1
|
Seo D, Lee CM, Apio C, Heo G, Timsina J, Kohlfeld P, Boada M, Orellana A, Fernandez MV, Ruiz A, Morris JC, Schindler SE, Park T, Cruchaga C, Sung YJ. Sex and aging signatures of proteomics in human cerebrospinal fluid identify distinct clusters linked to neurodegeneration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309102. [PMID: 38947020 PMCID: PMC11213043 DOI: 10.1101/2024.06.18.24309102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex and age are major risk factors for chronic diseases. Recent studies examining age-related molecular changes in plasma provided insights into age-related disease biology. Cerebrospinal fluid (CSF) proteomics can provide additional insights into brain aging and neurodegeneration. By comprehensively examining 7,006 aptamers targeting 6,139 proteins in CSF obtained from 660 healthy individuals aged from 43 to 91 years old, we subsequently identified significant sex and aging effects on 5,097 aptamers in CSF. Many of these effects on CSF proteins had different magnitude or even opposite direction as those on plasma proteins, indicating distinctive CSF-specific signatures. Network analysis of these CSF proteins revealed not only modules associated with healthy aging but also modules showing sex differences. Through subsequent analyses, several modules were highlighted for their proteins implicated in specific diseases. Module 2 and 6 were enriched for many aging diseases including those in the circulatory systems, immune mechanisms, and neurodegeneration. Together, our findings fill a gap of current aging research and provide mechanistic understanding of proteomic changes in CSF during a healthy lifespan and insights for brain aging and diseases.
Collapse
|
2
|
Chen HC, You RI, Lin FM, Lin GL, Ho TJ, Chen HP. Novel therapeutic activities of dragon blood from palm tree Daemonorops draco for the treatment of chronic diabetic wounds. BOTANICAL STUDIES 2024; 65:14. [PMID: 38842634 PMCID: PMC11156816 DOI: 10.1186/s40529-024-00422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The clinical efficacy of Jinchuang Ointment, a traditional Chinese medicine (TCM), in treating chronic non-healing diabetic wounds has been demonstrated over the past decades. Both in vitro and in vivo angiogenic activities have been reported for its herbal ingredients, including dragon blood from the palm tree Daemonorops draco and catechu from Uncaria gambir Roxb. Additionally, crude extracts of dragon blood have exhibited hypoglycemic effects not only in animal studies but also in cell-based in vitro assays. RESULTS Our findings indicate that crude dragon blood extract promotes the differentiation of myoblasts into myotubes. Partially purified fractions of dragon blood crude extract significantly enhance the expression of muscle cell differentiation-related genes such as myoG, myoD, and myoHC. Our results also demonstrate that crude extracts of dragon blood can inhibit platelet-derived growth factor-induced PAI-1 expression in primary rat vascular smooth muscle cells, thereby favoring changes in hemostasis towards fibrinolysis. Consistent with previous reports, reduced expression of plasminogen activator inhibitor 1 (PAI-1) accelerates wound healing. However, further separation resulted in a significant loss of both activities, indicating the involvement of more than one compound in these processes. Stem cells play a crucial role in muscle injury repair. Neither dragon blood nor catechu alone stimulated the proliferation of human telomerase reverse transcriptase (hTERT)-immortalized and umbilical cord mesenchymal stem cells. Interestingly, the proliferation of both types of stem cells was observed when crude extracts of dragon blood and catechu were present together in the stem cell growth medium. CONCLUSIONS Dragon blood from D. draco offers multifaceted therapeutic benefits for treating chronic nonhealing diabetic wounds from various perspectives. Most drugs in Western medicine consist of small molecules with defined ingredients. However, this is not the case in TCM, as the activities of dragon blood reported in this study. Surprisingly, the activities documented here align with descriptions in ancient Chinese medical texts dating back to A.D. 1625.
Collapse
Affiliation(s)
- Hong-Chi Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, 970374, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, 970374, Taiwan
| | - Fang-Mei Lin
- Department of Biochemistry, Tzu Chi University, 701, Sec 3, Zhongyang Road, Hualien City, 970374, Taiwan
| | - Guan-Ling Lin
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, 707, Sec. 3, Zhongyang Road, Hualien, 970473, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, 707, Sec. 3, Zhongyang Road, Hualien, 970473, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 970374, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, 970473, Taiwan.
| | - Hao-Ping Chen
- Department of Biochemistry, Tzu Chi University, 701, Sec 3, Zhongyang Road, Hualien City, 970374, Taiwan.
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, 707, Sec. 3, Zhongyang Road, Hualien, 970473, Taiwan.
| |
Collapse
|
3
|
Huang Q, An R, Wang H, Yang Y, Tang C, Wang J, Yu W, Zhou Y, Zhang Y, Wu D, Li B, Yang H, Lu S, Peng X. Aggravated pneumonia and diabetes in SARS-CoV-2 infected diabetic mice. Emerg Microbes Infect 2023; 12:2203782. [PMID: 37060137 PMCID: PMC10155636 DOI: 10.1080/22221751.2023.2203782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Multiple clinical and epidemiological studies have shown an interconnection between coronavirus disease 2019 (COVID-19) and diabetes, but experimental evidence is still lacking. Understanding the interplay between them is important because of the global health burden of COVID-19 and diabetes. We found that C57BL/6J mice were susceptible to the alpha strain of SARS-CoV-2. Moreover, diabetic C57BL/6J mice with leptin receptor gene deficiency (db/db mice) showed a higher viral load in the throat and lung and slower virus clearance in the throat after infection than C57BL/6J mice. Histological and multifactor analysis revealed more advanced pulmonary injury and serum inflammation in SARS-CoV-2 infected diabetic mice. Moreover, SARS-CoV-2 infected diabetic mice exhibited more severe insulin resistance and islet cell loss than uninfected diabetic mice. By RNA sequencing analysis, we found that diabetes may reduce the collagen level, suppress the immune response and aggravate inflammation in the lung after infection, which may account for the greater susceptibility of diabetic mice and their more severe lung damage after infection. In summary, we successfully established a SARS-CoV-2 infected diabetic mice model and demonstrated that diabetes and COVID-19 were risk factors for one another.
Collapse
Affiliation(s)
- Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Ran An
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yongmei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Bai Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Ketone Bodies as Metabolites and Signalling Molecules at the Crossroad between Inflammation and Epigenetic Control of Cardiometabolic Disorders. Int J Mol Sci 2022; 23:ijms232314564. [PMID: 36498891 PMCID: PMC9740056 DOI: 10.3390/ijms232314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
For many years, it has been clear that a Western diet rich in saturated fats and sugars promotes an inflammatory environment predisposing a person to chronic cardiometabolic diseases. In parallel, the emergence of ketogenic diets, deprived of carbohydrates and promoting the synthesis of ketone bodies imitating the metabolic effects of fasting, has been shown to provide a possible nutritional solution to alleviating diseases triggered by an inflammatory environment. The main ketone body, β-hydroxybutyrate (BHB), acts as an alternative fuel, and also as a substrate for a novel histone post-translational modification, β-hydroxybutyrylation. β-hydroxybutyrylation influences the state of chromatin architecture and promotes the transcription of multiple genes. BHB has also been shown to modulate inflammation in chronic diseases. In this review, we discuss, in the pathological context of cardiovascular risks, the current understanding of how ketone bodies, or a ketogenic diet, are able to modulate, trigger, or inhibit inflammation and how the epigenome and chromatin remodeling may be a key contributor.
Collapse
|
5
|
Adegoke TE, Sabinari IW, Usman TO, Abdulkareem TO, Michael OS, Adeyanju OA, Dibia C, Omotoye OO, Oyabambi AO, Olatunji LA. Allopurinol and valproic acid improve cardiac triglyceride and Na +-K +-ATPase activity independent of circulating aldosterone in female rats with glucose intolerance. Arch Physiol Biochem 2022; 128:1283-1289. [PMID: 32447998 DOI: 10.1080/13813455.2020.1767148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Context: Studies have shown that cardiac triglyceride accumulation and impaired Na+-K+-ATPase activity are linked to diabetes- related cardiovascular disease, particularly in women.Objectives: We hypothesised that allopurinol (ALL) and valproic acid (VPA) treatment would improve cardiac triglyceride and Na+-K+-ATPase activity independent of circulating aldosterone in Combined Oral Contraceptive (COC)-induced dysglycemiaMaterials and methods: Rats received COC (1.0 μg ethinylestradiol and 5.0 μg levonorgestrel; po) with or without ALL (1 mg; po) and VPA (20 mg; po) for 6 weeks.Results: COC-treatment led to impaired glucose tolerance, accumulated abdominal fat, dyslipidemia, elevated plasma MDA, PAI-1 and aldosterone levels and also reduced plasma nitric oxide bioavailability and cardiac Na+-K+-ATPase activity. However, either ALL or VPA treatment ameliorated these alterations comparably independent of elevated aldosterone levelDiscussion and conclusion: Our results suggest that either ALL or VPA would improve cardiac TG and Na+-K+-ATPase activity comparably in COC-treated rats, regardless of circulating aldosterone level.
Collapse
Affiliation(s)
- Tolulope E Adegoke
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Isiah W Sabinari
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Taofeek O Usman
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Cardiometabolic Research Unit, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Toyyib O Abdulkareem
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olugbenga S Michael
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Cardiometabolic Research Unit, College of Health and Medical Sciences, Bowen University, Iwo, Nigeria
| | - Oluwaseun A Adeyanju
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Department of Physiology, Cardiometabolic Research Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Chinaza Dibia
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Omotola O Omotoye
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adewumi O Oyabambi
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence A Olatunji
- Department of Physiology, HOPE Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
6
|
Jasmiad NB, Abd Ghani RB, Agarwal R, Ismail ZB, Mohd Abdullah AA, Idorus MY. Relationship between serum and tear levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in diabetic retinopathy. BMC Ophthalmol 2022; 22:357. [PMID: 36057550 PMCID: PMC9441077 DOI: 10.1186/s12886-022-02550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a serious complication of longstanding type 2 diabetes mellitus (T2DM), a leading cause of blindness and visual disability in the world. The aim of this study is to compare the activity of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) in tears and serum of patients with DR and those without DR. Method Among the T2DM patients enrolled in this study, 26 patients had DR (n = 26) while 29 were without DR (n = 29). The blood and tear samples were obtained from all participants. The level of PAI-1 and tPA were measured in both the serum and tears. Anthropometric measurements, HbA1c, renal and lipid profile were also obtained. Results Patients with DR had significantly longer disease duration and higher systolic blood pressure compared to those without DR. Serum PAI-1 level was significantly higher in patients with DR compared to those without DR, 32.72 (IQR 32.52) vs 21.37 (IQR 14.93) ng/mL, respectively (p < 0.05). However, tear PAI-1 were comparable in both groups. Serum and tear tPA levels in both groups were also comparable (p > 0.05). Among patients with DR, there were no significant correlations between tear and serum of both biomarkers. Patients without DR showed a moderate positive correlation between serum and tear tPA levels with a coefficient of 0.363, albeit no statistical significance. Patients with DR demonstrated a significant positive correlation between levels of tears PAI-1 and BMI (r = 0.555, p = 0.026). In the group without DR, there was a statistically significant positive correlation between serum level of PAI-1 with urine albumin creatinine ratio (UACR) (r = 0.501, p = 0.013). Conclusion The present study demonstrated a significantly greater serum PAI-1 levels in patients with DR compared to those without DR. No significant correlations between tears and serum PAI-1 and tPA were observed. Thus, the role of tear biomarkers remains relevant for further investigations.
Collapse
Affiliation(s)
- Nurbadriah Binti Jasmiad
- Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor Darul Ehsan, Malaysia.
| | - Rohana Binti Abd Ghani
- Department of Internal Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor Darul Ehsan, Malaysia. .,Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor Darul Ehsan, Malaysia.
| | - Renu Agarwal
- Department of Pharmacology and Therapeutics, School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Zaliha Binti Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknology MARA (UiTM), Sungai Buloh, Selangor Darul Ehsan, Malaysia
| | - Azlindarita Aisyah Mohd Abdullah
- MSU Medical Centre, Persiaran Olahraga, Shah Alam, Selangor Darul Ehsan, Malaysia.,MSU Clinical Centre of Excellence, Management and Science University, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Yusri Idorus
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
8
|
Speelman T, Dale L, Louw A, Verhoog NJD. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells 2022; 11:2163. [PMID: 35883605 PMCID: PMC9321356 DOI: 10.3390/cells11142163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Nicolette J. D. Verhoog
- Biochemistry Department, Stellenbosch University, Van der Byl Street, Stellenbosch 7200, South Africa; (T.S.); (L.D.); (A.L.)
| |
Collapse
|
9
|
The role of plasminogen activator inhibitor-1 in gynecological and obstetrical diseases: an update review. J Reprod Immunol 2022; 150:103490. [DOI: 10.1016/j.jri.2022.103490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022]
|
10
|
Sakurai S, Jojima T, Iijima T, Tomaru T, Usui I, Aso Y. Empagliflozin decreases the plasma concentration of plasminogen activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: Association with improvement of fibrinolysis. J Diabetes Complications 2020; 34:107703. [PMID: 32883567 DOI: 10.1016/j.jdiacomp.2020.107703] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/30/2022]
Abstract
AIMS Elevation of the plasma concentration of plasminogen activator inhibitor-1 (PAI-1), a rapid-acting inhibitor of fibrinolysis, is associated with development of vascular thrombotic diseases, including coronary artery disease and stroke. We investigated the effects of empagliflozin, a sodium-glucose co-transporter-2 (SGLT2) inhibitor, on the plasma concentration of PAI-1 and fibrinolytic activity in patients with type 2 diabetes. METHODS In a randomized, active-controlled, open-label trial, 51 patients with type 2 diabetes were randomly allocated at a 2:1 ratio to receive empagliflozin (10 mg/day, n = 31) or standard therapy (n = 18) for 12 weeks. We measured the plasma concentrations of PAI-1 and plasmin-α2-antiplasmin complex (PAP) as indicators of fibrinolytic activity. Serum leptin and high-molecular weight (HMW) adiponectin were also measured. RESULTS In 49 patients who completed the trial, baseline plasma PAI-1 showed a positive correlation with body weight, visceral fat area (VFA), γ-glutamyltranspeptidase (GGT), leptin, and the platelet count, while it showed a negative correlation with HDL cholesterol and PAP. Body weight and VFA decreased significantly in the empagliflozin group, but not in the control group. The serum level of GGT showed a significant decrease at 12 weeks in the empagliflozin group, while it was unchanged in the control group. Serum HMW adiponectin increased significantly in the empagliflozin group. Plasma PAI-1 decreased significantly by 25% in the empagliflozin group, but not in the control group. In the empagliflozin group, the change of plasma PAI-1 was positively correlated with the changes of body weight and leptin, but was negatively correlated with the change of PAP. CONCLUSIONS Empagliflozin reduced the plasma PAI-1 concentration through its synergistic actions of a glucose-lowering effect, VFA loss, and restoring the adipokine balance. (Clinical trial registry: UMIN000025418).
Collapse
Affiliation(s)
- Shintaro Sakurai
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Toshie Iijima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Tomaru
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| |
Collapse
|
11
|
PAI-1, the Plasminogen System, and Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21197066. [PMID: 32993026 PMCID: PMC7582753 DOI: 10.3390/ijms21197066] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
The plasminogen system is a critical proteolytic system responsible for the remodeling of the extracellular matrix (ECM). The master regulator of the plasminogen system, plasminogen activator inhibitor-1 (PAI-1), has been implicated for its role in exacerbating various disease states not only through the accumulation of ECM (i.e., fibrosis) but also its role in altering cell fate/behaviour. Examination of PAI-1 has extended through various tissues and cell-types with recent investigations showing its presence in skeletal muscle. In skeletal muscle, the role of this protein has been implicated throughout the regeneration process, and in skeletal muscle pathologies (muscular dystrophy, diabetes, and aging-driven pathology). Needless to say, the complete function of this protein in skeletal muscle has yet to be fully elucidated. Given the importance of skeletal muscle in maintaining overall health and quality of life, it is critical to understand the alterations—particularly in PAI-1—that occur to negatively impact this organ. Thus, we provide a comprehensive review of the importance of PAI-1 in skeletal muscle health and function. We aim to shed light on the relevance of this protein in skeletal muscle and propose potential therapeutic approaches to aid in the maintenance of skeletal muscle health.
Collapse
|
12
|
Rahman FA, Angus SA, Stokes K, Karpowicz P, Krause MP. Impaired ECM Remodeling and Macrophage Activity Define Necrosis and Regeneration Following Damage in Aged Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21134575. [PMID: 32605082 PMCID: PMC7369722 DOI: 10.3390/ijms21134575] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Regenerative capacity of skeletal muscle declines with age, the cause of which remains largely unknown. We investigated extracellular matrix (ECM) proteins and their regulators during early regeneration timepoints to define a link between aberrant ECM remodeling, and impaired aged muscle regeneration. The regeneration process was compared in young (three month old) and aged (18 month old) C56BL/6J mice at 3, 5, and 7 days following cardiotoxin-induced damage to the tibialis anterior muscle. Immunohistochemical analyses were performed to assess regenerative capacity, ECM remodeling, and the macrophage response in relation to plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), and ECM protein expression. The regeneration process was impaired in aged muscle. Greater intracellular and extramyocellular PAI-1 expression was found in aged muscle. Collagen I was found to accumulate in necrotic regions, while macrophage infiltration was delayed in regenerating regions of aged muscle. Young muscle expressed higher levels of MMP-9 early in the regeneration process that primarily colocalized with macrophages, but this expression was reduced in aged muscle. Our results indicate that ECM remodeling is impaired at early time points following muscle damage, likely a result of elevated expression of the major inhibitor of ECM breakdown, PAI-1, and consequent suppression of the macrophage, MMP-9, and myogenic responses.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Sarah Anne Angus
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Kyle Stokes
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Matthew Paul Krause
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
- Correspondence: ; Tel.: +1-519-253-3000
| |
Collapse
|
13
|
Ida S, Murata K, Kaneko R. Effects of pioglitazone treatment on blood leptin levels in patients with type 2 diabetes. J Diabetes Investig 2018; 9:917-924. [PMID: 29194996 PMCID: PMC6031521 DOI: 10.1111/jdi.12783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/12/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS/INTRODUCTION The aim of the present study was to carry out a meta-analysis of randomized controlled trials (RCTs) that investigated the effects of pioglitazone on blood leptin levels in patients with type 2 diabetes. MATERIALS AND METHODS Literature searches were carried out using Medline, the Cochrane Controlled Trials Registry and ClinicalTrials.gov, and RCTs that investigated the effects of pioglitazone on blood leptin levels in patients with type 2 diabetes were selected. Standardized mean differences and 95% confidence intervals were calculated. RESULTS A total of 10 RCTs met the eligibility criteria and were included in the meta-analysis. Significantly lower blood leptin levels were observed in the pioglitazone group (standardized mean difference -0.58, 95% confidence interval -1.12 to -0.05%, P = 0.03) than in the placebo group. There was no significant difference in blood leptin levels observed between the pioglitazone and oral antidiabetic drug groups (standardized mean difference -0.01, 95% confidence interval -0.20 to 0.19%, P = 0.93). CONCLUSIONS There was a significant difference in blood leptin levels between the pioglitazone and placebo groups. However, relatively few RCTs were included in the study, and there was a high level of statistical heterogeneity; we believe that this could have affected the results.
Collapse
Affiliation(s)
- Satoshi Ida
- Department of Diabetes and MetabolismIse Red Cross HospitalMieJapan
| | - Kazuya Murata
- Department of Diabetes and MetabolismIse Red Cross HospitalMieJapan
| | - Ryutaro Kaneko
- Department of Diabetes and MetabolismIse Red Cross HospitalMieJapan
| |
Collapse
|
14
|
Becic T, Studenik C. Effects of Omega-3 Supplementation on Adipocytokines in Prediabetes and Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Metab J 2018; 42:101-116. [PMID: 29676540 PMCID: PMC5911513 DOI: 10.4093/dmj.2018.42.2.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The objective of this systematic review and meta-analysis was to determine the effects of omega-3 supplementation on adipocytokine levels in adult prediabetic and diabetic individuals. METHODS We searched PubMed, Medline, EMBASE, Scopus, Web of Science, Google Scholar, Cochrane Trial Register, World Health Organization Clinical Trial Registry Platform, and Clinicaltrial.gov Registry from inception to August 1, 2017 for randomized controlled trials. Pooled effects of interventions were assessed as mean difference using random effects model. We conducted a sensitivity, publication bias and subgroup analysis. RESULTS Fourteen studies individuals (n=685) were included in the meta-analysis. Omega-3 supplementation increased levels of adiponectin (0.48 μg/mL; 95% confidence interval [CI], 0.27 to 0.68; P<0.00001, n=10 trials), but effects disappeared after sensitivity analysis. Tumor necrosis factor α (TNF-α) levels were reduced (-1.71; 95% CI, -3.38 to -0.14; P=0.03, n=8 trials). Treatment duration shorter than 12 weeks was associated with greater reduction than longer treatment duration. Levels of other adipocytokines were not significantly affected. Publication bias could generally not be excluded. CONCLUSION Eicosapentaenoic acid and docosahexaenoic acid supplementation may increase adiponectin and reduce TNF-α levels in this population group. However, due to overall study heterogeneity and potential publication bias, a cautious interpretation is needed.
Collapse
Affiliation(s)
- Tarik Becic
- Department of Pharmacology and Toxicology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Christian Studenik
- Department of Pharmacology and Toxicology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Fentoğlu Ö, Dinç G, Doğru A, Karahan N, İlhan İ, Kırzıoğlu FY, Şentürk MF, Orhan H. Serum, salivary, and tissue levels of plasminogen in familial Mediterranean fever, amyloidosis, and chronic periodontitis. J Periodontol 2018. [DOI: 10.1002/jper.17-0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Özlem Fentoğlu
- Department of Periodontology; Faculty of Dentistry; University of Süleyman Demirel; Isparta Turkey
| | - Gözde Dinç
- Department of Periodontology; Faculty of Dentistry; University of Süleyman Demirel; Isparta Turkey
| | - Atalay Doğru
- Department of Internal Medicine; Division of Rheumatology; University of Süleyman Demirel
| | - Nermin Karahan
- Department of Medical Pathology; Faculty of Medicine; University of Süleyman Demirel
| | - İlter İlhan
- Department of Medical Biochemistry; Faculty of Medicine; University of Süleyman Demirel
| | - F. Yeşim Kırzıoğlu
- Department of Periodontology; Faculty of Dentistry; University of Süleyman Demirel; Isparta Turkey
| | - Mehmet Fatih Şentürk
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; University of Süleyman Demirel
| | - Hikmet Orhan
- Department of Biostatistics and Medical Informatics; Faculty of Medicine; University of Süleyman Demirel
| |
Collapse
|
16
|
Maurizi G, Petäistö T, Maurizi A, Della Guardia L. Key-genes regulating the liposecretion process of mature adipocytes. J Cell Physiol 2017; 233:3784-3793. [PMID: 28926092 DOI: 10.1002/jcp.26188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK, and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1, and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines, and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology.
Collapse
Affiliation(s)
| | - Tiina Petäistö
- Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Angela Maurizi
- Chirurgia Generale, ASUR Regione Marche, Ospedale "Carlo Urbani", Jesi, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli stui di Pavia, Pavia, Italy
| |
Collapse
|
17
|
Sharma DL, Lakhani HV, Klug RL, Snoad B, El-Hamdani R, Shapiro JI, Sodhi K. Investigating Molecular Connections of Non-alcoholic Fatty Liver Disease with Associated Pathological Conditions in West Virginia for Biomarker Analysis. ACTA ACUST UNITED AC 2017; 8. [PMID: 29177105 PMCID: PMC5701750 DOI: 10.4172/2155-9899.1000523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by a steatosis of the liver that may progress to more serious pathological conditions including: nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. As the prevalence of NAFLD has increased worldwide in recent years, pathophysiology and risk factors associated with disease progression of NAFLD are at the focus of many studies. NAFLD is related to and shares common serum biomarkers with cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome (MetS). West Virginia (WV) is a state with some of the highest rates of CVD, obesity and diabetes mellitus. As NAFLD is closely related to these diseases, it is of particular interest in WV. Currently there is no cost-effective, standardized method used clinically to detect NAFLD prior to the onset of reversible complications. At this time, the diagnosis of NAFLD is made with costly radiologic studies and invasive biopsy. These studies are only diagnostic once changes to hepatic tissue have occurred. The diagnosis of NAFLD by traditional methods may not allow for successful intervention and may not be readily available in areas with already sparse medical resources. In this literature review, we identify a list of biomarkers common among CVD, T2DM, obesity, MetS and NAFLD. From this research we propose the following biomarkers are good candidates for inclusion in a panel of biomarkers for the early detection of NAFLD: adiponectin, AST, ALT, apo-B, CK18, CPS1, CRP, FABP-1, ferritin, GGT, GRP78, HDL-C, IGF-1, IL-1β, 6, 8, 10, IRS-2PAI-1, leptin, lumican, MDA SREBP-1c and TNF-α. Creating and implementing a biomarker panel for the early detection and attenuation of NAFLD, prior to the onset of irreversible complication would provide maximum benefit and decrease the disease burden on the patients and healthcare system of WV.
Collapse
Affiliation(s)
- Dana L Sharma
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Hari Vishal Lakhani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rebecca L Klug
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brian Snoad
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rawan El-Hamdani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
18
|
Ye Y, Vattai A, Zhang X, Zhu J, Thaler CJ, Mahner S, Jeschke U, von Schönfeldt V. Role of Plasminogen Activator Inhibitor Type 1 in Pathologies of Female Reproductive Diseases. Int J Mol Sci 2017; 18:ijms18081651. [PMID: 28758928 PMCID: PMC5578041 DOI: 10.3390/ijms18081651] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Normal pregnancy is a state of hypercoagulability with diminishing fibrinolytic activity, which is mainly caused by an increase of plasminogen activator inhibitor type 1 (PAI-1). PAI-1 is the main inhibitor of plasminogen activators, including tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). In human placentas, PAI-1 is expressed in extravillous interstitial trophoblasts and vascular trophoblasts. During implantation and placentation, PAI-1 is responsible for inhibiting extra cellular matrix (ECM) degradation, thereby causing an inhibition of trophoblasts invasion. In the present study, we have reviewed the literature of various reproductive diseases where PAI-1 plays a role. PAI-1 levels are increased in patients with recurrent pregnancy losses (RPL), preeclampsia, intrauterine growth restriction (IUGR), gestational diabetes mellitus (GDM) in the previous pregnancy, endometriosis and polycystic ovary syndrome (PCOS). In general, an increased expression of PAI-1 in the blood is associated with an increased risk for infertility and a worse pregnancy outcome. GDM and PCOS are related to the genetic role of the 4G/5G polymorphism of PAI-1. This review provides an overview of the current knowledge of the role of PAI-1 in reproductive diseases. PAI-1 represents a promising monitoring biomarker for reproductive diseases and may be a treatment target in the near future.
Collapse
Affiliation(s)
- Yao Ye
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Aurelia Vattai
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Xi Zhang
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Junyan Zhu
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Christian J Thaler
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Viktoria von Schönfeldt
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| |
Collapse
|
19
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
20
|
Ilievski V, Bhat UG, Suleiman-Ata S, Bauer BA, Toth PT, Olson ST, Unterman TG, Watanabe K. Oral application of a periodontal pathogen impacts SerpinE1 expression and pancreatic islet architecture in prediabetes. J Periodontal Res 2017. [PMID: 28643938 DOI: 10.1111/jre.12474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Epidemiological studies suggest a close association between periodontitis and prediabetes/insulin resistance (IR) but whether periodontitis causes prediabetes in humans is not known. Using various animal models, we have recently established that periodontitis can be an initiator of prediabetes, which is characterized by glucose intolerance, hyperinsulinemia and IR. In addition, our in vitro studies indicated that Porphyromonas gingivalis (Pg) induced insulin secretion in MIN6 β cells and this induction was in part SerpinE1 (plasminogen activator inhibitor 1, PAI1) dependent. However, the mechanism(s) by which periodontitis induces prediabetes is not known. As α and β cells in pancreatic islets are the major modulators of glucose levels, we investigated whether experimental periodontitis by oral application of a periodontal pathogen caused molecular and/or cellular alterations in pancreatic islets and whether SerpinE1 was involved in this process. MATERIAL AND METHODS We induced periodontitis in C57BL/6 mice by oral application of a periodontal pathogen, Pg, and determined changes that occurred in islets following 22 weeks of Pg application. Pancreatic islet architecture was determined by 2-D and 3-D immunofluorescence microscopy and SerpinE1 and its target, urokinase plasminogen activator (uPA), as well as insulin, glucagon and Pg/gingipain in islets were detected by immunofluorescence. The presence of apoptotic islet cells was determined by both histochemical and immunofluorescence TUNEL assays. To investigate further the direct effect of Pg on apoptosis and the involvement of SerpinE1 in this process, we used SerpinE1 knockdown and scrambled control clones of the MIN6 pancreatic β-cell line. RESULTS Pg/gingipain was detected in both the periodontium and pancreas in the experimental group. Islets from animals that were administered Pg orally (experimental group) developed significant changes in islet architecture, upregulation of SerpinE1, and increased β-cell apoptosis compared with the control group. We also observed that exposure of MIN6 cells to Pg in vitro resulted in apoptosis. However, apoptosis was significantly reduced when SerpinE1 expression by MIN6 cells was knocked down. CONCLUSION Oral application of the periodontal pathogen Pg to C57BL/6 mice induces periodontitis, translocation of Pg/gingipain to the pancreas and results in complex alterations in pancreatic islet morphology. SerpinE1 appears to be involved in this process.
Collapse
Affiliation(s)
- V Ilievski
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - U G Bhat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - S Suleiman-Ata
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - B A Bauer
- Undergraduate Program, University of Illinois at Chicago, Chicago, IL, USA
| | - P T Toth
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - S T Olson
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - T G Unterman
- Departments of Medicine and Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL, USA
| | - K Watanabe
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Avogaro A. Re: "Plasminogen Activator Inhibitor-1 and Pericardial Fat in Individuals with Type 2 Diabetes Mellitus" by Bayomi et al. (Metab Syndr Relat Disord 2017;15:269-275). Metab Syndr Relat Disord 2017; 15:266-268. [PMID: 28605281 DOI: 10.1089/met.2017.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a member of the serine protease inhibitor (serpin) superfamily, which inactivates tissue plasminogen activator (tPA); therefore, increased level of PAI-1 antigen counteracts the anticoagulant effect of tPA and facilitates the fibrin clot formation. Plasma PAI-1 antigen and activity levels are associated with increased body mass index and with features of the insulin resistance syndrome like obesity and diabetes. Visceral adipose tissue produces more PAI-1 than subcutaneous adipose tissue: This increased production of PAI-1 from the visceral adipose tissue is one important link between visceral obesity and cardiovascular disease. Besides visceral adipose tissue, there is mounting evidence that epicardial adipose tissue may be an important source of PAI-1, especially in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Angelo Avogaro
- Department of Medicine, University of Padova , School of Medicine, Padova, Italy
| |
Collapse
|
22
|
Stringa N, Brahimaj A, Zaciragic A, Dehghan A, Ikram MA, Hofman A, Muka T, Kiefte-de Jong JC, Franco OH. Relation of antioxidant capacity of diet and markers of oxidative status with C-reactive protein and adipocytokines: a prospective study. Metabolism 2017; 71:171-181. [PMID: 28521871 DOI: 10.1016/j.metabol.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of dietary antioxidants and plasma oxidant-antioxidant status in low-grade chronic inflammation and adipocytokine levels is not established yet. OBJECTIVES We aimed to evaluate whether total dietary antioxidant capacity (assessed by dietary ferric reducing antioxidant potential (FRAP)), serum uric acid (UA) and gamma glutamyltransferase (GGT) were associated with low-grade chronic inflammation and circulating adipocytokines. METHODS Data of 4506 participants aged ≥55years from the Rotterdam Study were analyzed. Baseline (1990-1993) FRAP score was assessed by a food frequency questionnaire. Baseline UA and GGT levels were assessed in non-fasting serum samples. Serum high sensitivity C-reactive protein (hs-CRP) was measured at baseline and 10years later. Plasma leptin, adiponectin, plasminogen activator inhibitor-1 (PAI-1) and resistin levels were assessed 10years later. RESULTS A high FRAP score was associated with lower levels of UA and GGT. Overall, no association was found between FRAP and hs-CRP levels. FRAP score was associated with lower levels of leptin and PAI-1, higher levels of adiponectin, and no difference in resistin levels. Increased levels of UA were associated with higher levels of hs-CRP, PAI-1 and leptin; lower levels of adiponectin and no difference in resistin levels. Similarly, GGT was associated with higher levels of hs-CRP whereas no association was observed between GGT and adipocytokines. CONCLUSION These findings suggest that overall antioxidant capacity of diet and low levels of UA are associated with circulating adipocytokines whereas no consistent association was found with hs-CRP.
Collapse
Affiliation(s)
- Najada Stringa
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands; Department of Epidemiology, Harvard T.H Chan School of Public Health, 02115 Boston, USA
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands; Department of Global Public Health, Leiden University College, 2595 DG The Hague, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
23
|
Ida S, Murata K, Kaneko R. Effects of metformin treatment on blood leptin and ghrelin levels in patients with type 2 diabetes mellitus. J Diabetes 2017; 9:526-535. [PMID: 27380451 DOI: 10.1111/1753-0407.12445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of the present study was to conduct a meta-analysis of randomized controlled trials (RCTs) that investigated the effects of metformin on blood leptin and ghrelin levels in patients with type 2 diabetes mellitus (T2DM). METHODS Literature searches were performed using MEDLINE, Cochrane Controlled Trials Registry, and ClinicalTrials.gov, and RCTs that investigated the effects of metformin on blood leptin and ghrelin levels in patients with T2DM were selected. Standardized mean differences (SMDs) and 95 % confidence intervals (CIs) were calculated. RESULTS Twelve RCTs met the eligibility criteria and were included in the meta-analysis. There was no significant difference in blood leptin between the metformin and control groups (SMD 0.03; 95 % CI -0.35 %, 0.42 %; P = 0.86), although there was a significant difference in blood leptin levels between the metformin group and the group on oral antidiabetic drugs (OADs) other than metformin (SMD -0.39; 95 % CI -0.76 %, -0.01 %; P = 0.04). There were no significant differences in blood ghrelin levels. CONCLUSIONS Metformin treatment was not associated with a decrease in blood leptin levels in patients with T2DM compared with levels in patients in the control group. Moreover, metformin treatment was not associated with increases in blood ghrelin levels compared with the control and other OADs groups. However, blood leptin levels were significantly lower in the metformin compared with the other OADs group.
Collapse
Affiliation(s)
- Satoshi Ida
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, Mie, Japan
| | - Kazuya Murata
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, Mie, Japan
| | - Ryutaro Kaneko
- Department of Diabetes and Metabolism, Ise Red Cross Hospital, Mie, Japan
| |
Collapse
|
24
|
Gómez-Cardona EE, Hernández-Domínguez EE, Velarde-Salcedo AJ, Pacheco AB, Diaz-Gois A, De León-Rodríguez A, Barba de la Rosa AP. 2D-DIGE as a strategy to identify serum biomarkers in Mexican patients with Type-2 diabetes with different body mass index. Sci Rep 2017; 7:46536. [PMID: 28425473 PMCID: PMC5397846 DOI: 10.1038/srep46536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes(T2D) are the most prevalent and serious metabolic diseases affecting people worldwide. However racial and ethnic disparities seems to be a risk factor for their development. Mexico has been named as one of the largest populations with the highest prevalence of diabetes and obesity. The aim of this study was to identify novel T2D-associated proteins in Mexican patients. Blood samples were collected from 62 Mexican patients with T2D and they were grouped according to their body mass index(BMI). A panel of 10 diabetes and obesity serum markers was determined using MAGPIX. A comparative proteomics study was performed using two-dimensional difference in-gel electrophoresis(2D-DIGE) followed by mass spectrometry(LC-MS/MS). We detected 113 spots differentially accumulated, in which 64 unique proteins were identified, proteins that were involved in metabolism pathways, molecular transport, and cellular signalling. Four proteins(14-3-3, ApoH, ZAG, and OTO3) showing diabetes-related variation and also changes in relation to obesity were selected for further validation by western blotting. Our results reveal new diabetes related proteins present in the Mexican population. These could provide additional insight into the understanding of diabetes development in Mexican population and may also be useful candidate biomarkers.
Collapse
Affiliation(s)
- Erik E Gómez-Cardona
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Eric E Hernández-Domínguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Aída J Velarde-Salcedo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Alberto-Barrera- Pacheco
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Agustín Diaz-Gois
- Juridiscción Sanitaria No. 1, Centros de Salud San Luis Potosi, San Luis Potosi, Mexico
| | - Antonio De León-Rodríguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Ana P Barba de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San Jose No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, Mexico
| |
Collapse
|
25
|
Wang H, Yang T, Li D, Wu Y, Zhang X, Pang C, Zhang J, Ying B, Wang T, Wen F. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2016; 11:2369-2376. [PMID: 27713627 PMCID: PMC5044991 DOI: 10.2147/copd.s107409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Plasminogen activator inhibitor-1 (PAI-1) and soluble urokinase-type plasminogen activator receptor (suPAR) participate in inflammation and tissue remolding in various diseases, but their roles in chronic obstructive pulmonary disease (COPD) are not yet clear. This study aimed to investigate if PAI-1 and suPAR were involved in systemic inflammation and small airway obstruction (SAO) in COPD. Methods Demographic and clinical characteristics, spirometry examination, and blood samples were obtained from 84 COPD patients and 51 healthy volunteers. Serum concentrations of PAI-1, suPAR, tissue inhibitor of metalloproteinase-1 (TIMP-1), Matrix metalloproteinase-9 (MMP-9), and C-reactive protein (CRP) were detected with Magnetic Luminex Screening Assay. Differences between groups were statistically analyzed using one-way analysis of variance or chi-square test. Pearson’s partial correlation test (adjusted for age, sex, body mass index, cigarette status, and passive smoke exposure) and multivariable linear analysis were used to explore the relationships between circulating PAI-1 and indicators of COPD. Results First, we found that serum PAI-1 levels but not suPAR levels were significantly increased in COPD patients compared with healthy volunteers (125.56±51.74 ng/mL versus 102.98±36.62 ng/mL, P=0.007). Then, the correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC), FEV1/Pre (justified r=−0.308, P<0.001; justified r=−0.295, P=0.001, respectively) and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=−0.289, P=0.001; justified r=−0.273, P=0.002, respectively), but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001), the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively). Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Diandian Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Caishuang Pang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
26
|
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016; 68:974-81. [PMID: 27528065 DOI: 10.1161/hypertensionaha.116.07910] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.
Collapse
Affiliation(s)
- Luisa F Gomez-Arango
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Helen L Barrett
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - H David McIntyre
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Leonie K Callaway
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Mark Morrison
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Marloes Dekker Nitert
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.).
| | | |
Collapse
|
27
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic lung condition, affecting ∼10% of adults over the age of 40 years in the western world. Research over the past 10 years has shown that COPD is more than just a lung disorder; it affects other end-organs including the cardiovascular and the musculoskeletal systems, making it a multi-component, multi-system disease. COPD increases the risk for ischemic heart disease, stroke, osteoporosis, cachexia, and muscle weakness by two to threefold, independent of other factors such as smoking and age. The mechanisms by which COPD affects these end-organs, however, are unclear. In this paper, we review some of the common and serious extra-pulmonary manifestations of COPD and the potential mechanisms by which they can be linked with COPD.
Collapse
Affiliation(s)
- Ján Tkáč
- The University of British Columbia (Respiratory Division), Vancouver, BC
| | - S. F. Paul Man
- The University of British Columbia (Respiratory Division), Vancouver, BC
| | - Don D. Sin
- The University of British Columbia (Respiratory Division), Vancouver, BC,
| |
Collapse
|
28
|
Canecki-Varžić S, Prpić-Križevac I, Bilić-Ćurčić I. Plasminogen activator inhibitor-1 concentrations and bone mineral density in postmenopausal women with type 2 diabetes mellitus. BMC Endocr Disord 2016; 16:14. [PMID: 26940634 PMCID: PMC4778311 DOI: 10.1186/s12902-016-0094-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/25/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Women with type 2 diabetes mellitus (T2DM) have a higher risk of fractures despite increased bone mineral density (BMD). In experimental studies a potential role of plasminogen activator inhibitor-1 (PAI-1) in bone remodeling is suggested but studies in humans are lacking. This is a first study in humans investigating whether circulated levels of PAI-1 in postmenopausal women with T2DM are related to BMD and adiposity. METHODS Anthropometric variables, PAI-1 and insulin levels, serum lipids and bone turnover markers were measured in 127 postmenopausal women with T2DM. A total of 117 female patients were divided according to lumbar spine BMD measurements via dual-energy x-ray absorptiometry in three groups: 47 with osteopenia, 21 with osteoporosis and 49 with normal BMD. RESULTS Diabetic patients with normal BMD had significantly higher BMI, greater waist circumference and lower bone turnover markers than diabetics with osteopenia and osteoporosis. PAI-1 was lower in diabetics with osteoporosis and osteopenia compared with diabetics with normal BMD. Multiple regression analysis revealed insulin, triglycerides levels, pyrilinks and beta blocker therapy to be the strongest predictors of PAI-1 levels. PAI-1 levels correlated with both L-BMD and hip BMD, but after adjustment for age and BMI association was no longer significant. CONCLUSION Our findings suggest that elevated PAI-1 levels are associated with higher BMD in obese diabetic patients but the possible implications of this finding and underlying mechanisms still remain unclear. Obviously, metabolic parameters, may affect both BMD and PAI-levels, and association of PAI-1 and BMD could be indirect. However, as pyrilinks is also independently and significantly negatively correlated to PAI-1 its direct involvement in bone metabolism is also plausible. Further investigations are needed to elucidate the nature of interaction of this matrix modulator in relation to energy and bone metabolism in humans.
Collapse
Affiliation(s)
- Silvija Canecki-Varžić
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Center Osijek, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Ivana Prpić-Križevac
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Center Osijek, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia.
| | - Ines Bilić-Ćurčić
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Center Osijek, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia
| |
Collapse
|
29
|
Qureshi T, Goswami S, McClintock CS, Ramsey MT, Peterson CB. Distinct encounter complexes of PAI-1 with plasminogen activators and vitronectin revealed by changes in the conformation and dynamics of the reactive center loop. Protein Sci 2015; 25:499-510. [PMID: 26548921 DOI: 10.1002/pro.2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 11/07/2022]
Abstract
UNLABELLED Plasminogen activator inhibitor-1 (PAI-1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue-type and urokinase-type plasminogen activator (tPA, uPA), affect the fate of PAI-1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C-terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N-terminal RCL is observed upon binding of S195A-uPA to PAI-1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI-1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI-1 dynamics. SIGNIFICANCE Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.
Collapse
Affiliation(s)
- Tihami Qureshi
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Sumit Goswami
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Carlee S McClintock
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Matthew T Ramsey
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia B Peterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
30
|
Bhat UG, Watanabe K. Serpine1 Mediates Porphyromonas gingivalis Induced Insulin Secretion in the Pancreatic Beta Cell Line MIN6. ACTA ACUST UNITED AC 2015. [PMID: 26213716 DOI: 10.13188/2377-987x.1000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Periodontitis is an inflammatory disease resulting in destruction of gingiva and alveolar bone caused by an exuberant host immunological response to periodontal pathogens. Results from a number of epidemiological studies indicate a close association between diabetes and periodontitis. Results from cross-sectional studies indicate that subjects with periodontitis have a higher odds ratio of developing insulin resistance (IR). However, the mechanisms by which periodontitis influences the development of diabetes are not known. Results from our previous studies using an animal model of periodontitis suggest that periodontitis accelerates the onset of hyperinsulinemia and IR. In addition, LPS from a periodontal pathogen, Porphyromonas gingivalis (Pg), stimulates Serpine1 expression in the pancreatic beta cell line MIN6. Based on these observations, we hypothesized that a periodontal pathogen induces hyperinsulinemia and Serpine1 may be involved in this process. To test this hypothesis, we co-incubated Pg with the pancreatic beta cell line MIN6 and measured the effect on insulin secretion by MIN6 cells. We further determined the involvement of Serpine1 in insulin secretion by downregulating Serpine1 expression. Our results indicated that Pg stimulated insulin secretion by approximately 3.0 fold under normoglycemic conditions. In a hyperglycemic state, Pg increased insulin secretion by 1.5 fold. Pg significantly upregulated expression of the Serpine1 gene and this was associated with increased secretion of insulin by MIN6 cells. However, cells with downregulated Serpine1 expression were resistant to Pg stimulated insulin secretion under normoglycemic conditions. We conclude that the periodontal pathogen, Pg, induced insulin secretion by MIN6 cells and this induction was, in part, Serpine1 dependent. Thus, Serpine1 may play a pivotal role in insulin secretion during the accelerated development of hyperinsulinemia and the resulting IR in the setting of periodontitis.
Collapse
|
31
|
Rebalka IA, Raleigh MJ, D'Souza DM, Coleman SK, Rebalka AN, Hawke TJ. Inhibition of PAI-1 Via PAI-039 Improves Dermal Wound Closure in Diabetes. Diabetes 2015; 64:2593-602. [PMID: 25754958 DOI: 10.2337/db14-1174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022]
Abstract
Diabetes impairs the ability to heal cutaneous wounds, leading to hospitalization, amputations, and death. Patients with diabetes experience elevated levels of plasminogen activator inhibitor 1 (PAI-1), regardless of their glycemic control. It has been demonstrated that PAI-1-deficient mice exhibit improved cutaneous wound healing, and that PAI-1 inhibition improves skeletal muscle repair in mice with type 1 diabetes mellitus, leading us to hypothesize that pharmacologically mediated reductions in PAI-1 using PAI-039 would normalize cutaneous wound healing in streptozotocin (STZ)-induced diabetic (STZ-diabetic) mice. To simulate the human condition of variations in wound care, wounds were aggravated or minimally handled postinjury. Following cutaneous injury, PAI-039 was orally administered twice daily for 10 days. Compared with nondiabetic mice, wounds in STZ-diabetic mice healed more slowly. Wound site aggravation exacerbated this deficit. PAI-1 inhibition had no effect on dermal collagen levels or wound bed size. PAI-039 treatment failed to improve angiogenesis in the wounds of STZ-diabetic mice and blunted angiogenesis in the wounds of nondiabetic mice. Importantly, PAI-039 treatment significantly improved epidermal cellular migration and wound re-epithelialization compared with vehicle-treated STZ-diabetic mice. These findings support the use of PAI-039 as a novel therapeutic agent to improve diabetic wound closure and demonstrate the primary mechanism of its action to be related to epidermal closure.
Collapse
Affiliation(s)
- Irena A Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Matthew J Raleigh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donna M D'Souza
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Samantha K Coleman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra N Rebalka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Thomas J Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Kim TK, Park KS. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes. Cytokine 2015; 76:368-374. [PMID: 26049170 DOI: 10.1016/j.cyto.2015.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 01/22/2023]
Abstract
Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses.
Collapse
Affiliation(s)
- Tae Kon Kim
- Department of Medicinal Chemistry, College of Science and Engineering, Jungwon University, Republic of Korea
| | - Kyoung Sik Park
- Department of Biomedical Science, College of Science and Engineering, Cheongju University, Chungbuk, Republic of Korea.
| |
Collapse
|
33
|
Qin G, Zhou Y, Guo F, Ren L, Wu L, Zhang Y, Ma X, Wang Q. Overexpression of the FoxO1 Ameliorates Mesangial Cell Dysfunction in Male Diabetic Rats. Mol Endocrinol 2015; 29:1080-91. [PMID: 26029993 DOI: 10.1210/me.2014-1372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The dysfunction of mesangial cells (MCs) in high-glucose (HG) conditions plays pivotal role in inducing glomerular sclerosis by causing the imbalance between generation and degradation of extracellular matrix (ECM) proteins, which ultimately leads to diabetic nephropathy. This study was designed to determine the function of forkhead box protein O1 (FoxO1), an important transcription factors in regulating cell metabolism and oxidative stress, in MCs in HG conditions. Up-regulation of fibronectin, collagen type IV, and plasminogen activator inhibitor (PAI-1) was observed under HG conditions in vivo and in vitro, accompanied with elevation of protein kinase B (Akt) phosphorylation and reduction of FoxO1 bioactivity. After overexpression of constitutively active (CA) FoxO1 in vivo and in vitro by using lentivirus vector, in vivo and in vitro, FoxO1 expression and activity was increased, in accordance with up-regulation of antioxidative genes (catalase and superoxide dismutase, leading to alleviated oxidative stress as well as attenuated Akt activity, whereas overexpression of wild type-FoxO1 only expressed partial effect. Moreover, CA-FoxO1 decreased the expression of fibronectin, collagen type IV, and PAI-1, causing amelioration of renal pathological changes and decrease of ECM protein deposition in glomerulus. Overexpression of CA-FoxO1 in renal cortex also decreased activin type-I receptor-like kinase-5 levels and increased signaling mothers against decapentaplegic (Smad) 7 levels, and simultaneously inhibited Smad3 phosphorylation. Results from in vitro study indicated that increased combination of FoxO1 and Smad3 may interfere with the function of Smad3, including Smad3 phosphorylation and translocation, interaction with cAMP response element binding protein (CREB)-binding protein, and binding with PAI-1 promoter. Together, our findings shed light on the novel function of FoxO1 in inhibiting ECM deposition, which is beneficial to ameliorate MC dysfunction.
Collapse
Affiliation(s)
- Guijun Qin
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yingni Zhou
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Feng Guo
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lei Ren
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lina Wu
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanyuan Zhang
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaojun Ma
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qingzhu Wang
- Department of Endocrinology (G.Q., Y.Zho., F.G., L.R., L.W., Y.Zha., X.M., Q.W.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China; and Institute of Clinical Medicine (Y.Zho., F.G., L.W., Y.Zha.), The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
34
|
Mohamed HG, Idris SB, Mustafa M, Ahmed MF, Åstrøm AN, Mustafa K, Ibrahim SO. Impact of Chronic Periodontitis on Levels of Glucoregulatory Biomarkers in Gingival Crevicular Fluid of Adults with and without Type 2 Diabetes. PLoS One 2015; 10:e0127660. [PMID: 25993052 PMCID: PMC4438982 DOI: 10.1371/journal.pone.0127660] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022] Open
Abstract
The relationship between diabetes and periodontal disease is bidirectional, but information about the effect of chronic periodontitis on the levels of the glucoregulatory biomarkers locally in gingival crevicular fluid (GCF) is limited. The aim of this study was to compare the levels of 10 glucoregulatory biomarkers in GCF, firstly in subjects with type 2 diabetes (T2DM) presenting with and without chronic periodontitis and secondly, in subjects without diabetes, with and without chronic periodontitis. The material comprised a total of 152 subjects, stratified as: 54 with T2DM and chronic periodontitis (G1), 24 with T2DM (G2), 30 with chronic periodontitis (G3) and 44 without T2DM or periodontitis (G4). The levels of the biomarkers were measured using multiplex biometric immunoassays. Periodontal pocket depths were recorded in mm. Subsets G1 and G2 and subsets G3 and G4 were compared independently. Among T2DM subjects, GIP, GLP-1 and glucagon were significantly up-regulated in G1 compared to G2. Moreover, there were no statistical differences between the two groups regarding C-peptide, insulin, ghrelin, leptin and PAI-1. Comparisons among individuals without T2DM revealed significantly lower amounts of C-peptide and ghrelin in G3 than in G4. The number of sites with pocket depth ≥ 4mm correlated negatively with C-peptide (Spearman’s correlation co-efficient: -0.240, P < 0.01) and positively with GIP and visfatin (Spearman’s correlation co-efficient: 0.255 and 0.241, respectively, P < 0.01). The results demonstrate that chronic periodontitis adversely influences the GCF levels of glucoregulatory biomarkers, as it is associated with disturbed levels of biomarkers related to the onset of T2DM and its medical complications.
Collapse
Affiliation(s)
- Hasaan G. Mohamed
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
- * E-mail:
| | - Shaza B. Idris
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Competence Center in Western Norway, Hordaland, Bergen, Norway
| | | | - Anne N. Åstrøm
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Salah O. Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
35
|
Zagotta I, Dimova EY, Debatin KM, Wabitsch M, Kietzmann T, Fischer-Posovszky P. Obesity and inflammation: reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue. Front Pharmacol 2015; 6:79. [PMID: 25926797 PMCID: PMC4396198 DOI: 10.3389/fphar.2015.00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/27/2015] [Indexed: 01/10/2023] Open
Abstract
Obesity is associated with an inflammatory status and linked with a number of pathophysiological complications among them cardiovascular disease, type 2 diabetes mellitus, or the metabolic syndrome. Resveratrol was proposed to improve obesity-related inflammatory problems, but the effect of resveratrol on cytokine expression in obesity is not completely understood. In this study, we used an in vitro model of human adipose tissue inflammation to examine the effects of resveratrol on the production of the inflammatory cytokines interleukin 6 (IL-6), IL-8, and monocyte chemoattractant protein 1 (MCP-1). We found that resveratrol reduced IL-6, IL-8, and MCP-1 levels in a concentration-dependent manner in adipocytes under inflammatory conditions. Further experiments showed that the action of resveratrol was mainly due to its NFκB inhibitory potential. Thus, our data support the concept that resveratrol can alleviate obesity-induced up-regulation of inflammatory cytokines providing a new insight toward novel treatment options in obesity.
Collapse
Affiliation(s)
- Ivana Zagotta
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center Ulm, Germany
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu Oulu, Finland
| | - Klaus-Michael Debatin
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Center Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center Ulm, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu Oulu, Finland
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
36
|
Rouch A, Vanucci-Bacqué C, Bedos-Belval F, Baltas M. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview. Eur J Med Chem 2015; 92:619-36. [PMID: 25615797 DOI: 10.1016/j.ejmech.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 12/14/2022]
Abstract
PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.
Collapse
Affiliation(s)
- Anne Rouch
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Corinne Vanucci-Bacqué
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Florence Bedos-Belval
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| | - Michel Baltas
- Université Paul Sabatier Toulouse III, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; CNRS, UMR 5068, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France.
| |
Collapse
|
37
|
Jotic A, Milicic T, Covickovic Sternic N, Kostic VS, Lalic K, Jeremic V, Mijajlovic M, Lukic L, Rajkovic N, Civcic M, Macesic M, Seferovic JP, Stanarcic J, Aleksic S, Lalic NM. Decreased Insulin Sensitivity and Impaired Fibrinolytic Activity in Type 2 Diabetes Patients and Nondiabetics with Ischemic Stroke. Int J Endocrinol 2015; 2015:934791. [PMID: 26089903 PMCID: PMC4452095 DOI: 10.1155/2015/934791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/03/2014] [Indexed: 11/18/2022] Open
Abstract
We analyzed (a) insulin sensitivity (IS), (b) plasma insulin (PI), and (c) plasminogen activator inhibitor-1 (PAI-1) in type 2 diabetes (T2D) patients with (group A) and without (group B) atherothrombotic ischemic stroke (ATIS), nondiabetics with ATIS (group C), and healthy controls (group D). IS was determined by minimal model (Si). Si was lower in A versus B (1.18 ± 0.67 versus 2.82 ± 0.61 min-1/mU/L × 104; P < 0.001) and in C versus D (3.18 ± 0.93 versus 6.13 ± 1.69 min-1/mU/L × 104; P < 0.001). PI and PAI-1 were higher in A versus B (PI: 19.61 ± 4.08 versus 14.91 ± 1.66 mU/L; P < 0.001, PAI-1: 7.75 ± 1.04 versus 4.57 ± 0.72 mU/L; P < 0.001) and in C versus D (PI: 15.14 ± 2.20 versus 7.58 ± 2.05 mU/L; P < 0.001, PAI-1: 4.78 ± 0.98 versus 3.49 ± 1.04 mU/L; P < 0.001). Si correlated with PAI-1 in T2D patients and nondiabetics, albeit stronger in T2D. Binary logistic regression identified insulin, PAI-1, and Si as independent predictors for ATIS in T2D patients and nondiabetics. The results imply that insulin resistance and fasting hyperinsulinemia might exert their atherogenic impact through the impaired fibrinolysis.
Collapse
Affiliation(s)
- Aleksandra Jotic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Tanja Milicic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nadezda Covickovic Sternic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Katarina Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Veljko Jeremic
- Department for Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, Jove Ilica 154, 11 000 Belgrade, Serbia
| | - Milija Mijajlovic
- Clinic for Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 6, 11000 Belgrade, Serbia
| | - Ljiljana Lukic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Natasa Rajkovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Milorad Civcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Marija Macesic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena P. Seferovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Jelena Stanarcic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Sandra Aleksic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Nebojsa M. Lalic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
- *Nebojsa M. Lalic:
| |
Collapse
|
38
|
Forst T, Anastassiadis E, Diessel S, Löffler A, Pfützner A. Effect of linagliptin compared with glimepiride on postprandial glucose metabolism, islet cell function and vascular function parameters in patients with type 2 diabetes mellitus receiving ongoing metformin treatment. Diabetes Metab Res Rev 2014; 30:582-9. [PMID: 24459063 DOI: 10.1002/dmrr.2525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/29/2013] [Accepted: 01/04/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND The goal of this study was to investigate the effects of linagliptin compared with glimepiride on alpha and beta cell function and several vascular biomarkers after a standardized test meal. METHODS Thirty-nine patients on metformin alone (age, 64 ± 7 years; duration of type 2 diabetes mellitus, 7.8 ± 4.5years, 27 male, 12 female; HbA1c , 57.2 ± 6.9 mmol/mol; mean ± SD) were randomized to receive linagliptin 5 mg (n = 19) or glimepiride (n = 20) for a study duration of 12 weeks. Glucagon-like peptide 1, blood glucose, insulin, intact proinsulin, glucagon, plasminogen activator inhibitor-1 (PAI-1), cyclic guanosinmonophosphat and asymetric dimethylarginin levels were measured in the fasting state and postprandial at 30-min intervals for a duration of 5 h. The areas under the curve (AUC0-300 min ) were calculated for group comparisons. RESULTS HbA1c , fasting and postprandial glucose levels improved in both groups. An increase in postprandial insulin (22595 ± 5984 pmol/L*min), postprandial intact proinsulin (1359 ± 658 pmol/L*min), postprandial glucagon (317 ± 1136 pg/mL*min) and postprandial PAI-1 levels (863 ± 467 ng/mL*min) could be observed during treatment with glimepiride, whereas treatment with linagliptin was associated with a decrease in postprandial insulin (-8007 ± 4204 pmol/L*min), intact proinsulin (-1771 ± 426 pmol/L*min), postprandial glucagon (-1597 ± 1831 pg/mL*min) and PAI-1 levels (-410 ± 276 ng/mL*min). CONCLUSIONS Despite an improvement in blood glucose control in both groups, linagliptin reduced postprandial insulin, proinsulin, glucagon and PAI-levels. These results indicate an improvement in postprandial alpha and beta cell function, as well as a reduced postprandial vascular risk profile during treatment with linagliptin.
Collapse
Affiliation(s)
- Thomas Forst
- Profil Mainz, Rheinstrasse 4C, 55116, Mainz, Germany
| | | | | | | | | |
Collapse
|
39
|
Adly AAM, Elbarbary NS, Ismail EAR, Hassan SR. Plasminogen activator inhibitor-1 (PAI-1) in children and adolescents with type 1 diabetes mellitus: relation to diabetic micro-vascular complications and carotid intima media thickness. J Diabetes Complications 2014; 28:340-7. [PMID: 24581943 DOI: 10.1016/j.jdiacomp.2014.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/27/2013] [Accepted: 01/17/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) is a fast-acting inhibitor of fibrinolysis that has been linked to increase risk of thrombosis. We determined PAI-1 levels in 80 children and adolescents with type 1 diabetes (T1DM) compared with 40 healthy controls as a potential marker for micro-vascular complications and assessed the relation to carotid intima media thickness (CIMT) as a synergistic risk factor for development of atherosclerosis. METHODS Patients were divided into 2 groups according to micro-vascular complications. Hemoglobin A1c (HbA1c), urinary albumin excretion, fasting serum lipid profile and PAI-1 levels were measured. CIMT of the common carotid artery was assessed using high resolution ultrasonography. RESULTS PAI-1 levels were significantly elevated in the group with diabetes compared with control group (p<0.001). PAI-1 levels were also increased in patients with micro-vascular complications compared with those without (p<0.001). CIMT was significantly higher in patients, particularly those with micro-vascular complications than patients without complications or controls (p<0.001). Positive correlations were found between PAI-1 levels and random blood glucose, HbA1c, triglycerides, total cholesterol and CIMT (p<0.05). CONCLUSIONS Increased plasma PAI-1 may be involved in the state of hypofibrinolysis in patients with T1DM leading to the occurrence of micro-vascular complications and increased risk of atherosclerosis.
Collapse
Affiliation(s)
- Amira Abdel Moneam Adly
- Diabetes and Endocrinology Unit, Department of Pediatrics, Faculty of medicine, Ain shams University, Cairo, Egypt.
| | - Nancy Samir Elbarbary
- Diabetes and Endocrinology Unit, Department of Pediatrics, Faculty of medicine, Ain shams University, Cairo, Egypt
| | | | - Samar Reda Hassan
- Diabetes and Endocrinology Unit, Department of Pediatrics, Faculty of medicine, Ain shams University, Cairo, Egypt
| |
Collapse
|
40
|
To M, Takagi D, Akashi K, Kano I, Haruki K, Barnes PJ, Ito K. Sputum Plasminogen Activator Inhibitor-1 Elevation by Oxidative Stress-Dependent Nuclear Factor-κB Activation in COPD. Chest 2013; 144:515-521. [DOI: 10.1378/chest.12-2381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
41
|
Resveratrol suppresses PAI-1 gene expression in a human in vitro model of inflamed adipose tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:793525. [PMID: 23819014 PMCID: PMC3684090 DOI: 10.1155/2013/793525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022]
Abstract
Increased plasminogen activator inhibitor-1 (PAI-1) levels are associated with a number of pathophysiological complications; among them is obesity. Resveratrol was proposed to improve obesity-related health problems, but the effect of resveratrol on PAI-1 gene expression in obesity is not completely understood. In this study, we used SGBS adipocytes and a model of human adipose tissue inflammation to examine the effects of resveratrol on the production of PAI-1. Treatment of SGBS adipocytes with resveratrol reduced PAI-1 mRNA and protein in a time- and concentration-dependent manner. Further experiments showed that obesity-associated inflammatory conditions lead to the upregulation of PAI-1 gene expression which was antagonized by resveratrol. Although signaling via PI3K, Sirt1, AMPK, ROS, and Nrf2 appeared to play a significant role in the modulation of PAI-1 gene expression under noninflammatory conditions, those signaling components were not involved in mediating the resveratrol effects on PAI-1 production under inflammatory conditions. Instead, we demonstrate that the resveratrol effects on PAI-1 induction under inflammatory conditions were mediated via inhibition of the NF κ B pathway. Together, resveratrol can act as NF κ B inhibitor in adipocytes and thus the subsequently reduced PAI-1 expression in inflamed adipose tissue might provide a new insight towards novel treatment options of obesity.
Collapse
|
42
|
Forst T, Dworak M, Berndt-Zipfel C, Löffler A, Klamp I, Mitry M, Pfützner A. Effect of vildagliptin compared to glimepiride on postprandial proinsulin processing in the β cell of patients with type 2 diabetes mellitus. Diabetes Obes Metab 2013; 15:576-9. [PMID: 23384119 DOI: 10.1111/dom.12063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
This study compared the effect of Glimepiride versus Vildagliptin on β-cell function and the release of intact proinsulin (PI) in patients with type 2 diabetes mellitus. Patients on metformin monotherapy were randomized to add on treatment with Vildagliptin or Glimepiride. A standardized test meal was given at baseline, after 12 and 24 weeks of treatment. Insulin, PI and blood glucose values were measured in the fasting state and postprandial for 300 min. Fasting PI levels significantly decreased in the Vildagliptin group. The area under the curve for the postprandial release of PI decreased during Vildagliptin and increased during Glimepiride treatment. The proinsulin to insulin ratio declined in the Vildagliptin group, whereas it did not change significantly in the Glimepiride group. Addition of Vildagliptin to ongoing Metformin treatment reconstitutes the disproportionality of the proinsulin to insulin secretion from the β cell.
Collapse
Affiliation(s)
- T Forst
- Medical Department, Institute for Clinical Research and Development, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3T3-L1 adipocytes. Cytokine 2013; 62:407-12. [PMID: 23612013 DOI: 10.1016/j.cyto.2013.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 11/20/2022]
Abstract
Obesity is closely associated with a state of chronic, low-grade inflammation characterized by abnormal cytokine production and activation of inflammatory signaling pathways in adipose tissue. Tumor necrosis factor (TNF)-α is chronically elevated in adipose tissues of obese rodents and humans. Increased levels of TNF-α are implicated in the induction of atherogenic adipokines, such as plasminogen activator inhibitor (PAI)-1, adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6. Aucubin, an iridoid glycoside existing in medicinal plants, has been reported to show an anti-inflammatory activity by suppression of TNF-α production in murine macrophages. The present study is aimed to investigate the effects of aucubin on TNF-α-induced atherogenic changes of the adipokines in differentiated 3T3-L1 cells. Aucubin significantly inhibited TNF-α-induced secretion and mRNA synthesis of the atherogenic adipokines including PAI-1, MCP-1, and IL-6. Further investigation of the molecular mechanism revealed that pretreatment with aucubin suppressed extracellular signal-regulated kinase (ERK) activation, inhibitory kappa Bα (IκBα) degradation, and subsequent nuclear factor kappa B (NF-κB) activation. These findings suggest that aucubin may improve obesity-induced atherosclerosis by attenuating TNF-α-induced inflammatory responses.
Collapse
|
44
|
Antidiabetic properties of germinated brown rice: a systematic review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:816501. [PMID: 23304216 PMCID: PMC3529503 DOI: 10.1155/2012/816501] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
Diet is an important variable in the course of type 2 diabetes, which has generated interest in dietary options like germinated brown rice (GBR) for effective management of the disease among rice-consuming populations. In vitro data and animal experiments show that GBR has potentials as a functional diet for managing this disease, and short-term clinical studies indicate encouraging results. Mechanisms for antidiabetic effects of GBR due to bioactive compounds like γ-aminobutyric acid (GABA), γ-oryzanol, dietary fibre, phenolics, vitamins, acylated steryl β-glucoside, and minerals include antihyperglycemia, low insulin index, antioxidative effect, antithrombosis, antihypertensive effect, hypocholesterolemia, and neuroprotective effects. The evidence so far suggests that there may be enormous benefits for diabetics in rice-consuming populations if white rice is replaced with GBR. However, long-term clinical studies are still needed to verify these findings on antidiabetic effects of GBR. Thus, we present a review on the antidiabetic properties of GBR from relevant preclinical and clinical studies, in order to provide detailed information on this subject for researchers to review the potential of GBR in combating this disease.
Collapse
|
45
|
Onrat ST, Akci O, Söylemez Z, Onrat E, Avşar A. Prevalence of myocardial infarction polymorphisms in Afyonkarahisar, Western Turkey. Mol Biol Rep 2012; 39:9257-64. [PMID: 22752805 DOI: 10.1007/s11033-012-1799-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/09/2012] [Indexed: 12/12/2022]
Abstract
The aim of the study was to investigate relationship between polymorphisms in genes that are clinical and environmental features and the risk of myocardial infarction (MI) in Afyonkarahisar subjects living in Turkey. Prevalence of the several genes polymorphisms, ≤45 (42.04 ± 3.3) and ≥46 (57.19 ± 7.5) years were studied in individuals with MI and without MI (40.30 ± 9.01) individuals were studied. We tested 140 with MI individuals for factor V (FV) Leiden, FV H1299R, Prothrombin G20210A, factor XIII (FXIII) V34L, β-fibrinogen b-455G/A, plasminogen activator inhibitor-1 (PAI-1)-675 4G/5G, human platelet antigens 1 (HPA-1) a/b, apolipoprotein B (ApoB) R3500Q, apolipoprotein E (ApoE), E2, E3, and E4, angiotensin-converting enzyme (ACE) D/I, 5,10 methylenetetrahydrofolate reductase (MTHFR) 677C/T, and MTHFR 1298A/C polymorphisms using a ViennaLab CVD strip assay. This study results were compared without MI control groups. According to the our results, prothrombin, factor XIII and MTHFRC677T deletions were the most frequent genetic variants in risk groups of hyperlipidemic patients (value of odds ratio sequentially [OR] = 4.5, p = 0.05, [OR] = 2.16, p = 0.04 and [OR] = 2.8, p = 0.09). MTHFRA1298C and PAI-1 deletions were most frequent genetic variants in risk groups for MI in patients with diabetes mellitus (value of odds ratio sequentially [OR] = 3.79, p = 0.06 and [OR] = 5 × 10(8), p = 0.000). ACE deletions were positively associated with family history of cardiovascular events (OR = 3.62, p = 0.03). We found a strong relationship between genetic variants and risk factors. Significant associations between genetic variants predicting cardiovascular events and common risk factors (hyperlipidemia, smoking, diabetes mellitus and family history) patients were found.
Collapse
Affiliation(s)
- Serap Tutgun Onrat
- Faculty of Medicine, Department of Medical Genetics, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | | | | | | | | |
Collapse
|
46
|
Pscherer S, Larbig M, von Stritsky B, Pfützner A, Forst T. In type 2 diabetes patients, insulin glargine is associated with lower postprandial release of intact proinsulin compared with sulfonylurea treatment. J Diabetes Sci Technol 2012; 6:634-40. [PMID: 22768894 PMCID: PMC3440051 DOI: 10.1177/193229681200600318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our objective was to investigate how postprandial processing of intact proinsulin is influenced by different pharmacological strategies in type 2 diabetes mellitus (T2DM). MATERIALS/METHODS This exploratory, nonrandomized, cross-sectional study recruited T2DM patients and healthy subjects. Upon recruitment, eligible T2DM patients had been treated for ≥6 months with insulin glargine (GLA) plus metformin (MET), sulfonylureas (SU) plus MET, or dipeptidyl-peptidase-4 inhibitors (DPP-4-I) plus MET. Blood samples were drawn from study participants after an 8 h fast and at regular intervals for up to 5 h after consumption of a standardized meal. Study endpoints included postprandial intact proinsulin and insulin levels and the insulin/proinsulin ratio. RESULTS As expected, postprandial secretion of proinsulin was greater in all T2DM treatment groups than in healthy subjects (p < .01 for all comparisons). Postprandial release of proinsulin was significantly greater in T2DM patients treated with SU plus MET than in those treated with GLA plus MET (p = .003). Treatment with DPP-4-I plus MET was associated with reduced proinsulin secretion versus SU plus MET and an increased insulin/proinsulin ratio versus the other T2DM groups. CONCLUSIONS Treatment of T2DM with GLA plus MET or DPP-4-I plus MET was associated with a more physiological postprandial secretion pattern of the β cell compared with those treated with SU plus MET.
Collapse
Affiliation(s)
| | - Martin Larbig
- Institute for Clinical Research and DevelopmentSanofi, Berlin, Germany
| | | | | | - Thomas Forst
- Institute for Clinical Research and DevelopmentMainz, Germany
- University MainzMainz, Bayern, Germany
| |
Collapse
|
47
|
Cardiovascular benefits of GLP-1-based herapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:635472. [PMID: 22577369 PMCID: PMC3345223 DOI: 10.1155/2012/635472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 02/06/2012] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a progressive multisystemic disease accompanied by vascular dysfunction and a tremendous increase in cardiovascular mortality. Numerous adipose-tissue-derived factors and beta cell dysfunction contribute to the increased cardiovascular risk in patients with T2DM. Nowadays, numerous pharmacological interventions are available to lower blood glucose levels in patients with type 2 diabetes. Beside more or less comparable glucose lowering efficacy, some of them have shown limited or probably even unfavorable effects on the cardiovascular system and overall mortality. Recently, incretin-based therapies (GLP-1 receptor agonists and DPP-IV inhibitors) have been introduced in the treatment of T2DM. Beside the effects of GLP-1 on insulin secretion, glucagon secretion, and gastrointestinal motility, recent studies suggested a couple of direct cardiovascular effects of GLP-1-based therapies. The goal of this paper is to provide an overview about the current knowledge of direct GLP-1 effects on endothelial and vascular function and potential consequences on the cardiovascular outcome in patients with T2DM treated with GLP-1 receptor agonists or DPP-IV inhibitors.
Collapse
|
48
|
Cho HJ, Kang JH, Jeong JH, Jeong YJ, Park KK, Park YY, Moon YS, Kim HT, Chung IK, Kim CH, Chang HW, Chang YC. Ascochlorin suppresses TGF-β1-induced PAI-1 expression through the inhibition of phospho-EGFR in rat kidney fibroblast cells. Mol Biol Rep 2011; 39:4597-603. [PMID: 21947785 DOI: 10.1007/s11033-011-1251-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Fibrosis is induced by the excessive and abnormal deposition of extracellular matrix (ECM) with various growth factors in tissues. Transforming growth factor-β1 (TGF-β1), the growth factor involved in fibrosis, modulates ECM synthesis and accumulation. TGF-β1 enhances the production of stimulators of ECM synthesis such as plasminogen activator inhibitor type 1 (PAI-1). As such, PAI-1 expression directly influences the proteolysis, invasion, and accumulation of ECM. It was shown in this study that ascochlorin, a prenylpenl antiobiotic, prevents the expression of profibrotic factors, such as PAI-1 and collagen type I, and that the TGF-β1-induced PAI-1 promoter activity is inhibited by ascochlorin. Ascochlorin abolishes the phosphorylation of the EGFR-MEK-ERK signaling pathway to regulate the TGF-β1-induced expression of PAI-1 without the inhibition of TβRII phosphorylation. Furthermore, the MEK inhibitor and EGFR siRNA block PAI-1 expression, and the Raf-1, MEK, and ERK signaling pathways for the regulation of PAI-1 expression. Ascochlorin suppresses the matrix metalloproteinases (MMPs) activity to activate the heparin-binding EGF-like growth factor (HB-EGF), to induce the phosphorylation of EGFR, and the MMPs inhibitor suppresses EGFR phosphorylation and the PAI-1 mRNA levels. These results suggest that ascochlorin prevents the expression of PAI-1 via the inhibition of an EGFR-dependent signal transduction pathway activated by MMPs.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, 3056-6, Daemyung-4-Dong, Nam-gu, Daegu, 705-718, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krause MP, Moradi J, Nissar AA, Riddell MC, Hawke TJ. Inhibition of plasminogen activator inhibitor-1 restores skeletal muscle regeneration in untreated type 1 diabetic mice. Diabetes 2011; 60:1964-72. [PMID: 21593201 PMCID: PMC3121432 DOI: 10.2337/db11-0007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Type 1 diabetes leads to impairments in growth, function, and regenerative capacity of skeletal muscle; however, the underlying mechanisms have not been clearly defined. RESEARCH DESIGN AND METHODS With the use of Ins2(WT/C96Y) mice (model of adolescent-onset type 1 diabetes), muscle regeneration was characterized in terms of muscle mass, myofiber size (cross-sectional area), and protein expression. Blood plasma was analyzed for glucose, nonesterified fatty acids, insulin, and plasminogen activator inhibitor-1 (PAI-1). PAI-039, an effective inhibitor of PAI-1, was orally administered to determine if PAI-1 was attenuating muscle regeneration in Ins2(WT/C96Y) mice. RESULTS Ins2(WT/C96Y) mice exposed to 1 or 8 weeks of untreated type 1 diabetes before chemically induced muscle injury display significant impairments in their regenerative capacity as demonstrated by decreased muscle mass, myofiber cross-sectional area, myogenin, and Myh3 expression. PAI-1, a physiologic inhibitor of the fibrinolytic system and primary contributor to other diabetes complications, was more than twofold increased within 2 weeks of diabetes onset and remained elevated throughout the experimental period. Consistent with increased circulating PAI-1, regenerating muscles of diabetic mice exhibited excessive collagen levels at 5 and 10 days postinjury with concomitant decreases in active urokinase plasminogen activator and matrix metalloproteinase-9. Pharmacologic inhibition of PAI-1 with orally administered PAI-039 rescued the early regenerative impairments in noninsulin-treated Ins2(WT/C96Y) mice. CONCLUSIONS Taken together, these data illustrate that the pharmacologic inhibition of elevated PAI-1 restores the early impairments in skeletal muscle repair observed in type 1 diabetes and suggests that early interventional studies targeting PAI-1 may be warranted to ensure optimal growth and repair in adolescent diabetic skeletal muscle.
Collapse
Affiliation(s)
- Matthew P. Krause
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jasmin Moradi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Aliyah A. Nissar
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael C. Riddell
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Corresponding author: Thomas J. Hawke,
| |
Collapse
|
50
|
Xu L, Jiang CQ, Lam TH, Bao B, Cheng KK, Thomas GN. Plasminogen activator inhibitor-1 and HbA1c defined prediabetes: the Guangzhou Biobank Cohort Study-CVD. Clin Endocrinol (Oxf) 2011; 74:528-31. [PMID: 21128994 DOI: 10.1111/j.1365-2265.2010.03948.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To examine the association between plasminogen activator inhibitor-1 (PAI-1) and diabetes status. RESEARCH DESIGN AND METHODS One thousand three hundred and ninety-three older Chinese were randomly selected from the Guangzhou Biobank Cohort Study. Diabetes status was classified as impaired HbA1c (IA1c) level of 5·7-6·4%, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or diabetes using the American Diabetes Association diagnosis criteria in 2010. RESULTS Compared to the normoglycemic (NG) group, 421 subjects with IA1c, but without diabetes, IFG or IGT, had adverse levels of vascular risk factors, including PAI-1, lipid profile, blood pressure and anthropometry. After adjusting for multiple potential confounders, compared to the NG group, the level of plasma PAI-1 was independently and significantly increased in the IA1c and the IFG/IGT group (mean difference: 32·0 (95% confidence interval: 5·5-58·6) ng/ml and 33·3 (6·3-60·3) ng/ml, respectively; P<0·01). CONCLUSIONS Plasma PAI-1 level was increased in people with haemoglobin A1c (HbA1c) of 5·7-6·4% but without IFG or IGT, and in people with IFG/IGT, suggesting an increased risk for future diabetes and cardiovascular diseases in these groups.
Collapse
Affiliation(s)
- Lin Xu
- Department of Community Medicine, School of Public Health, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|