxicity (including e.g. enhancement of phytochelatin biosynthesis) are clearly identifiable in algae. Other metal chelators such as organic acids are also briefly mentioned. Comparison with macroalgae, mosses and vascular plants is discussed in terms of basal values and evolutionary similarities.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology , University of Trnava , Priemyselná 4, 918 43 Trnava , Slovak Republic
| |
Collapse
|
22
|
Kováčik J, Dresler S. Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:664-669. [PMID: 28934710 DOI: 10.1016/j.ecoenv.2017.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Impact of calcium nutrition (pre-culture on solid medium with standard or elevated Ca dose, i. e. 0.17 and 4.40mM marked as low and high Ca) on acute metal toxicity (Cd, Mn and Pb, 24h of exposure to 10µM) in freshwater green alga Scenedesmus quadricauda was studied. Surprisingly, Ca content differed only slightly between low and high Ca samples and applied metals rather suppressed its amount. Na content was higher in metal-exposed high Ca samples, indicating that Ca/Na ratio may affect accumulation of metals. Content of heavy metals increased in order Cd < Mn < Pb and high Ca samples contained less metal than low Ca samples at least in absorbed fraction. Accumulation of ascorbic acid and thiols (GSH - glutathione and PC2 - phytochelatin 2) was affected mainly by Cd, GSH also by Mn and PC2 by Pb with often significant differences between low Ca and high Ca samples. Calcium nutrition also affected responses of algae to metals at the level of antioxidative enzyme activities (SOD, APX, and CAT) and elevated values were typically found in high Ca samples while ROS (hydrogen peroxide and superoxide radical) were mainly depleted in Mn treatment. These data confirm that Ca nutrition affects accumulation of metals in algae and metabolic parameters as observed in vascular plants but, unlike them, rather Ca/Na ratio than absolute Ca content seems to regulate the uptake of metals.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|