1
|
Liu Z, Wang M, Hu Y, Li J, Gong W, Guo X, Song S, Zhu B. Ulva lactuca polysaccharides combined with fecal microbiota transplantation ameliorated dextran sodium sulfate-induced colitis in C57BL/6J mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39212113 DOI: 10.1002/jsfa.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) of healthy donors improves ulcerative colitis (UC) patients by restoring the balance of the gut microbiota. However, donors vary in microbial diversity and composition, often resulting in weak or even ineffective FMT. Improving the efficacy of FMT through combination treatment has become a promising strategy. Ulva lactuca polysaccharides (ULP) have been found to benefit host health by regulating gut microbiota. The effect of the combination of ULP and FMT in ameliorating UC has not yet been evaluated. RESULTS The present study found that supplementation with ULP combined with FMT showed better effects in ameliorating UC than supplementation with FMT alone. Results suggested that FMT or ULP combined with FMT alleviated the symptoms of UC in mice, as evidenced by prevention of body weight loss, improvement of disease activity index and protection of the intestinal mucus. Notably, ULP in combination with FMT was more effective than FMT in reducing levels of cytokines and related inflammatory enzymes. In addition, ULP combined with FMT effectively restored the dysbiosis induced by dextran sulfate sodium (DSS) and further enriched probiotics (such as Bifidobacterium). The production of short-chain fatty acids, especially acetic acid, was also significantly enriched by ULP combined with FMT. CONCLUSION Supplementation of ULP combined with FMT could significantly ameliorate DSS-induced colitis in mice by inhibiting inflammation and restoring dysbiosis of gut microbiota. These results suggested that ULP combined with FMT has potential application in ameliorating UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
2
|
Avci GA, Yilmaz Üİ, Avci E. Efficacy of probiotics, paraprobiotics, and postbiotics in colorectal cancer cell line and their role in immune response. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240226. [PMID: 39045970 PMCID: PMC11288267 DOI: 10.1590/1806-9282.20240226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVE The aim of this study was to reveal certain features (anti-tumor/microbial activities) of postbiotics and heat-inactivated paraprobiotics obtained from two different bacteria with determined probiotic properties, which are thought to contribute to human health. METHODS In the study, Lactobacillus reuteri ENA31 and L. rhamnosus GAA6 strains were used. Supernatants of postbiotically active cultures were used. Paraprobiotics were obtained by exposing probiotic bacteria to high temperatures. The cytotoxic effects of probiotics, paraprobiotics, and postbiotics were evaluated by the MTT method. IL-1/-10/-12/-13, TNF-α, IFN-γ, and neopterin parameters were determined via the ELISA method in immunity studies. RESULTS It was detected that biotics had a cytotoxic effect on cancer cells with rising concentrations (paraprobiotic CONCLUSION Our study shows that biotics, which are widely used and beneficial to health, are also available for use in immunocompromised individuals. The resulting paraprobiotics and postbiotics will both increase the conscious use of probiotics and provide the opportunity for use in immunocompromised individuals.
Collapse
Affiliation(s)
- Gülçin Alp Avci
- University of Health Sciences, Faculty of Gulhane Dentistry, Department of Basic Medical Sciences – Ankara, Turkey
| | - Ülkü İrem Yilmaz
- University of Health Sciences, Gülhane Vocational School of Health, Department of Pathology – Ankara, Turkey
| | - Emre Avci
- University of Health Sciences, Faculty of Gulhane Pharmacy, Department of Biochemistry – Ankara, Turkey
| |
Collapse
|
3
|
Güler MA, Çetin B, Albayrak B, Meral-Aktaş H, Tekgündüz KŞ, Kara M, Işlek A. Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4165-4175. [PMID: 38299445 DOI: 10.1002/jsfa.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammet Akif Güler
- Division of Pediatric Nephrology, Department of Pediatrics, Atatürk University, Faculty of Medicine, Erzurum, Türkiye
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Bülent Albayrak
- Department of Gastroenterology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Hacer Meral-Aktaş
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Kadir Şerafettin Tekgündüz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mustafa Kara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Ali Işlek
- Department of Pediatric Gastroenterology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| |
Collapse
|
4
|
Hilliard MA, Sela DA. Transmission and Persistence of Infant Gut-Associated Bifidobacteria. Microorganisms 2024; 12:879. [PMID: 38792709 PMCID: PMC11124121 DOI: 10.3390/microorganisms12050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.
Collapse
Affiliation(s)
- Margaret A. Hilliard
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Benameur F, Belkaaloul K, Kheroua O. Isolation of 60 strains from fermented milk of mares and donkeys in Algeria and identification by 16S rRNA sequencing of lactobacilli: Assessment of probiotic skills of important strains and aromatic productivity power. Vet World 2024; 17:829-841. [PMID: 38798294 PMCID: PMC11111728 DOI: 10.14202/vetworld.2024.829-841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Donkey and mare milk have high nutritional and functional values, but their lactic acid bacteria (LAB) content remains poorly studied and undervalued in the Algerian dairy industry. This study aimed to isolate and select LAB strains that produce antimicrobial substances during fermentation and to characterize the probiotic profiles of each extracted strain to indicate their potential for antioxidant and proteolytic activity. Materials and Methods This study focuses on isolating and identifying lactic acid bacterial strains from 10 Equid-fermented milk samples collected in two regions of El Bayed Wilaya (Algeria). Identification of LAB strains was obtained by 16S rRNA sequencing. The probiotic properties of important strains and their aromatic productivity power are assessed. To evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Chryseobacterium joostei, Pseudomonas aeruginosa, and Escherichia coli, we selected 21 strains. Different induction methods have been used to amplify the antibacterial effects against these pathogenic strains. Results Among a total of 60 identified strains, 31 had a probiotic profile, and most were catalase-negative. Aromatic productivity power was observed in eight strains: Lactiplantibacillus plantarum, Lactobacillus casei, Lactobacillus paracasei, Weissella confusa, Weissella cibaria, Leuconostoc mesenteroides, Leuconostoc lactis, and Lactobacillus sp1. Conclusion Our results provide insight into the considerable diversity of LAB present in fermented donkey and mare milk. To meet the expectations of the Algerian dairy industry, it is important that the probiotic skills of the nine selected strains are met. In addition, a significant number of these strains may have important probiotic activity and biotechnological potential.
Collapse
Affiliation(s)
- Fouzia Benameur
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Kawthar Belkaaloul
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Omar Kheroua
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
6
|
Rachmühl C, Lacroix C, Cabrera PM, Geirnaert A. Long-term continuous cultivation of Kenyan infant fecal microbiota using the host adapted PolyFermS model. Sci Rep 2023; 13:20563. [PMID: 37996456 PMCID: PMC10667343 DOI: 10.1038/s41598-023-47131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform, which allows controlled and stable long-term cultivation of colon microbiota in conditions akin the host. Nine immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were investigated stepwise. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained and two distinct fermentation metabolite profiles of infant fecal microbiota were observed. Three propiogenic and one butyrogenic metabolite profile of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.
Collapse
Affiliation(s)
- Carole Rachmühl
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Paula Momo Cabrera
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Sharma D, Gajjar D, Seshadri S. Understanding the role of gut microfloral bifidobacterium in cancer and its potential therapeutic applications. MICROBIOME RESEARCH REPORTS 2023; 3:3. [PMID: 38455077 PMCID: PMC10917622 DOI: 10.20517/mrr.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 03/09/2024]
Abstract
Gut microbiota research has gained a tremendous amount of attention from the scientific community because of its contribution to gut homeostasis, human health, and various pathophysiological conditions. The early colonizer of the human gut, i.e., bifidobacteria, has emerged as an efficient probiotic in various diseased conditions, including cancer. This review explores the pros and cons of Bifidobacterium in various malignancies and various therapeutic strategies. We have illustrated the controversial role of bifidobacteria participating in various malignancies as well as described the current knowledge regarding its use in anticancer therapies. Ultimately, this article also addresses the need for further extensive research in elucidating the mechanism of how bifidobacteria is involved and is indirectly affecting the tumor microenvironment. Exhaustive and large-scale research is also required to solve the controversial questions regarding the involvement of bifidobacteria in cancer research.
Collapse
Affiliation(s)
| | | | - Sriram Seshadri
- Institute of Science, Nirma University, 382481 Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Liu D, Huang H, Han J, Wu Q, Xiang Y, Liu Y, Wei Y. Characterization of an EPS-producing bifidobacterial strain based on integration of phenotypic and complete genome sequencing data. Can J Microbiol 2023; 69:407-415. [PMID: 37352557 DOI: 10.1139/cjm-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Bifidobacterium and Lactobacillus are known to be common members of the human intestinal microbiota, which play important roles in maintaining the homeostasis of host gut microenvironment. Several bifidobacterial and lactobacilli strains have been used as probiotics for health benefits. The exopolysaccharides (EPSs) produced by strains from Bifidobacterium and Lactobacillus are considered as beneficial traits mediating these beneficial effects. In this study, 21 strains belonging to Bifidobacterium and Lactobacillus were isolated from healthy infants' stool and were screened for EPS-producing ability. Among these strains, Bifidobacterium longum XZM1 showed the highest EPS productivity, which was further confirmed and characterized. The complete genome of strain XZM1 was sequenced, which revealed the presence of a gene cluster for EPS production. Furthermore, comparative genome analysis was performed among XZM1 and other strains from B. longum species. Following purification, the molecular weight (Mw) of EPS from XZM1 was determined as 4023 Da (Mw) through gel permeation chromatography. Analysis of the EPS hydrolysates revealed that the EPS was composed of mannose, glucose, galactose, arabinose, and fucose. Additionally, the EPS exhibited higher scavenging abilities toward hydroxyl than 1,1-diphenyl-2-picrylhydrazyl free radical. Overall, these results suggest that XZM1 from B. longum species may be a promising probiotic candidate.
Collapse
Affiliation(s)
- Dianbin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Haohan Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinzhi Han
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiong Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
9
|
Zhang L, Kong H, Li Z, Ban X, Gu Z, Hong Y, Cheng L, Li C. Physicochemical characterizations, α-amylase inhibitory activities and inhibitory mechanisms of five bacterial exopolysaccharides. Int J Biol Macromol 2023; 249:126047. [PMID: 37517764 DOI: 10.1016/j.ijbiomac.2023.126047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Inhibiting pancreatic α-amylase activity can decrease the release rate of glucose, thereby delaying postprandial blood glucose. This study aimed to investigate the physicochemical properties and porcine pancreatic α-amylase (PPA) inhibitory activities of five bacterial exopolysaccharides (EPSs). We also aimed to analyze the differences of their inhibitory activities, exploring the inhibition mechanism between EPSs and PPA. Five EPSs had a low molecular weight (55-66 kDa), which were mainly composed of mannose and glucose with total content exceeding 86 %. The IC50 values of five EPSs (0.162-0.431 mg/mL) were significantly lower than that of acarbose (0.763 mg/mL), indicating that the inhibitory effects of five EPSs on PPA were stronger than acarbose, especially the EPS from Bacillus subtilis STB22 (BS-EPS). Moreover, BS-EPS was a mixed-type inhibitor, whereas other EPSs were noncompetitive inhibitors of PPA. Five EPSs quenched the fluorophore of PPA by the mixed quenching or apparent static quenching. Interestingly, BS-EPS showed stronger binding affinity to PPA than other EPSs. It can be speculated that EPSs with low molecular weight, high carboxylic acid content, and α-glycosidic bond exhibited high PPA inhibitory activity. These results suggest that BS-EPS can effectively inhibit PPA activity and has potential applications in reducing postprandial hyperglycemia.
Collapse
Affiliation(s)
- Lan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Rachmühl C, Lacroix C, Cabrera PM, Geirnaert A. Long-term continuous cultivation of Kenyan infant fecal microbiota using the host adapted PolyFermS model. RESEARCH SQUARE 2023:rs.3.rs-3101157. [PMID: 37461546 PMCID: PMC10350169 DOI: 10.21203/rs.3.rs-3101157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform. Eight immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were stepwise investigated. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained, and two distinct fermentation metabolite profiles, propiogenic and butyrogenic, of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed and accurate continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.
Collapse
|
11
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
12
|
Yang Y, He J, Wang Y, Liang L, Zhang Z, Tan X, Tao S, Wu Z, Dong M, Zheng J, Zhang H, Feng S, Cheng W, Chen Q, Wei H. Whole intestinal microbiota transplantation is more effective than fecal microbiota transplantation in reducing the susceptibility of DSS-induced germ-free mice colitis. Front Immunol 2023; 14:1143526. [PMID: 37234168 PMCID: PMC10206398 DOI: 10.3389/fimmu.2023.1143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging and effective therapy for the treatment of inflammatory bowel disease (IBD). Previous studies have reported that compared with FMT, whole intestinal microbiota transplantation (WIMT) can more precisely replicate the community structure and reduce the inflammatory response of the host. However, it remains unclear whether WIMT is more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole intestinal microbiota or fecal microbiota before being treated with dextran sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by both WIMT and FMT, as demonstrated by the prevention of body weight loss and decreased the Disease activity index and histological scores in mice. However, WIMT's anti-inflammatory effect was superior to that of FMT. In addition, the inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were dramatically downregulated by WIMT and FMT. Furthermore, the use of two different types of donors facilitated the regulation of cytokine homeostasis in colitis mice; the level of the pro-inflammatory cytokine IL-1β in the WIMT group was significantly lower than that in the FMT group, while the level of the anti-inflammatory factor IL-10 was significantly higher than that in the FMT group. Both groups showed enhanced expression of occludin to protect the intestinal barrier in comparison with the DSS group, and the WIMT group demonstrated considerably increased levels of ZO-1. The sequencing results showed that the WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis revealed that Bifidobacterium was negatively correlated with TNF-α, whereas Ochrobactrum was positively correlated with MPO and negatively correlated with IL-10, which might be related to different efficacies. Functional prediction using PICRUSt2 revealed that the FMT group was considerably enriched in the L-arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the WIMT group was enriched in the L-lysine fermentation to acetate and butanoate pathway. In conclusion, the symptoms of colitis were subsided to varying degrees by the two different types of donors, with the WIMT group being more effective than the FMT group. This study provides new information on clinical interventions for IBD.
Collapse
Affiliation(s)
- Yapeng Yang
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqing Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lifeng Liang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeyue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiang Tan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Tao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhifeng Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuaifei Feng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Cheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Moussaid S, El Alaoui MA, Ounine K, Benali A, Bouhlal O, Rkhaila A, Hami H, El Maadoudi EH. In-vitro evaluation of the probiotic potential and the fermentation profile of Pediococcus and Enterococcus strains isolated from Moroccan camel milk. Arch Microbiol 2023; 205:144. [PMID: 36967406 DOI: 10.1007/s00203-023-03489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The promotion of human health through natural approaches like functional foods and probiotics is in high demand. The medicinal plants are the major feed of Moroccan dromedary, which improves the functional properties of their milk. A few studies have reported the probiotic and functional aptitudes of lactic acid bacteria (LAB) of this milk. In this context, our study aimed to identify LAB isolated from Moroccan raw camel milk and investigate their probiotic features and their fermentation profile. The molecular identification of twelve isolates indicated that they belong to Pediococcus pentosaceus, Enterococcus faecium, and Enterococcus durans. All LAB strains displayed high tolerance to gastrointestinal conditions (survival rate of 31.85-96.52% in pH 2.5, 35.23-99.05% in 0.3 bile salts, and 26.9-90.96% in pepsin), strong attachment abilities (auto-aggregation and hydrophobicity ranged from 28.75 to 95.9% and from 80.47 to 96.37%, respectively), and high co-aggregation ability with pathogenic bacteria. Importantly, they did not present antibiotic resistance or hemolytic activity. Our LAB strains demonstrated antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Salmonella enterica. Moreover, they could acidify cow milk (ΔpH of 2.55 after 24 h) and improve its antioxidant ability (inhibition of 36.77% of DPPH). Based on the multivariate analysis, Pediococcus pentosaceus Pd24, Pd29, Pd38, Enterococcus faecium Ef18, and Enterococcus durans Ed22 were selected as the most promising probiotics. Therefore, we propose that Pediococcus pentosaceus isolated from camel milk could be used as potential probiotic strains and/or starter cultures in functional milk fermentation.
Collapse
Affiliation(s)
- Siham Moussaid
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco.
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco.
| | - Moulay Abdelaziz El Alaoui
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Khadija Ounine
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Aouatif Benali
- RU Animal Production and Forage, Food Technology Laboratory, INRA, RCAR-Rabat, Institutes Rabat, 6570, 10101, Rabat, PB, Morocco
| | - Outmane Bouhlal
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Amine Rkhaila
- Laboratory of Plants, Animals, and Agro-Industry Productions, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - Hinde Hami
- Biology and Health Laboratory, Faculty of Sciences B.P. 133, Ibn Tofail University, 1400, Kenitra, Morocco
| | - El Haj El Maadoudi
- Regional Center of Agronomic Research of Rabat, Avenue Mohamed Belarbi Alaoui, B.P:6356-Instituts.10101, Rabat, Morocco
| |
Collapse
|
14
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Parhi P, Song KP, Choo WS. Growth and survival of Bifidobacterium breve and Bifidobacterium longum in various sugar systems with fructooligosaccharide supplementation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3775-3786. [PMID: 36193365 PMCID: PMC9525548 DOI: 10.1007/s13197-022-05361-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
This study aims to investigate the effect of fructooligosaccharide (FOS) (0.5, 1, 2, 3, and 4%) supplementation on the growth and survival of Bifidobacterium breve and Bifidobacterium longum in glucose, fructose, lactose, and sucrose (2, 3, and 4%) systems with 24-h growth and 10-day survival assays at 37 °C. FOS supplementation showed a higher growth-promoting effect on B. longum than B. breve in various sugar systems. The highest percentage of increase in growth index, 78.5%, was observed with 4% sucrose supplemented with 0.5% FOS in B. longum. In comparison, the highest percentage increase in growth index, 5.6 and 6.6%, was observed in the presence of 2% glucose and 4% lactose supplemented with 0.5% FOS in B. breve. In survival assay, FOS supplementation (0.5–4%) in a 2% lactose system showed the highest positive effect on the cell viability of B. longum on day-10. As for B. breve, FOS supplementation (1 and 2%) in the 2% sucrose system showed the highest positive effect on the cell viability, followed by FOS supplementation (0.5, 3, and 4%) in 2% sucrose and FOS supplementation (3 and 4%) in 2% lactose on day-10. This study demonstrated that the efficacy of FOS supplementation was depended on its concentration, sugar system and its concentration, and Bifidobacterium strain.
Collapse
Affiliation(s)
- Priyanka Parhi
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
16
|
Dai C, Wu H, Wang X, Zhao K, Lu Z. Network and meta-omics reveal the cooperation patterns and mechanisms in an efficient 1,4-dioxane-degrading microbial consortium. CHEMOSPHERE 2022; 301:134723. [PMID: 35489450 DOI: 10.1016/j.chemosphere.2022.134723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/09/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane is an emerging wastewater contaminant with probable human carcinogenicity. Our current understanding of microbial interactions during 1,4-dioxane biodegradation process in mixed cultures is limited. Here, we applied metagenomic, metatranscriptomic and co-occurrence network analyses to unraveling the microbial cooperation between degrader and non-degraders in an efficient 1,4-dioxane-degrading microbial consortium CH1. A 1,4-dioxane-degrading bacterium, Ancylobacter polymorphus ZM13, was isolated from CH1 and had a potential of being one of the important degraders due to its high relative abundance, highly expressed monooxygenase genes tmoABCDEF and high betweenness centrality of networks. The strain ZM13 cooperated obviously with 6 bacterial genera in the network, among which Xanthobacter and Mesorhizobium could be involved in the intermediates metabolism with responsible genes encoding alcohol dehydrogenase (adh), aldehyde dehydrogenase (aldh), glycolate oxidase (glcDEF), glyoxylate carboligase (gcl), malate synthase (glcB) and 2-isopropylmalate synthase (leuA) differentially high-expressed. Also, 1,4-dioxane facilitated the shift of biodiversity and function of CH1, and those cooperators cooperated with ZM13 in the way of providing amino acids or fatty acids, as well as relieving environmental stresses to promote biodegradation. These results provide new insights into our understandings of the microbial interactions during 1,4-dioxane degradation, and have important implications for predicting microbial cooperation and constructing efficient and stable synthetic 1,4-dioxane-degrading consortia for practical remediation.
Collapse
Affiliation(s)
- Chuhan Dai
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Pourjafar H, Ansari F, Sadeghi A, Samakkhah SA, Jafari SM. Functional and health-promoting properties of probiotics' exopolysaccharides; isolation, characterization, and applications in the food industry. Crit Rev Food Sci Nutr 2022; 63:8194-8225. [PMID: 35266799 DOI: 10.1080/10408398.2022.2047883] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exopolysaccharides (EPS) are extracellular sugar metabolites/polymers of some slim microorganisms and, a wide variety of probiotics have been broadly investigated for their ability to produce EPS. EPS originated from probiotics have potential applications in food, pharmaceutical, cosmetology, wastewater treatment, and textiles industries, nevertheless slight is recognized about their function. The present review purposes to comprehensively discuss the structure, classification, biosynthesis, extraction, purification, sources, health-promoting properties, techno-functional benefits, application in the food industry, safety, toxicology, analysis, and characterization methods of EPS originated from probiotic microorganisms. Various studies have shown that probiotic EPS used as stabilizers, emulsifiers, gelling agents, viscosifiers, and prebiotics can alter the nutritional, texture, and rheological characteristics of food and beverages and play a major role in improving the quality of these products. Numerous studies have also proven the beneficial health effects of probiotic EPS, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, anticancer, antidiabetic, antibiofilm, antiulcer, and antitoxin activities. Although the use of probiotic EPS has health effects and improves the organoleptic and textural properties of food and pharmaceutical products and there is a high tendency for their use in related industries, the production yield of these products is low and requires basic studies to support their products in large scale.
Collapse
Affiliation(s)
- Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
18
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
19
|
Ahmed S, Ashraf F, Tariq M, Zaidi A. Aggrandizement of fermented cucumber through the action of autochthonous probiotic cum starter strains of Lactiplantibacillus plantarum and Pediococcus pentosaceus. ANN MICROBIOL 2021; 71:33. [PMID: 34483789 PMCID: PMC8406656 DOI: 10.1186/s13213-021-01645-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Cucumber fermentation is traditionally done using lactic acid bacteria. The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and protects food from spoilage. Methods Autochthonous lactic acid bacteria were isolated from spontaneously fermented cucumber and identified to species level. Only strains adjudged as safe for human consumption were examined for their technological and functional characteristics. Strain efficiency was based on maintaining high numbers of viable cells during simulated GIT conditions and fermentation, significant antioxidant activity, EPS production, nitrite degradation, and antimicrobial ability against Gram-positive and Gram-negative foodborne pathogens. Result Two strains, Lactiplantibacillus plantarum NPL 1258 and Pediococcus pentosaceus NPL 1264, showing a suite of promising functional and technological attributes, were selected as a mixed-species starter for carrying out a controlled lactic acid fermentations of a native cucumber variety. This consortium showed a faster lactic acid-based acidification with more viable cells, at 4% NaCl and 0.2% inulin (w/v) relative to its constituent strains when tested individually. Sensory evaluation rated the lactofermented cucumber acceptable based on texture, taste, aroma, and aftertaste. Conclusion The results suggest that the autochthonous LAB starter cultures can shorten the fermentation cycle and reduce pathogenic organism’ population, thus improving the shelf life and quality of fermented cucumber. The development of these new industrial starters would increase the competitiveness of production and open the country’s frontiers in the fermented vegetable market.
Collapse
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Fatima Ashraf
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Faisalabad, 38000 Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650 Pakistan
| |
Collapse
|
20
|
Molinero N, Conti E, Sánchez B, Walker AW, Margolles A, Duncan SH, Delgado S. Ruminococcoides bili gen. nov., sp. nov., a bile-resistant bacterium from human bile with autolytic behavior. Int J Syst Evol Microbiol 2021; 71. [PMID: 34398726 DOI: 10.1099/ijsem.0.004960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, resistant starch-degrading, bile-tolerant, autolytic strain, IPLA60002T, belonging to the family Ruminococcaceae, was isolated from a human bile sample of a liver donor without hepatobiliary disease. Cells were Gram-stain-positive cocci, and 16S rRNA gene and whole genome analyses showed that Ruminococcus bromii was the phylogenetically closest related species to the novel strain IPLA60002T, though with average nucleotide identity values below 90 %. Biochemically, the new isolate has metabolic features similar to those described previously for gut R. bromii strains, including the ability to degrade a range of different starches. The new isolate, however, produces lactate and shows distinct resistance to the presence of bile salts. Additionally, the novel bile isolate displays an autolytic phenotype after growing in different media. Strain IPLA60002T is phylogenetically distinct from other species within the genus Ruminococcus. Therefore, we propose on the basis of phylogenetic, genomic and metabolic data that the novel IPLA60002T strain isolated from human bile be given the name Ruminococcoides bili gen. nov., sp. nov., within the new proposed genus Ruminococcoides and the family Ruminococcaceae. Strain IPLA60002T (=DSM 110008T=LMG 31505T) is proposed as the type strain of Ruminococcoides bili.
Collapse
Affiliation(s)
- Natalia Molinero
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa-Asturias, Spain
| | - Elena Conti
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa-Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo-Asturias, Spain
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa-Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo-Asturias, Spain
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA)-Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa-Asturias, Spain.,Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo-Asturias, Spain
| |
Collapse
|
21
|
Dec M, Stępień-Pyśniak D, Puchalski A, Hauschild T, Pietras-Ożga D, Ignaciuk S, Urban-Chmiel R. Biodiversity of Ligilactobacillus salivarius Strains from Poultry and Domestic Pigeons. Animals (Basel) 2021; 11:ani11040972. [PMID: 33807321 PMCID: PMC8065712 DOI: 10.3390/ani11040972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Ligilactobcillus salivarius is a Gram-positive bacterium that commonly colonizes the mucous membranes of the digestive tracts of humans and animals, including birds. It belongs to the group of lactic acid bacteria which, by producing lactic acid, acidify the intestinal environment and limit the development of undesirable intestinal microflora. In addition, L. salivarius can produce other antimicrobial substances, such as bacteriocins and hydrogen peroxide. Due to limiting the development of unfavourable microflora and other health-promoting effects, L. salivarius bacteria are considered as potential probiotics that may increase animal health, and thus animal production indicators. In this work, we undertook research on the characteristics of L. salivarius strains from chickens, geese, turkeys and domestic pigeons. We showed great variation in phenotypic and genotypic traits between strains and the evolutionary adaptation of L. salivarius strains to the colonization of a specific host. The results of the study contribute to knowledge of the characteristics of the species L. salivarius and may be useful in the selection of probiotic strains. Abstract Ligilactobacillus salivarius is an important member of the human and animal gut microbiota, and selected strains are promising probiotics, but knowledge of the characteristics of avian isolates is still limited. In this study, we examined selected phenotypic and genotypic traits of 33 L. salivarius strains from geese, chickens, turkeys and pigeons. The strains varied in terms of cell size, colony morphology, broth growth characteristics, biofilm formation, tolerance to bile, hydrophobicity and phenotypic and genotypic antibiotic resistance profiles. Large variation among strains was noted for the utilization of sorbitol, salicin, trehalose, rhamnose, inulin and N-acetyl-D-glucosamine. The presence of genes related to sugar metabolism, i.e., mipB, tktA, rhaB and LSL_1894, was not always correlated with the biochemical phenotypic profile. Correlations were recorded between the host and utilization of certain sugars as well as tolerance to bile. The repA-type megaplasmid and genes coding for Abp118 bacteriocin were detected in 94% and 51.5% of L. salivarius strains, respectively. Phylogeny based on groEL gene sequences was partly correlated with the origin of the strains and revealed an evolutionary distance between L. salivarius strains from humans and birds. The results of the study contribute to knowledge of the characteristics of the species L. salivarius. Intraspecies variations of L. salivarius strains may affect their ability to colonize specific niches and utilize nutrients and reveal potential strain-dependent effects on host health.
Collapse
Affiliation(s)
- Marta Dec
- Sub-Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (A.P.)
| | - Dagmara Stępień-Pyśniak
- Sub-Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (A.P.)
| | - Andrzej Puchalski
- Sub-Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (A.P.)
| | - Tomasz Hauschild
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-245 Białystok, Poland;
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | - Szymon Ignaciuk
- Sub-Department of Mathematics, Department of Applied Mathematics and Computer Science, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | - Renata Urban-Chmiel
- Sub-Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (A.P.)
- Correspondence: ; Tel.: +48-814-456-036
| |
Collapse
|
22
|
Fan Y, Su J, Zheng Z, Gao J, Ali A. Denitrification performance and mechanism of a novel isolated Acinetobacter sp. FYF8 in oligotrophic ecosystem. BIORESOURCE TECHNOLOGY 2021; 320:124280. [PMID: 33120060 DOI: 10.1016/j.biortech.2020.124280] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The main purpose of this study is to isolate and purify oligotrophic denitrifying bacteria, Acinetobacter sp. FYF8, so as to study the denitrification capacity and characteristics in response to oligotrophic ecosystem. The RSM showed that the best denitrification efficiency was 97.90% under 7.58 pH, 20.69 °C temperature, and 2.83 C/N ratio. Nitrogen balance experiments showed that the nitrogen gas conversion ratio was 39.88, 68.85, and 78.79% at 2.0, 2.5, and 3.0 C/N ratio, respectively. According to 3D-EEM, tyrosine, tryptophan and aromatic protein were the metabolites produced by strain FYF8. The concentration of polysaccharide (PS) and proteins (PN) in different types of extracellular polymeric substances (EPS) and the variation trend were quantitatively studied. Different functional groups such as CH2, C = O, and C-O-C was characterized by FTIR. These findings indicated that the denitrification strategy of strain FYF8 was related to EPS, which might be a reserve carbon storage in carbon scarcity.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
23
|
Liao N, Pang B, Jin H, Xu X, Yan L, Li H, Shao D, Shi J. Potential of lactic acid bacteria derived polysaccharides for the delivery and controlled release of oral probiotics. J Control Release 2020; 323:110-124. [DOI: 10.1016/j.jconrel.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
|
24
|
In vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms 2020; 8:microorganisms8030354. [PMID: 32131456 PMCID: PMC7143641 DOI: 10.3390/microorganisms8030354] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 01/04/2023] Open
Abstract
The present study was designed to isolate Bifidobacterium strains from raw camel milk and to investigate their probiotic characteristics. Among 35 isolates, 8 were identified as Gram-positive, catalase negative, non-spore forming, non-motile and V or Y shaped rods. B-2, B-5, B-11, B-19 and B-28 exhibited good survival at low pH and high bile salt concentration. Most of the isolates were resistant to nalidixic acid, fusidic acid, polymyxin B, neomycin, streptomycin, gentamicin, rifampicin and kanamycin. Furthermore, the production of exopolysaccharides (EPS), adhesion characteristics, antioxidant properties, antagonistic activities, nitrite reduction and cholesterol assimilation were also studied. Isolate B-11 was chosen because it exhibited most of the probiotic properties among all the tested isolates. It is identified as the member of Bifidobacterium longum group through 16S rRNA gene sequencing and named as B. longum B-11. B. longum B-11 was further selected for in vivo attachment to rat intestine and scanning electron micrographs revealed that attachment of a large number of rods shaped bacterial cell. Our findings suggest that B. longum B-11 processes excellent attributes to be used as potential probiotic in the development of functional probiotic food.
Collapse
|
25
|
Fukao M, Zendo T, Inoue T, Nakayama J, Suzuki S, Fukaya T, Yajima N, Sonomoto K. Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. J Biosci Bioeng 2019; 128:391-397. [DOI: 10.1016/j.jbiosc.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
|
26
|
Kiekens S, Vandenheuvel D, Broeckx G, Claes I, Allonsius C, De Boeck I, Thys S, Timmermans J, Kiekens F, Lebeer S. Impact of spray-drying on the pili of Lactobacillus rhamnosus GG. Microb Biotechnol 2019; 12:849-855. [PMID: 31225698 PMCID: PMC6680608 DOI: 10.1111/1751-7915.13426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/27/2019] [Accepted: 04/27/2019] [Indexed: 11/29/2022] Open
Abstract
The preservation of the viability of microorganisms in probiotic formulations is the most important parameter ensuring the adequate concentration of live microorganisms at the time of administration. The formulation and processing techniques used to produce these probiotic formulations can influence the preservation of the microbial viability. However, it is also required that the bacteria maintain their key probiotic capacities during processing, formulation and shelf life. In this study, we investigated the impact of spray-drying on different cell wall properties of the model probiotic strain Lactobacillus rhamnosus GG, including its adherence to intestinal epithelial cells. The dltD gene knock-out mutant, L. rhamnosus GG CMPG5540, displaying modified cell wall lipoteichoic acids, showed significantly increased colony-forming units after spray-drying and subsequent storage under standard conditions compared to wild-type L. rhamnosus GG. In contrast, disruption of the biosynthesis of exopolysaccharides or pili expression did not impact survival. However, spray-drying did significantly affect the adherence capacity of L. rhamnosus GG. Scanning electron microscopy confirmed that the pili, key surface factors for adherence to intestinal cells and mucus, were sheared off during the spray-drying process. These data thus highlight that both the functionality and viability of probiotics should be assessed during the spray-drying process and subsequent storage.
Collapse
Affiliation(s)
- Shari Kiekens
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
- Laboratory of Pharmaceutical Technology and BiopharmacyDepartment of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpUniversiteitsplein 1B‐2610WilrijkBelgium
| | - Dieter Vandenheuvel
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
| | - Géraldine Broeckx
- Laboratory of Pharmaceutical Technology and BiopharmacyDepartment of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpUniversiteitsplein 1B‐2610WilrijkBelgium
| | - Ingmar Claes
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
| | - Camille Allonsius
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
| | - Ilke De Boeck
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
| | - Sofie Thys
- Laboratory of Cell Biology and HistologyDepartment of Pharmaceutical, Biomedical and Veterinary SciencesAntwerp Centre for Advanced Microscopy (ACAM)University of AntwerpUniversiteitsplein 1B‐2610WilrijkBelgium
| | - Jean‐Pierre Timmermans
- Laboratory of Cell Biology and HistologyDepartment of Pharmaceutical, Biomedical and Veterinary SciencesAntwerp Centre for Advanced Microscopy (ACAM)University of AntwerpUniversiteitsplein 1B‐2610WilrijkBelgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and BiopharmacyDepartment of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpUniversiteitsplein 1B‐2610WilrijkBelgium
| | - Sarah Lebeer
- Department of Bioscience EngineeringResearch Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpGroenenborgerlaan 171B‐2020AntwerpBelgium
| |
Collapse
|
27
|
Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. J Biosci Bioeng 2019; 129:206-214. [PMID: 31471140 DOI: 10.1016/j.jbiosc.2019.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
A high slime-producing Lactobacillus fermentum strain (named as L. fermentum S1) was isolated from traditional fermented Fuyuan pickle, which was made of white turnip and collected from Fuyuan county, Yunnan province, China. We extracted and purified the exopolysaccharides from L. fermentum S1, and investigated their preliminary structure characteristics and biological activities. Three purified exopolysaccharide fractions, designated as EPS1, EPS2 and EPS3, were obtained from the culture supernatant of L. fermentum S1 by ethanol precipitation, anion exchange and gel filtration chromatography. The EPS2 and EPS3 were homogeneous with molecular weights of 4.45 × 106 and 2.82 × 106 Da, respectively. All the purified EPS fractions were composed of glucose, galactose, mannose and arabinose, but with different molar ratios. EPS1, EPS2 and EPS3 presented different surface morphologies and their degradation temperatures were 302.7°C, 316.3°C and 316.9°C, respectively. Bioactivity research showed that L. fermentum S1 EPS elicited free radical scavenging capacity and ferric reducing antioxidant power, and 1 mg/mL of EPS significantly improved the gastrointestinal transit tolerance of non EPS-producing strain L. fermentum LG1. Moreover, S1 EPS had a favorable anti-biofilm activity against Escherichia coli and Staphylococcus aureus. These results indicated that S1 EPS could be explored as a promising functional adjunct for application in foods.
Collapse
|
28
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
29
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
30
|
Heteropolysaccharide-producing bifidobacteria for the development of functional dairy products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1440-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Tian X, Shen Z, Han Z, Zhou Y. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: An overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Exopolysaccharides May Increase Gastrointestinal Stress Tolerance of Lactobacillus reuteri. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
This study investigated a possible relationship between exopolysaccharides (EPS) production and the resistance to bile salts and low pH in intestinal strains of Lactobacillus reuteri. The strains displayed a mucoid phenotype, when grown in the presence of 10 % sucrose. Scanning electron microscopy (SEM) revealed strands of exopolysaccharide linking neighbouring cells. The strains (except L. reuteri B1/1) produced EPS in the range from 15.80 to 650.70 mg.l−1. The strains were tested for tolerance to bile salts (0.15; 0.3 %) and low pH (1.5—2.0—2.5—3.0). The survival rate, after the treatment with artificial gastric and intestinal juices, was determined by flow cytometric analysis. The strains of L. reuteri that produced 121—650 mg.l−1 of EPS showed a significantly higher tolerance (P < 0.001) to the gastric juice at pH 3 and 2.5, throughout the entire exposure time, in comparison to the strains that produced less than 20 mg.l−1 of EPS. L. reuteri L26, with the highest production of EPS, exhibited the highest survival rate (60 %) at pH 2 after the 120 minutes of in-cubation and was able to tolerate pH 1.5 for 30 minutes. Higher production of EPS significantly (P < 0.001) increased the strains’ tolerance against the intestinal juice in the presence of 0.15 and 0.3 % bile salts and was time dependent. L. reuteri L26 showed the highest tolerance (P < 0.001) against 0.3 % bile salts. This investigation revealed a positive correlation between the EPS production and the resistance of intestinal L. reuteri to the stress conditions of the gastrointestinal tract (GIT).
Collapse
|
34
|
Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 2018; 112:250-262. [DOI: 10.1016/j.foodres.2018.06.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
35
|
Jayamanohar J, Devi PB, Kavitake D, Rajendran S, Priyadarisini VB, Shetty PH. Characterization of α-D-glucan produced by a probiont Enterococcus hirae KX577639 from feces of south Indian Irula tribals. Int J Biol Macromol 2018; 118:1667-1675. [DOI: 10.1016/j.ijbiomac.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
|
36
|
Nambiar RB, Sellamuthu PS, Perumal AB, Sadiku ER, Phiri G, Jayaramudu J. Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
38
|
Heinl S, Grabherr R. Systems biology of robustness and flexibility: Lactobacillus buchneri —A show case. J Biotechnol 2017; 257:61-69. [DOI: 10.1016/j.jbiotec.2017.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
|
39
|
Pérez-Ramos A, Mohedano ML, López P, Spano G, Fiocco D, Russo P, Capozzi V. In Situ β-Glucan Fortification of Cereal-Based Matrices by Pediococcus parvulus 2.6: Technological Aspects and Prebiotic Potential. Int J Mol Sci 2017; 18:E1588. [PMID: 28754020 PMCID: PMC5536075 DOI: 10.3390/ijms18071588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023] Open
Abstract
Bacterial exopolysaccharides produced by lactic acid bacteria are of increasing interest in the food industry, since they might enhance the technological and functional properties of some edible matrices. In this work, Pediococcus parvulus 2.6, which produces an O2-substituted (1,3)-β-d-glucan exopolysaccharide only synthesised by bacteria, was proposed as a starter culture for the production of three cereal-based fermented foods. The obtained fermented matrices were naturally bio-fortified in microbial β-glucans, and used to investigate the prebiotic potential of the bacterial exopolysaccharide by analysing the impact on the survival of a probiotic Lactobacillus plantarum strain under starvation and gastrointestinal simulated conditions. All of the assays were performed by using as control of the P. parvulus 2.6's performance, the isogenic β-glucan non-producing 2.6NR strain. Our results showed a differential capability of P. parvulus to ferment the cereal flours. During the fermentation step, the β-glucans produced were specifically quantified and their concentration correlated with an increased viscosity of the products. The survival of the model probiotic L. plantarum WCFS1 was improved by the presence of the bacterial β-glucans in oat and rice fermented foods under starvation conditions. The probiotic bacteria showed a significantly higher viability when submitted to a simulated intestinal stress in the oat matrix fermented by the 2.6 strain. Therefore, the cereal flours were a suitable substrate for in situ bio-fortification with the bacterial β-glucan, and these matrices could be used as carriers to enhance the beneficial properties of probiotic bacteria.
Collapse
Affiliation(s)
- Adrián Pérez-Ramos
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - María Luz Mohedano
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Paloma López
- Centro de Investigaciones Biológicas (CIB), CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy.
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
- Promis Biotech srl, Via Napoli 25, 71122 Foggia, Italy.
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
40
|
Deng YF, Wang YJ, Zou Y, Azarfar A, Wei XL, Ji SK, Zhang J, Wu ZH, Wang SX, Dong SZ, Xu Y, Shao DF, Xiao JX, Yang KL, Cao ZJ, Li SL. Influence of dairy by-product waste milk on the microbiomes of different gastrointestinal tract components in pre-weaned dairy calves. Sci Rep 2017; 7:42689. [PMID: 28281639 PMCID: PMC5345013 DOI: 10.1038/srep42689] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022] Open
Abstract
The community structure of colonised bacteria in the gastrointestinal tracts (GITs) of pre-weaned calves is affected by extrinsic factors, such as the genetics and diet of the calves; however, the dietary impact is not fully understood and warrants further research. Our study revealed that a total of 6, 5, 2 and 10 bacterial genera showed biologically significant differences in the GITs of pre-weaned calves fed four waste-milk diets: acidified waste milk, pasteurised waste milk, untreated bulk milk, and untreated waste milk, respectively. Specifically, generic biomarkers were observed in the rumen (e.g., Bifidobacterium, Parabacteroides, Fibrobacter, Clostridium, etc.), caecum (e.g., Faecalibacterium, Oxalobacter, Odoribacter, etc.) and colon (e.g., Megamonas, Comamonas, Stenotrophomonas, etc.) but not in the faeces. In addition, the predicted metabolic pathways showed that the expression of genes related to metabolic diseases was increased in the calves fed untreated waste milk, which indicated that untreated waste milk is not a suitable liquid diet for pre-weaned calves. This is the first study to demonstrate how different types of waste milk fed to pre-weaned calves affect the community structure of colonised bacteria, and the results may provide insights for the intentional adjustment of diets and gastrointestinal bacterial communities.
Collapse
Affiliation(s)
- Y F Deng
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y J Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y Zou
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - A Azarfar
- Department of Animal Science, Faculty of Agriculture, Lorestan University, PO Box 465, Khorramabad, Iran
| | - X L Wei
- Sichuan Animal Science Academy, Animal Breeding and Genetics key Laboratory of Sichuan Province, Chengdu 610066, P. R. China
| | - S K Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Z H Wu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S X Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S Z Dong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y Xu
- Beijing Computing Center, Beijing 100094, P. R. China
| | - D F Shao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J X Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - K L Yang
- College of Animal Science, Xinjiang Agricultural University, Wulumuqi 830052, P. R. China
| | - Z J Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S L Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
41
|
Yan S, Zhao G, Liu X, Zhao J, Zhang H, Chen W. Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes. RSC Adv 2017. [DOI: 10.1039/c7ra03925e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elder-originatedBifidobacterium longumstrains produced more cell-surface-bound exopolysaccharide (EPS-b) than infant-originated strains.
Collapse
Affiliation(s)
- Shuang Yan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Guozhong Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| |
Collapse
|
42
|
The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local TH17 Responses. Appl Environ Microbiol 2016; 82:7185-7196. [PMID: 27736791 DOI: 10.1128/aem.02238-16] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 12/27/2022] Open
Abstract
The immune-modulating properties of certain bifidobacterial strains, such as Bifidobacterium longum subsp. longum 35624 (B. longum 35624), have been well described, although the strain-specific molecular characteristics associated with such immune-regulatory activity are not well defined. It has previously been demonstrated that B. longum 35624 produces a cell surface exopolysaccharide (sEPS), and in this study, we investigated the role played by this exopolysaccharide in influencing the host immune response. B. longum 35624 induced relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic exopolysaccharide-negative mutant derivative (termed sEPSneg) induced vastly more cytokines, including interleukin-17 (IL-17), and this response was reversed when exopolysaccharide production was restored in sEPSneg by genetic complementation. Administration of B. longum 35624 to mice of the T cell transfer colitis model prevented disease symptoms, whereas sEPSneg did not protect against the development of colitis, with associated enhanced recruitment of IL-17+ lymphocytes to the gut. Moreover, intranasal administration of sEPSneg also resulted in enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that the particular exopolysaccharide produced by B. longum 35624 plays an essential role in dampening proinflammatory host responses to the strain and that loss of exopolysaccharide production results in the induction of local TH17 responses. IMPORTANCE Particular gut commensals, such as B. longum 35624, are known to contribute positively to the development of mucosal immune cells, resulting in protection from inflammatory diseases. However, the molecular basis and mechanisms for these commensal-host interactions are poorly described. In this report, an exopolysaccharide was shown to be decisive in influencing the immune response to the bacterium. We generated an isogenic mutant unable to produce exopolysaccharide and observed that this mutation caused a dramatic change in the response of human immune cells in vitro In addition, the use of mouse models confirmed that lack of exopolysaccharide production induces inflammatory responses to the bacterium. These results implicate the surface-associated exopolysaccharide of the B. longum 35624 cell envelope in the prevention of aberrant inflammatory responses.
Collapse
|
43
|
Alp Avci G. Selection of superior bifidobacteria in the presence of rotavirus. ACTA ACUST UNITED AC 2016; 49:e5562. [PMID: 27849251 PMCID: PMC5122309 DOI: 10.1590/1414-431x20165562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/13/2016] [Indexed: 01/28/2023]
Abstract
The main purpose of this study was to investigate bifidobacteria flora in fecal
samples from children with rotavirus infection and determine the significance of
their selected probiotic properties for improvement of health status. Enzyme-linked
immunosorbent assay was used to identify rotavirus antigen in fecal samples from 94
patients with gastroenteritis and from 30 without gastroenteritis. Bifidobacteria
were identified by selective media, gram reaction, colony morphology,
fructose-6-phosphate phosphoketolase enzyme activity and classical identification
tests. Exopolysaccharide (EPS) production was identified by phenol-sulphuric acid
method. The modified method was then used to identify the quantity of taurocholic and
glycocholic acid deconjugation and cholesterol elimination of the strains.
Thirty-five of the 94 fecal samples were found positive for rotavirus antigen
(37.23%). Bifidobacteria were identified in 59 of the samples. The EPS production
ranges were 29.56-102.21 mg/L. The cholesterol elimination rates ranged between
8.36-39.22%. Furthermore, a positive and strong correlation was determined between
EPS production and the presence of cholesterol (r=0.984,
P<0.001). The deconjugation rates for the sodium glycocholate group was higher
than the sodium taurocholate group. Rotavirus (+) bifidobacteria strains had higher
EPS production, deconjugation rate and cholesterol elimination compared to
bifidobacteria strains isolated from children in the rotavirus (-) sample and without
gastroenteritis. Significant differences were observed among groups in all parameters
(P<0.05). Given the increased number of rotavirus cases in Turkey and worldwide,
it is very important to add superior bifidobacteria in the diets of infected children
to improve the intestinal and vital functions.
Collapse
Affiliation(s)
- G Alp Avci
- Department of Molecular Biology and Genetics, Molecular Microbiology and Biotechnology, Faculty of Science and Arts, Hitit University, Corum, Turkey
| |
Collapse
|
44
|
Altmann F, Kosma P, O’Callaghan A, Leahy S, Bottacini F, Molloy E, Plattner S, Schiavi E, Gleinser M, Groeger D, Grant R, Rodriguez Perez N, Healy S, Svehla E, Windwarder M, Hofinger A, O’Connell Motherway M, Akdis CA, Xu J, Roper J, van Sinderen D, O’Mahony L. Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624™. PLoS One 2016; 11:e0162983. [PMID: 27656878 PMCID: PMC5033381 DOI: 10.1371/journal.pone.0162983] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/20/2016] [Indexed: 12/20/2022] Open
Abstract
The Bifibobacterium longum subsp. longum35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.
Collapse
Affiliation(s)
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Amy O’Callaghan
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Sinead Leahy
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Evelyn Molloy
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Elisa Schiavi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Alimentary Health Pharma Davos, Davos, Switzerland
| | - Marita Gleinser
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Ray Grant
- Alimentary Health Pharma Davos, Davos, Switzerland
| | - Noelia Rodriguez Perez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | | | - Elisabeth Svehla
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Andreas Hofinger
- University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Jun Xu
- Procter & Gamble, Cincinnati, United States of America
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Liam O’Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Amund O. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can J Microbiol 2016; 62:715-25. [DOI: 10.1139/cjm-2016-0186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.
Collapse
Affiliation(s)
- O.D. Amund
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
46
|
Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 2016; 192:159-171. [PMID: 27664734 DOI: 10.1016/j.micres.2016.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/12/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The invasion of pathogens causes a disruption of the gut homeostasis. Innate immune responses and those triggered by endogenous microbiota form the first line of defence in our body. Pathogens often successfully overcome the resistances offered, calling for therapeutic intervention. Conventional strategy involving antibiotics might eradicate pathogens, but often leave the gut uncolonised and susceptible to recurrences. Probiotic supplements are useful alternatives. Bifidobacterium is one of widely studied probiotic genus, effective in restoring gut homeostasis. Mechanisms of probiotic action of bifidobacteria are several, often with strain-specificity. Analysis of streamlined literature reports reveal that although most studies report the probiotic aspect of bifidobacteria, sporadic documented contradictory results exist, challenging its therapeutic application and prompting studies to unambiguously establish the strain-associated probiotic activity and negate adverse effects prior to its clinical administration. Multi-strain/combinatorial therapy possibly relies on a combination of underlying operating mechanisms, each contributing towards enhanced probiotic efficacy, understanding which could help in developing customised formulations against targeted pathogens. Bifidogenic activity is also mediated by surface-associated structural components such as exopolysaccharides, lipoteichoic acids along with metabolites and bifidocins. This highlights scope for developing advanced structural therapeutic strategy which might be pivotal in replacing intact cell probiotics therapy.
Collapse
|
47
|
Dianawati D, Mishra V, Shah NP. Viability, Acid and Bile Tolerance of Spray Dried Probiotic Bacteria and Some Commercial Probiotic Supplement Products Kept at Room Temperature. J Food Sci 2016; 81:M1472-9. [DOI: 10.1111/1750-3841.13313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Dianawati Dianawati
- Faculty of Food Science and Nutrition; Univ. Malaysia Sabah; Jalan UMS 88400 Kota Kinabalu Sabah Malaysia
- School of Biomedical and Health Sciences; Victoria Univ; Werribee campus, P.O. Box 14428 Melbourne Vic. 8001 Australia
| | - Vijay Mishra
- School of Biomedical and Health Sciences; Victoria Univ; Werribee campus, P.O. Box 14428 Melbourne Vic. 8001 Australia
| | - Nagendra P Shah
- School of Biological Science; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| |
Collapse
|
48
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
49
|
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal (GI) disorder usually originated from gut dysfunction, and the mechanisms underlying IBS are not clear. IBS can seriously disrupt patient's normal routine, even though it is not life-threatening. With the development of high-throughput sequencing technology, a large number of studies have showed that intestinal flora imbalance does play an important role in the pathogenesis of IBS, especially Bifidobacterium. Bifidobacterium can resist the colonization and invasion of intestinal pathogenic bacteria, and enhance the intestinal epithelial barrier function. Besides, its metabolites also can improve the defense function of the intestinal tract. In the gut of patients with IBS, the number of Bifidobacteria is usually significantly reduced, suggesting that increasing the number of intestinal Bifidobacteria may play a positive role in the treatment of IBS. This paper summarizes the relationship between Bifidobacterium and IBS, and discusses the effect of Bifidobacterium in the adjuvant treatment of IBS.
Collapse
|
50
|
Li X, Wang N, Yin B, Fang D, Zhao J, Zhang H, Wang G, Chen W. Lactobacillus plantarum X1 with α-glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Adv 2016. [DOI: 10.1039/c6ra10858j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lactobacillus plantarum X1 is of potential beneficial utility to counter diabetes via five potential pathways, which including dyslipidemia, oxidative stress, α-glucosidase, gut microbiota, and inflammatory.
Collapse
Affiliation(s)
- Xiangfei Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Na Wang
- School of Business
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Boxing Yin
- Kangyuan Dairy Co., Ltd
- Yangzhou University
- Yangzhou 225004
- P. R. China
| | - Dongsheng Fang
- Kangyuan Dairy Co., Ltd
- Yangzhou University
- Yangzhou 225004
- P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- P. R. China
| |
Collapse
|