1
|
Zhang J, Liu M, Han T, Luo L, Zhang Y, Yuan G, Fang X, Han F, Chen X, Wang Y. Advance toward function, production, and delivery of natural astaxanthin: A promising candidate for food ingredients with future perspectives. Food Chem 2025; 463:141428. [PMID: 39353306 DOI: 10.1016/j.foodchem.2024.141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Astaxanthin (AST) exhibits potent antioxidant activity, effectively preventing neurological diseases and cancer. Presently, producing AST from microorganisms like Haematococcus pluvialis and Phaffia rhodozyma is a growing trend. This review summarizes the main research topics on AST in the past five years. AST plays a crucial role in cancer and diabetes prevention, as well as neuroprotection, however, the presence of both free and esterified forms of AST results in differences in their functionality and applications. The primary challenges in industrial production of natural AST lie in breeding high-yield natural producers and developing methods to enhance yield. The use of high-quality food matrix materials and preparation methods is crucial for the delivery system of loaded AST. This study elucidates the bottlenecks and future development directions encountered by natural AST during industrialization, aiming to promote the healthy and rapid growth of the food industry.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Meizhen Liu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tiantian Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lu Luo
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
| | - Ying Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gaofeng Yuan
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xubo Fang
- Zhejiang International Maritime College, Zhoushan, China
| | - Fangrui Han
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoe Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
2
|
Lu X, Zhao W, Wang J, He Y, Yang S, Sun H. A comprehensive review on the heterotrophic production of bioactive compounds by microalgae. World J Microbiol Biotechnol 2024; 40:210. [PMID: 38773011 DOI: 10.1007/s11274-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/09/2024] [Indexed: 05/23/2024]
Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Göttl VL, Meyer F, Schmitt I, Persicke M, Peters-Wendisch P, Wendisch VF, Henke NA. Enhancing astaxanthin biosynthesis and pathway expansion towards glycosylated C40 carotenoids by Corynebacterium glutamicum. Sci Rep 2024; 14:8081. [PMID: 38582923 PMCID: PMC10998873 DOI: 10.1038/s41598-024-58700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher β-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the β-carotene hydroxylase gene crtZ and β-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-β-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Ina Schmitt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcus Persicke
- CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
- Omics Core Facility - Proteom-Metabolom Unit (In Development), Bielefeld University, 33615, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
- CZS Junior Research Group, Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
4
|
Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, Phadungbut P, Khoo KS. Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Mol Biotechnol 2024; 66:402-423. [PMID: 37270443 DOI: 10.1007/s12033-023-00768-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
Collapse
Affiliation(s)
- Busakorn Wilawan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sook Sin Chan
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institut Biologi Sains, Fakulti Sains, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Woranart Jonglertjunya
- Fermentation Technology Laboratory (FerTechLab), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Poomiwat Phadungbut
- Nanocomposite Engineering Laboratory (NanoCEN), Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
5
|
Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, Lim S, Pang YL, Kiew PL. Abiotic stress as a dynamic strategy for enhancing high value phytochemicals in microalgae: Critical insights, challenges and future prospects. Biotechnol Adv 2024; 70:108280. [PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
Collapse
Affiliation(s)
- Uganeeswary Suparmaniam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT250, 98009 Miri, Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Selangor, Malaysia
| | - Peck Loo Kiew
- Department of Chemical and Environmental Engineering, Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Khazi MI, Liaqat F, Gu W, Mohamed B, Zhu D, Li J. Astaxanthin production from the microalga Haematococcus lacustris with a dual substrate mixotrophy strategy. Biotechnol J 2023; 18:e2300095. [PMID: 37377135 DOI: 10.1002/biot.202300095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
This study investigates the development of dual-substrate mixotrophy strategy to cultivate the microalga Haematococcus lacustris for astaxanthin production. The influence of different concentrations of acetate and pyruvate on biomass productivity was first assessed individually, and then both substrates were used together to improve biomass growth in the green phase and astaxanthin accumulation in red the phase. The results showed that dual-substrates mixotrophy significantly increased the biomass productivity during green growth phase up to 2-fold compared to phototrophic controls. Furthermore, supplementation of dual-substrate to the red phase increased astaxanthin accumulation by 10% in the dual-substrate group compared to single-substrate acetate and no substrate. This dual-substrate mixotrophy approach shows promise for cultivating Haematococcus for commercial production of biological astaxanthin in indoor closed systems.
Collapse
Affiliation(s)
- Mahammed Ilyas Khazi
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| | - Fakhra Liaqat
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Badr Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, Egypt
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Li
- College of Biological and Chemical Engineering, College of Agricultural Sciences, Panzhihua University, Panzhihua, China
| |
Collapse
|
7
|
Mussagy CU, Kot A, Dufossé L, Gonçalves CNDP, Pereira JFB, Santos-Ebinuma VC, Raghavan V, Pessoa A. Microbial astaxanthin: from bioprocessing to the market recognition. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12586-1. [PMID: 37233757 DOI: 10.1007/s00253-023-12586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: • Unlock the power of microorganisms for high value AXT production. • Discover the secrets to cost-effective microbial AXT processing. • Uncover the future opportunities in the AXT market.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas Y de los Alimentos, Pontificia Universidad Católica de Valparaíso, 2260000, Quillota, Chile.
| | - Anna Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, 97744, Saint-Denis, France
| | - Carmem N D P Gonçalves
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Jorge F B Pereira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Valeria C Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Adalberto Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Butantã, São Paulo, Brazil
| |
Collapse
|
8
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
9
|
Mussagy CU, Dufossé L. A review of natural astaxanthin production in a circular bioeconomy context using Paracoccus carotinifaciens. BIORESOURCE TECHNOLOGY 2023; 369:128499. [PMID: 36535613 DOI: 10.1016/j.biortech.2022.128499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Astaxanthin (AXT) is a ketocarotenoid with several properties, including antioxidant, antidiabetic and anticancer with a wide range of applications in cosmeceutical, feed, food and pharmaceuticals sectors. The large fraction of AXT available in the market is obtained by chemical route, but the consumers preference for natural products are changing the global market of AXT, and due to that several companies are looking for potential alternative sources such as Gram-negative bacteria Paracoccus carotinifaciens (P. carotinifaciens) to obtain natural AXT. The aim of this critical review is to provide a comprehensive overview of the latest AXT research findings and characteristics of the hyperproducer-AXT P. carotinifaciens. Moreover, a brief description of the potential application of P. carotinifaciens for the production of natural AXT at industrial scale for commercial purposes and the latest advancements in the upstream and downstream procedures following the biorefinery and circular economy percepts are considered.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
10
|
Guan X, Zhang J, Xu N, Cai C, Lu Y, Liu Y, Dai W, Wang X, Nan B, Li X, Wang Y. Optimization of culture medium and scale-up production of astaxanthin using corn steep liquor as substrate by response surface methodology. Prep Biochem Biotechnol 2022; 53:443-453. [PMID: 35838518 DOI: 10.1080/10826068.2022.2098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Astaxanthin is a natural carotenoid with strong antioxidant activity. In this paper, the effects of carbon source, corn steep liquor, distiller grains, and initial pH on the growth and astaxanthin production of Phaffia rhodozyma D3 were evaluated. The optimal medium composition was 32 g/L glucose, 12 g/L corn steep liquor as nitrogen source, and the initial pH was 6.7. Phaffia rhodozyma D3 was cultured in a shake flask under these optimized conditions, the biomass was 6.47 g/L, the astaxanthin/OD475 was 15.16, and the astaxanthin content was 1.41 mg/g. The astaxanthin content was further increased to 4.70 mg/g by the combination of TiO2 stimulation and the expanding cultivation of P. rhodozyma D3 in a 5 L fermenter, which was 2.81 times that of the control group. Expanding fermentation implies the possibility of large-scale production in the astaxanthin industry. Corn steep liquor was used as an alternative nitrogen source to culture P. rhodozyma D3, which could both reduce the production cost of astaxanthin and increased the by-products utilization rate.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Na Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chunyu Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yanhong Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yankai Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China.,National Processing Laboratory for Soybean Industry and Technology, Changchun, China.,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|