1
|
Matsubara K, Matsubara Y, Uchikura Y, Sugiyama T. Stimulation of Angiotensin II Receptor Subtype 2 Reduces Preeclampsia-like Symptoms in a Mouse Model of Preeclampsia. Curr Issues Mol Biol 2024; 46:9760-9771. [PMID: 39329931 PMCID: PMC11430795 DOI: 10.3390/cimb46090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Angiotensin II (AngII) receptor subtype 1 (AT1R) is involved in the pathogenesis of preeclampsia (PE). Angiotensin II receptor subtype 2 (AT2R) can antagonize the effects of AT1R, but its effects during pregnancy are not known. We investigated the effect of AT2R on the pathogenesis of PE using a mouse model and recently developed AT2R agonist (compound 21 [C21]). Blastocysts collected from pregnant imprinting control region (ICR) mice were incubated with adenovirus containing the CD40L gene and transferred into the uterine horns of pseudo-pregnant ICR mice to express PE-like features. Osmotic pumps were placed subcutaneously on the dorsal side with C21 or saline. C21 reduced the plasma soluble fms-like tyrosine kinase 1 (sFlt-1) concentration, ameliorating hypertension. The splenic T and B cell profiles in model mice were analyzed by flow cytometry. The gated percentage of IFN-γ-positive Th cells was significantly increased and the percentage of plasma cells in B cells was significantly decreased; however, the percentages were not altered by C21. sFlt-1 and soluble endoglin concentrations in plasma were measured with an enzyme-linked immunosorbent assay, and sFlt-1 was reduced. C21 could become a candidate PE drug as it ameliorated the pathophysiology of PE as a result of decreased production of sFlt-1.
Collapse
Affiliation(s)
- Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| | - Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan; (Y.M.); (Y.U.); (T.S.)
| |
Collapse
|
2
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
3
|
Dines V, Suvakov S, Kattah A, Vermunt J, Narang K, Jayachandran M, Abou Hassan C, Norby AM, Garovic VD. Preeclampsia and the Kidney: Pathophysiology and Clinical Implications. Compr Physiol 2023; 13:4231-4267. [PMID: 36715282 DOI: 10.1002/cphy.c210051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preeclampsia and other hypertensive disorders of pregnancy are major contributors to maternal morbidity and mortality worldwide. This group of disorders includes chronic hypertension, gestational hypertension, preeclampsia, preeclampsia superimposed on chronic hypertension, and eclampsia. The body undergoes important physiological changes during pregnancy to allow for normal placental and fetal development. Several mechanisms have been proposed that may lead to preeclampsia, including abnormal placentation and placental hypoxia, impaired angiogenesis, excessive pro-inflammatory response, immune system imbalance, abnormalities of cellular senescence, alterations in regulation and activity of angiotensin II, and oxidative stress, ultimately resulting in upregulation of multiple mediators of endothelial cell dysfunction leading to maternal disease. The clinical implications of preeclampsia are significant as there are important short-term and long-term health consequences for those affected. Preeclampsia leads to increased risk of preterm delivery and increased morbidity and mortality of both the developing fetus and mother. Preeclampsia also commonly leads to acute kidney injury, and women who experience preeclampsia or another hypertensive disorder of pregnancy are at increased lifetime risk of chronic kidney disease and cardiovascular disease. An understanding of normal pregnancy physiology and the pathophysiology of preeclampsia is essential to develop novel treatment approaches and manage patients with preeclampsia and hypertensive disorders of pregnancy. © 2023 American Physiological Society. Compr Physiol 13:4231-4267, 2023.
Collapse
Affiliation(s)
- Virginia Dines
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jane Vermunt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kavita Narang
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.,Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review. Pregnancy Hypertens 2022; 28:15-20. [DOI: 10.1016/j.preghy.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/06/2023]
|
6
|
Garner KL, Bowdridge EC, Griffith JA, DeVallance E, Seman MG, Engels KJ, Groth CP, Goldsmith WT, Wix K, Batchelor TP, Nurkiewicz TR. Maternal Nanomaterial Inhalation Exposure: Critical Gestational Period in the Uterine Microcirculation is Angiotensin II Dependent. Cardiovasc Toxicol 2022; 22:167-180. [PMID: 35066857 PMCID: PMC9013006 DOI: 10.1007/s12012-021-09712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
Maternal inhalation exposure to engineered nanomaterials (ENM) has been associated with microvascular dysfunction and adverse cardiovascular responses. Pregnancy requires coordinated vascular adaptation and growth that are imperative for survival. Key events in pregnancy hallmark distinct periods of gestation such as implantation, spiral artery remodeling, placentation, and trophoblast invasion. Angiotensin II (Ang II) is a critical vasoactive mediator responsible for adaptations and is implicated in the pathology of preeclampsia. If perturbations occur during gestation, such as those caused by ENM inhalation exposure, then maternal-fetal health consequences may occur. Our study aimed to identify the period of gestation in which maternal microvascular functional and fetal health are most vulnerable. Additionally, we wanted to determine if Ang II sensitivity and receptor density is altered due to exposure. Dams were exposed to ENM aerosols (nano-titanium dioxide) during three gestational windows: early (EE, gestational day (GD) 2-6), mid (ME, GD 8-12) or late (LE, GD 15-19). Within the EE group dry pup mass decreased by 16.3% and uterine radial artery wall to lumen ratio (WLR) increased by 25.9%. Uterine radial artery response to Ang II sensitivity increased by 40.5% in the EE group. Ang II receptor density was altered in the EE and LE group with decreased levels of AT2R. We conclude that early gestational maternal inhalation exposures resulted in altered vascular anatomy and physiology. Exposure during this time-period results in altered vascular reactivity and changes to uterine radial artery WLR, leading to decreased perfusion to the fetus and resulting in lower pup mass.
Collapse
Affiliation(s)
- Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Madison G Seman
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kevin J Engels
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kim Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA.
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
7
|
Naicker T, Padayachee S, Govender N. Gestational diabetes mellitus and preeclampsia: An increased risk to COVID-19? ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_288_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines 2021; 9:biomedicines9101332. [PMID: 34680449 PMCID: PMC8533592 DOI: 10.3390/biomedicines9101332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Placental development and function implicate important morphological and physiological adaptations to thereby ensure efficient maternal–fetal exchanges, as well as pregnancy-specific hormone secretion and immune modulation. Incorrect placental development can lead to severe pregnancy disorders, such as preeclampsia (PE), which endangers both the mother and the infant. The implication of the systemic renin–angiotensin system (RAS) in the pregnancy-related physiological changes is now well established. However, despite the fact that the local uteroplacental RAS has been described for several decades, its role in placental development and function seems to have been underestimated. In this review, we provide an overview of the multiple roles of the uteroplacental RAS in several cellular processes of placental development, its implication in the regulation of placental function during pregnancy, and the consequences of its dysregulation in PE pathogenesis.
Collapse
Affiliation(s)
- Lucile Yart
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | | | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
| | - Begoña Martinez de Tejada
- Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, University of Geneva, 1211 Geneva, Switzerland; (L.Y.); (M.C.)
- Correspondence:
| |
Collapse
|
9
|
Fatima N, Patel SN, Hussain T. Angiotensin II Type 2 Receptor: A Target for Protection Against Hypertension, Metabolic Dysfunction, and Organ Remodeling. Hypertension 2021; 77:1845-1856. [PMID: 33840201 PMCID: PMC8115429 DOI: 10.1161/hypertensionaha.120.11941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin system is of vital significance not only in the maintenance of blood pressure but also because of its role in the pathophysiology of different organ systems in the body. Of the 2 Ang II (angiotensin II) receptors, the AT1R (Ang II type 1 receptor) has been extensively studied for its role in mediating the classical functions of Ang II, including vasoconstriction, stimulation of renal tubular sodium reabsorption, hormonal secretion, cell proliferation, inflammation, and oxidative stress. The other receptor, AT2R (Ang II type 2 receptor), is abundantly expressed in both immune and nonimmune cells in fetal tissue. However, its expression is increased under pathological conditions in adult tissues. The role of AT2R in counteracting AT1R function has been discussed in the past 2 decades. However, with the discovery of the nonpeptide agonist C21, the significance of AT2R in various pathologies such as obesity, hypertension, and kidney diseases have been examined. This review focuses on the most recent findings on the beneficial effects of AT2R by summarizing both gene knockout studies as well as pharmacological studies, specifically highlighting its importance in blood pressure regulation, obesity/metabolism, organ protection, and relevance in the treatment of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Naureen Fatima
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Sanket N Patel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| | - Tahir Hussain
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX
| |
Collapse
|
10
|
Egom EEA, Kamgang R, Binoun A Egom C, Moyou-Somo R, Essame Oyono JL. Pregnancy and breastfeeding during COVID-19 pandemic. Ther Adv Reprod Health 2020; 14:2633494120962526. [PMID: 33111061 PMCID: PMC7557642 DOI: 10.1177/2633494120962526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Emmanuel Eroume-A Egom
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), BP 13033, Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | | | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
11
|
Hitzerd E, Broekhuizen M, Neuman RI, Colafella KMM, Merkus D, Schoenmakers S, Simons SHP, Reiss IKM, Danser AHJ. Human Placental Vascular Reactivity in Health and Disease: Implications for the Treatment of Pre-eclampsia. Curr Pharm Des 2020; 25:505-527. [PMID: 30950346 DOI: 10.2174/1381612825666190405145228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
Adequate development of the placenta is essential for optimal pregnancy outcome. Pre-eclampsia (PE) is increasingly recognized to be a consequence of placental dysfunction and can cause serious maternal and fetal complications during pregnancy. Furthermore, PE increases the risk of neonatal problems and has been shown to be a risk factor for cardiovascular disease of the mother later in life. Currently, there is no adequate treatment for PE, mainly because its multifactorial pathophysiology remains incompletely understood. It originates in early pregnancy with abnormal placentation and involves a cascade of dysregulated systems in the placental vasculature. To investigate therapeutic strategies it is essential to understand the regulation of vascular reactivity and remodeling of blood vessels in the placenta. Techniques using human tissue such as the ex vivo placental perfusion model provide insight in the vasoactive profile of the placenta, and are essential to study the effects of drugs on the fetal vasculature. This approach highlights the different pathways that are involved in the vascular regulation of the human placenta, changes that occur during PE and the importance of focusing on restoring these dysfunctional systems when studying treatment strategies for PE.
Collapse
Affiliation(s)
- Emilie Hitzerd
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle Broekhuizen
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Rugina I Neuman
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Katrina M Mirabito Colafella
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Daphne Merkus
- Department of Cardiology; Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sam Schoenmakers
- Department of Gynecology and Obstetrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Sinno H P Simons
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine; Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Chow BSM, Kocan M, Shen M, Wang Y, Han L, Chew JY, Wang C, Bosnyak S, Mirabito-Colafella KM, Barsha G, Wigg B, Johnstone EKM, Hossain MA, Pfleger KDG, Denton KM, Widdop RE, Summers RJ, Bathgate RAD, Hewitson TD, Samuel CS. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J Am Soc Nephrol 2019; 30:2191-2207. [PMID: 31511361 DOI: 10.1681/asn.2019060597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.
Collapse
Affiliation(s)
- Bryna S M Chow
- Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Matthew Shen
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Lei Han
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Jacqueline Y Chew
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Sanja Bosnyak
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Katrina M Mirabito-Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Giannie Barsha
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda Wigg
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Elizabeth K M Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Pharmacology and Therapeutics, ARC Centre for Personalised Therapeutic Technologies, Melbourne, Australia; and.,Dimerix Limited, Nedlands, Western Australia, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Chrishan S Samuel
- Department of Biochemistry and Molecular Biology, and .,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| |
Collapse
|
13
|
Abukabda AB, Bowdridge EC, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. Maternal titanium dioxide nanomaterial inhalation exposure compromises placental hemodynamics. Toxicol Appl Pharmacol 2019; 367:51-61. [PMID: 30711534 DOI: 10.1016/j.taap.2019.01.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
Abstract
The fetal consequences of gestational engineered nanomaterial (ENM) exposure are unclear. The placenta is a barrier protecting the fetus and allowing transfer of substances from the maternal circulation. The purpose of this study was to determine the effects of maternal pulmonary titanium dioxide nanoparticle (nano-TiO2) exposure on the placenta and umbilical vascular reactivity. We hypothesized that pulmonary nano-TiO2 inhalation exposure increases placental vascular resistance and impairs umbilical vascular responsiveness. Pregnant Sprague-Dawley rats were exposed via whole-body inhalation to nano-TiO2 with an aerodynamic diameter of 188 ± 0.36 nm. On gestational day (GD) 11, rats began inhalation exposures (6 h/exposure). Daily lung deposition was 87.5 ± 2.7 μg. Animals were exposed for 6 days for a cumulative lung burden of 525 ± 16 μg. On GD 20, placentas, umbilical artery and vein were isolated, cannulated, and treated with acetylcholine (ACh), angiotensin II (ANGII), S-nitroso-N-acetyl-DL-penicillamine (SNAP), or calcium-free superfusate (Ca2+-free). Mean outflow pressure was measured in placental units. ACh increased outflow pressure to 53 ± 5 mmHg in sham-controls but only to 35 ± 4 mmHg in exposed subjects. ANGII decreased outflow pressure in placentas from exposed animals (17 ± 7 mmHg) compared to sham-controls (31 ± 6 mmHg). Ca2+-free superfusate yielded maximal outflow pressures in sham-control (63 ± 5 mmHg) and exposed (30 ± 10 mmHg) rats. Umbilical artery endothelium-dependent dilation was decreased in nano-TiO2 exposed fetuses (30 ± 9%) compared to sham-controls (58 ± 6%), but ANGII sensitivity was increased (-79 ± 20% vs -36 ± 10%). These results indicate that maternal gestational pulmonary nano-TiO2 exposure increases placental vascular resistance and impairs umbilical vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
14
|
Mata-Greenwood E, Blood AB, Sands LD, Bragg SL, Xiao D, Zhang L. A novel rodent model of pregnancy complications associated with genetically determined angiotensin-converting enzyme (ACE) activity. Am J Physiol Endocrinol Metab 2018; 315:E52-E62. [PMID: 29360395 PMCID: PMC6087725 DOI: 10.1152/ajpendo.00289.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brown Norway (BN) and Lewis (LW) inbred rat strains harbor different angiotensin-converting enzyme ( Ace) polymorphisms that result in higher ACE activity in BN than LW rats. Thus we hypothesized that pregnant BN rats would show pregnancy complications linked to angiotensin II (AII) activity. We performed longitudinal and cross-sectional studies in pregnant LW and BN rats. We found that BN rats have significantly higher ACE activity and AII levels at prepregnancy and throughout pregnancy compared with LW rats, except at midgestation. BN placentas and maternal kidneys had significantly higher expression of AII receptor 1 (AGTR1) and lower expression of AGTR2 than the respective LW placentas and maternal kidneys. Renin-angiotensin system activation in BN rats correlated with hypertension and proteinuria at gestational days 17-21, which were resolved after delivery. In addition, BN rat pregnancies were characterized by significant fetal loss, restricted growth in surviving fetuses, decreased uteroplacental blood flows, and decreased trophoblast remodeling of uterine arteries compared with LW pregnancies. Short-term losartan treatment significantly increased uteroplacental blood flow and fetal weight and decreased maternal blood pressure (BP) and proteinuria in BN pregnancies. In contrast, losartan treatment significantly decreased uteroplacental blood flow and fetal weight but had no significant effect on maternal BP in LW pregnancies. We conclude that Ace polymorphisms play an important role in the reproductive phenotype of BN and LW rats and that BN rats are a novel model of pregnancy complications in association with genetically controlled, increased ACE activity.
Collapse
Affiliation(s)
- Eugenia Mata-Greenwood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University , Loma Linda, California
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, California
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University , Loma Linda, California
- Division of Neonatology, Department of Pediatrics, School of Medicine, Loma Linda University , Loma Linda, California
| | - LeeAnna D Sands
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University , Loma Linda, California
| | - Shannon L Bragg
- Division of Neonatology, Department of Pediatrics, School of Medicine, Loma Linda University , Loma Linda, California
| | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University , Loma Linda, California
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University , Loma Linda, California
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, California
| |
Collapse
|
15
|
Morgan HL, Butler E, Ritchie S, Herse F, Dechend R, Beattie E, McBride MW, Graham D. Modeling Superimposed Preeclampsia Using Ang II (Angiotensin II) Infusion in Pregnant Stroke-Prone Spontaneously Hypertensive Rats. Hypertension 2018; 72:208-218. [PMID: 29844145 PMCID: PMC6012051 DOI: 10.1161/hypertensionaha.118.10935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Hypertensive disorders of pregnancy are the second leading cause of maternal deaths worldwide. Superimposed preeclampsia is an increasingly common problem and often associated with impaired placental perfusion. Understanding the underlying mechanisms and developing treatment options are crucial. The pregnant stroke-prone spontaneously hypertensive rat has impaired uteroplacental blood flow and abnormal uterine artery remodeling. We used Ang II (angiotensin II) infusion in pregnant stroke-prone spontaneously hypertensive rats to mimic the increased cardiovascular stress associated with superimposed preeclampsia and examine the impact on the maternal cardiovascular system and fetal development. Continuous infusion of Ang II at 500 or 1000 ng/kg per minute was administered from gestational day 10.5 until term. Radiotelemetry and echocardiography were used to monitor hemodynamic and cardiovascular changes, and urine was collected prepregnancy and throughout gestation. Uterine artery myography assessed uteroplacental vascular function and structure. Fetal measurements were made at gestational day 18.5, and placentas were collected for histological and gene expression analyses. The 1000 ng/kg per minute Ang II treatment significantly increased blood pressure (P<0.01), reduced cardiac output (P<0.05), and reduced diameter and increased stiffness of the uterine arteries (P<0.01) during pregnancy. The albumin:creatinine ratio was increased in both Ang II treatment groups (P<0.05; P<0.0001). The 1000 ng/kg per minute-treated fetuses were significantly smaller than vehicle treatment (P<0.001). Placental expression of Ang II receptors was increased in the junctional zone in 1000 ng/kg per minute Ang II-treated groups (P<0.05), with this zone showing depletion of glycogen content and structural abnormalities. Ang II infusion in pregnant stroke-prone spontaneously hypertensive rats mirrors hemodynamic, cardiac, and urinary profiles observed in preeclamptic women, with evidence of impaired fetal growth.
Collapse
Affiliation(s)
- Hannah L Morgan
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| | - Elaine Butler
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| | - Shona Ritchie
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| | - Florian Herse
- Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (F.H., R.D.).,HELIOS Clinic Berlin-Buch, Germany (F.H., R.D.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a Joint Cooperation Between the Max-Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany (F.H., R.D.).,HELIOS Clinic Berlin-Buch, Germany (F.H., R.D.)
| | - Elisabeth Beattie
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| | - Martin W McBride
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| | - Delyth Graham
- From the BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.L.M., E. Butler, S.R., E. Beattie, M.W.M., D.G.)
| |
Collapse
|
16
|
Li C, Peng W, Zhang H, Yan W. Association of angiotensin receptor 2 gene polymorphisms with pregnancy induced hypertension risk. Hypertens Pregnancy 2018; 37:87-92. [PMID: 29714512 DOI: 10.1080/10641955.2018.1460666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenyang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Weijun Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
- Department of Hospital Infection Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
- Department of Neurology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Weirong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
17
|
Epochs in the depressor/pressor balance of the renin-angiotensin system. Clin Sci (Lond) 2017; 130:761-71. [PMID: 27128801 DOI: 10.1042/cs20150939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin system (RAS) plays a commanding role in the regulation of extracellular fluid homoeostasis. Tigerstadt and Bergman first identified the RAS more than two centuries ago. By the 1980s a voyage of research and discovery into the mechanisms and actions of this system led to the development of drugs that block the RAS, which have become the mainstay for the treatment of cardiovascular and renal disease. In the last 25 years new components of the RAS have come to light, including the angiotensin type 2 receptor (AT2R) and the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang(1-7)]/Mas receptor (MasR) axis. These have been shown to counter the classical actions of angiotensin II (AngII) at the predominant angiotensin type 1 receptor (AT1R). Our studies, and those of others, have demonstrated that targeting these depressor RAS pathways may be therapeutically beneficial. It is apparent that the evolution of both the pressor and depressor RAS pathways is distinct throughout life and that the depressor/pressor balance of the RAS vary between the sexes. These temporal patterns of expression suggest that therapies targeting the RAS could be optimized for discrete epochs in life.
Collapse
|
18
|
Vaswani K, Chan HW, Verma P, Dekker Nitert M, Peiris HN, Wood-Bradley RJ, Armitage JA, Rice GE, Mitchell MD. The rat placental renin-angiotensin system - a gestational gene expression study. Reprod Biol Endocrinol 2015; 13:89. [PMID: 26260700 PMCID: PMC4532142 DOI: 10.1186/s12958-015-0088-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The placenta is an essential organ that provides nutrients and oxygen to the developing fetus and removes toxic waste products from the fetal circulation. Maintaining placental blood osmotic pressure and blood flow is crucial for viable offspring. The renin-angiotensin system (RAS) in the placenta is a key player in the regulation of maternal-fetal blood flow during pregnancy. Therefore, the aim of this study was to determine if RAS genes are differentially expressed in mid to late gestation in rat placenta. METHODS Whole placental tissue samples from pregnant Sprague Dawley rats at embryonic (E) days 14.25, 15.25, 17.25 and 20 (n = 6 for each gestational age) were used for genome-wide gene expression by microarray. RAS genes with expression differences of >2 fold were further analyzed. Quantitative Real-Time PCR (qPCR) was performed on independent samples to confirm and validate microarray data. Immunohistochemisty and Western blotting were performed on a differentially expressed novel RAS pathway gene (ANPEP). RESULTS Six out of 17 genes of the RAS pathway were differentially expressed at different gestational ages. Gene expression of four genes (Angiotensin converting enzyme (Ace), angiotensin converting enzyme 2 (Ace2), membrane metalloendopeptidase (Mme) and angiotensin II receptor 1A (Agtr1a)) were significantly upregulated at E20 whereas two others (Thimet oligopeptidase 1 (Thop1) and Alanyl aminopeptidase (Anpep)) were downregulated at E20 prior to the onset of labour. These changes were confirmed by qPCR. Western blots revealed no overall differences in ANPEP protein expression in the placentae. Immunohistochemical studies, however, indicated that the localization of ANPEP differed at E17.25 and E20 as ANPEP localization in the giant trophoblast cell of the junctional zone was no longer detectable at E20. CONCLUSIONS The current study investigated the expression of members of the RAS pathway in rat placentae and observed significantly altered expression of 6 RAS genes at 4 gestational ages. These findings present the need for further comprehensive investigation of RAS genes in normal and complicated pregnancies.
Collapse
Affiliation(s)
- Kanchan Vaswani
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Hsiu-Wen Chan
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Pali Verma
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Marloes Dekker Nitert
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Hassendrini N Peiris
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Ryan J Wood-Bradley
- Department of Anatomy & Developmental Biology Monash University, Clayton, VIC, 3800, Australia.
- School of Medicine (Optometry), Deakin University, Pigdons Road, Waurn Ponds, VIC, 3800, Australia.
| | - James A Armitage
- Department of Anatomy & Developmental Biology Monash University, Clayton, VIC, 3800, Australia.
- School of Medicine (Optometry), Deakin University, Pigdons Road, Waurn Ponds, VIC, 3800, Australia.
| | - Gregory E Rice
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| | - Murray D Mitchell
- Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research Royal Brisbane and Women's Hospital Campus, Building 71/918, Royal Brisbane Hospital, Herston, QLD, 4029, Australia.
| |
Collapse
|
19
|
Aggarwal S, Makris A, Hennessy A. Linking the old and new -- do angiotensin II type 1 receptor antibodies provide the missing link in the pathophysiology of preeclampsia? Hypertens Pregnancy 2015; 34:369-82. [PMID: 26153629 DOI: 10.3109/10641955.2015.1051227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Preeclampsia remains a leading cause of maternal and neonatal morbidity and mortality. The pathophysiology of preeclampsia remains poorly understood with various pathological mechanisms being implicated including the renin angiotensin system (RAAS), angiogenic pathways and various components of the immune system. Recently a pathogenic autoimmune factor has been identified in the form of auto-agonistic angiotensin II type 1 receptor antibodies (AT1-AA). AT1-AA have been studied in vitro and in vivo in various human and animal models and these data have provided compelling evidence for their role in preeclampsia. This review summarises the current literature surrounding the role of AT1-AA in preeclampsia and draws links between this relatively novel antibody to well-established pathological mechanisms including the immune system, the RAAS, angiogenic pathways and placental ischaemia.
Collapse
Affiliation(s)
- Shikha Aggarwal
- School of Medicine, University of Western Sydney , NSW , Australia
| | | | | |
Collapse
|
20
|
Mirabito KM, Hilliard LM, Wei Z, Tikellis C, Widdop RE, Vinh A, Denton KM. Role of Inflammation and the Angiotensin Type 2 Receptor in the Regulation of Arterial Pressure During Pregnancy in Mice. Hypertension 2014; 64:626-31. [DOI: 10.1161/hypertensionaha.114.03189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During normal pregnancy the renin–angiotensin system is activated, yet pregnant women are resistant to the pressor effects of angiotensin II. Our aim was to determine the role of the angiotensin type 2 receptor (AT
2
R) in the regulation of arterial pressure, natriuresis, and immune cell infiltration during pregnancy. Mean arterial pressure was measured via telemetry, and flow cytometry was used to enumerate immune cell infiltration in 14-week-old wild-type and AT
2
R knockout mice during gestation. In wild-type mice, mean arterial pressure decreased during gestation, reaching a nadir at gestational day 9 (–6±2 mm Hg) and returned to near preconception levels during late gestation. In AT
2
R-deficient mice, the midgestational decrease in mean arterial pressure was absent. Furthermore, mean arterial pressure was significantly increased during late gestation compared with wild-type mice (≈10 mm Hg). As expected, circulating immune cell activation was suppressed during pregnancy. However, this response was absent in AT
2
R-deficient mice. While renal immune cell infiltration was similar between the genotypes, there was a significant T cell phenotypic switch toward a proinflammatory T-helper 1 phenotype in AT
2
R-deficient mice. These data indicate that the AT
2
R plays an important role in arterial pressure regulation and may modulate T cell activation and renal cytokine production during pregnancy. Therefore, deficits in AT
2
R expression may contribute to pregnancy-induced hypertension and thus represents a potential therapeutic target.
Collapse
Affiliation(s)
- Katrina M. Mirabito
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Lucinda M. Hilliard
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Zihui Wei
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Chris Tikellis
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Robert E. Widdop
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Antony Vinh
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| | - Kate M. Denton
- From the Department of Physiology (K.M.M., L.M.H., K.M.D.) and Department of Pharmacology (Z.W., R.E.W., A.V.), Monash University, Clayton, Victoria, Australia; and Baker Medical Research Institute, Melbourne, Victoria, Australia (C.T.)
| |
Collapse
|
21
|
Lumbers ER, Pringle KG. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy. Am J Physiol Regul Integr Comp Physiol 2013; 306:R91-101. [PMID: 24089380 DOI: 10.1152/ajpregu.00034.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the changes that occur in circulating renin-angiotensin-aldosterone system (RAAS) components in human pregnancy. These changes depend on endocrine secretions from the ovary and possibly the placenta and decidua. Not only do these hormonal secretions directly contribute to the increase in RAAS levels, they also cause physiological changes within the cardiovascular system and the kidney, which, in turn, induce reflex release of renal renin. High levels of ANG II play a critical role in maintaining circulating blood volume, blood pressure, and uteroplacental blood flow through interactions with the ANG II type I receptor and through increased production of downstream peptides acting on a changing ANG receptor phenotype. The increase in ANG II early in gestation is driven by estrogen-induced increments in angiotensinogen (AGT) levels, so there cannot be negative feedback leading to reduced ANG II production. AGT can exist in various forms in terms of redox state or complexed with other proteins as polymers; these affect the ability of renin to cleave ANG I from AGT. Thus, during pregnancy the rate of ANG I production varies not only because levels of renin change in response to homeostatic demand but also because AGT changes not only in concentration but in form. Activation of the circulating and intrarenal RAASs is essential for normal pregnancy outcome subserving the increased demand for salt and, hence, water during pregnancy. Thus, the complex integration of the secretions and actions of the circulating maternal renin-angiotensin system in pregnancy plays a key role in pregnancy outcome.
Collapse
Affiliation(s)
- Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy and Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | | |
Collapse
|
22
|
Hilliard LM, Mirabito KM, Denton KM. Unmasking the potential of the angiotensin AT2receptor as a therapeutic target in hypertension in men and women: What we know and what we still need to find out. Clin Exp Pharmacol Physiol 2013; 40:542-50. [DOI: 10.1111/1440-1681.12067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Kate M Denton
- Department of Physiology; Monash University; Melbourne Vic. Australia
| |
Collapse
|
23
|
Abstract
Sex differences exist in the regulation of arterial pressure and renal function by the renin-angiotensin system (RAS). This may in part stem from a differential balance in the pressor and depressor arms of the RAS. In males, the ACE/AngII/AT(1)R pathways are enhanced, whereas, in females, the balance is shifted towards the ACE2/Ang(1-7)/MasR and AT(2)R pathways. Evidence clearly demonstrates that premenopausal women, as compared to aged-matched men, are protected from renal and cardiovascular disease, and this differential balance of the RAS between the sexes likely contributes. With aging, this cardiovascular protection in women is lost and this may be related to loss of estrogen postmenopause but the possible contribution of other sex hormones needs to be further examined. Restoration of these RAS depressor pathways in older women, or up-regulation of these in males, represents a therapeutic target that is worth pursuing.
Collapse
|
24
|
Capelari DN, Sánchez SI, Ortega HH, Ciuffo GM, Fuentes LB. Effects of maternal captopril treatment during late pregnancy on neonatal lung development in rats. ACTA ACUST UNITED AC 2012; 177:97-106. [DOI: 10.1016/j.regpep.2012.05.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/10/2012] [Accepted: 05/05/2012] [Indexed: 11/28/2022]
|
25
|
Abstract
Preeclampsia is an important obstetric complication that arises in 5% of women after the 20(th) week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review, we discuss several of the most promising candidates in this category, including calcitonin receptor-like receptor / receptor activity modifying protein 1 complexes, the angiotensin AT1, 2 and Mas receptors, and the relaxin receptor RXFP1. We also address some of the controversies surrounding the roles and therapeutic potential of these GPCRs and their (ant)agonists in preeclampsia.
Collapse
Affiliation(s)
- Jt McGuane
- D.H. Barron Reproductive and Perinatal Biology Outcomes Research Program, and Department of Physiology and Functional Genomics, and of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, FL 32610
| | | |
Collapse
|
26
|
Pulgar VM, Yamashiro H, Rose JC, Moore LG. Role of the AT2 receptor in modulating the angiotensin II contractile response of the uterine artery at mid-gestation. J Renin Angiotensin Aldosterone Syst 2011; 12:176-83. [PMID: 21421654 DOI: 10.1177/1470320310397406] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION During human pregnancy, circulating concentrations of components of the renin-angiotensin system increase, but pressor refractoriness to angiotensin II (Ang-II) is observed. Given the importance of the Ang-II pressor response in deciding susceptibility to preeclampsia and of the Ang-II system for controlling uterine vasoreactivity, we sought to address the effects of pregnancy on the reactivity of the isolated uterine artery (UA) in mice. MATERIALS AND METHODS Blood pressure was measured throughout pregnancy in awake C57BL/6J mice. UA segments were isolated from three groups of animals (non-pregnant, mid [day 12-13] and late [day 18-19] gestation) and studied by wire myography. RESULTS UA diameters, KCl-mediated responses, and acetylcholine-dependent vasorelaxation were greater at mid and late gestation than in non-pregnant animals. Ang-II responses were also greater during pregnancy, with an increased contraction in response to AT2 receptor blockade at mid-gestation. AT1 receptor blockade abolished the Ang-II response in all groups. CONCLUSIONS Study findings are consistent with the possibility that AT2 receptor-mediated vasodilatation plays a role in modulating Ang-II contractile responses in pregnancy.
Collapse
Affiliation(s)
- Victor M Pulgar
- Department of Obstetrics and Gynecology, Wake Forest University, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
27
|
Hatta K, Carter AL, Chen Z, Leno-Durán E, Ruiz-Ruiz C, Olivares EG, Tse MY, Pang SC, Croy BA. Expression of the vasoactive proteins AT1, AT2, and ANP by pregnancy-induced mouse uterine natural killer cells. Reprod Sci 2010; 18:383-90. [PMID: 20959647 DOI: 10.1177/1933719110385136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Angiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels. Protein localization of AT1, AT2, and ANP to mouse uNK cells was examined between gestation days (gds) 6 and 12, the interval of uNK cell expansion. Percentages of uNK cells expressing AT1 or AT2 changed between gd6 and gd10. Atrial natriuretic peptide did not localize to uNK cells at gd6 or 8, but did colocalize to uNK cells at gd10 and 12, times immediately after spiral arterial modification. This is the first report of AT1, AT2, and ANP expression in uterine immune cells. Expression of these molecules suggests that uNK cells have the potential to contribute to the changes in blood pressure that occur between days 5 and 12 of pregnancy in mice.
Collapse
Affiliation(s)
- Kota Hatta
- Division of Cardiovascular Surgery and Department of Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Goker H, Haznedaroglu IC, Beyazit Y, Aksu S, Tuncer S, Misirlioglu M, Bayramoglu F, Kekilli M, Büyükasik Y, Sayinalp N, Ozcebe O, Dundar S, Mollamahmutoglu L. Local umbilical cord blood renin?angiotensin system. Ann Hematol 2005; 84:277-81. [PMID: 15645231 DOI: 10.1007/s00277-004-0989-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/17/2004] [Indexed: 10/25/2022]
Abstract
Local bone marrow (BM) renin-angiotensin system (RAS) is an autocrine-paracrine system affecting normal and neoplastic hematopoiesis. Angiotensin II type 1a (AT1a) receptors are present on the CD34(+) hematopoietic stem cells (HSC). Angiotensin II stimulates the proliferation and differentiation of the HSC populations through the activation of AT1 receptors on HSC. Umbilical cord blood (UCB) is a rich source of HSC. The existence of a complete local UCB RAS has not been previously investigated. In this study, local synthesis of the major RAS components, namely, angiotensin-converting enzyme (ACE), renin, and angiotensinogen, was identified by demonstrating their corresponding mRNAs using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in human UCB. Local RAS could regulate cellular growth in a variety of tissues including the BM. Major RAS peptides can exert significant effects on primitive pluripotential HSC populations. Further studies should focus on the interactions between possible autocrine, paracrine, endocrine, and intracrine actions of the local UCB RAS and growth, engraftment, differentiation, and plasticity functions of HSC of UCB origin.
Collapse
Affiliation(s)
- Hakan Goker
- Department of Hematology, Hacettepe University Medical School, Sihhiye, Ankara 06100, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|