1
|
Arabiyat S, Alzoubi A, Al-Daghistani H, Al-Hiari Y, Kasabri V, Alkhateeb R. Evaluation of Quinoline-Related Carboxylic Acid Derivatives as Prospective Differentially Antiproliferative, Antioxidative, and Anti-Inflammatory Agents. Chem Biol Drug Des 2024; 104:e14615. [PMID: 39358207 DOI: 10.1111/cbdd.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 10/04/2024]
Abstract
The higher prevalence of cancer and the unmet need for antioxidant/anti-inflammatory chemotherapeutic compounds with little side effect are of utmost importance. In addition, the increased likelihood of failure in clinical trials along with increasing development costs may have diminished the range of choices among newer drugs for clinical use. This has dictated the necessity to seek out novel medications by repurposing as it needs less time, effort, and resources to explore new uses of a current or unsuccessful medication. In this study, we examined the biological activity of 10 potential quinoline derivatives. Given the half-maximal inhibitory concentration (IC50 value) in lipopolysaccharide (LPS) induced inflammation of RAW264.7 mouse macrophages, all commercial FQs and selected quinolines (quinoline-4-carboxlic and quinoline-3-carboxylic acids) exerted impressively appreciable anti-inflammation affinities versus classical NSAID indomethacin without related cytotoxicities in inflamed macrophages. Conversely, all 14 tested compounds lacked antioxidative DPPH radical scavenging capacities as compared to ascorbic acid. Gemifloxacin, considerably unlike markets FQs, indomethacin and quinoline derivatives, exerted exceptional and differential antiproliferation propensities in colorectum SW480, HCT116, and CACO2, pancreatic PANC1, prostate PC3, mammary T47D, lung A375, and melanoma A549 adherent monolayers using the sulforhodamine B colorimetric method versus antineoplastic cisplatin. All quinoline derivatives and gemifloxacin alike, but not levofloxacin, ciprofloxacin, or indomethacin, displayed substantially selective viability reduction affinities in prolonged tumor incubations of cervical HELA and mammary MCF7 cells. Specifically kynurenic acid (hydrate), quinoline-2-carboxylic acid, quinoline-4-carboxylic acid, quinoline-3-carboxylic acid, and 1,2-dihydro-2-oxo-4-quinoline carboxylic acids possessed the most remarkable growth inhibition capacities against mammary MCF7 cell line, while quinoline-2-carboxylic acid was the only quinoline derivative with significant cytotoxicity on cervical HELA cancer cells. It is highly speculated that chelation with divalent metals via co-planarity with close proximity of the COOH and the N atom could have the potential molecular mechanism for optimally promising repurposed pharmacologies. Conclusively, this study revealed the considerably profound repurposed duality of cytotoxicity and anti-inflammation pharmacologies of quinoline derivatives. Activity-guided structural modifications of the present nuclear scaffolds can be inherently linked to the betterment and enhancement of their repurposed pharmacologies.
Collapse
Affiliation(s)
| | - Ahmad Alzoubi
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Hala Al-Daghistani
- Department of Medical Laboratory Sciences, Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | | | | | | |
Collapse
|
2
|
Candan B, Karakuyu NF, Gülle K, Sarman E, Ulusoy Karatopuk D. Beneficial Effects of Selenium on Kidney Injury via Nf-Kb and Aquaporin-1 Levels. Biol Trace Elem Res 2024; 202:3653-3661. [PMID: 37910264 DOI: 10.1007/s12011-023-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Systemic inflammation is a serious condition that can affect various tissues and organs, such as the kidneys, and can be life-threatening. Selenium (Se) is an antioxidant and anti-inflammatory trace element. In this study, we aimed to examine the effects of Se, which has antioxidant and anti-inflammatory properties, on lipopolysaccharide (LPS)-induced kidney damage to maintain aquaporin-1 (AQP-1) levels. Four experimental rat groups (n = 8) consisting of the control, LPS alone, LPS + Se, and Se alone were so applied for 7 consecutive days. Upon sacrifice, histopathological results, diagnostic markers of kidney functions, oxidative stress, and inflammation were analyzed. Our results showed that LPS induced mononuclear cell infiltration, cellular residue, and protein deposition in the kidney proximal tubules, and also decreased total antioxidant status levels and increased total antioxidant status and oxidative stress index values. LPS increased the level of creatinine, increased the level of Nuclear Factor kappa B, which has an important role in the inflammation process, and decreased the levels of AQP-1 due to the damage it caused. Se has shown its effect by reversing all these situations. This data suggests that Se can be used as an additive to mitigate LPS-induced toxicity in the kidney.
Collapse
Affiliation(s)
- B Candan
- Department of Anatomy, School of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - N F Karakuyu
- Department of Pharmacology, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey.
| | - K Gülle
- Department of Histology and Embryology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - E Sarman
- Department of Histology and Embryology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - D Ulusoy Karatopuk
- Department of Histology and Embryology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
3
|
Majid M, Wani AH, Ganai BA. Evaluating the Biocontrol Efficacy and Antioxidant Potential of Phellinus caribaeo-quercicola-A First Report Dual-Action Endophyte From Inula racemosa Hook. F. J Basic Microbiol 2024; 64:e2400080. [PMID: 39031570 DOI: 10.1002/jobm.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/22/2024]
Abstract
Phellinus caribaeo-quercicola is a basidiomycetous fungus, isolated as an endophyte in this study from the healthy and symptomless leaves of Inula racemosa Hook. f., an important medicinal herb growing in Kashmir Himalaya. This study combines morphological, molecular and phylogenetic techniques to identify the fungal endophyte, using the ITS sequence of nrDNA. A detached leaf assay was conducted to assess the pathogenicity of the fungal endophyte suggesting its mutually symbiotic relationship with the host. The authors also investigated the antifungal potential of the isolated endophytic strain to ascertain its use as a biocontrol agent. The study shows that P. caribaeo-quercicola INL3-2 strain exhibits biocontrol activity against four key fungal phytopathogens that cause significant agronomic and economic losses: Aspergillus flavus, Aspergillus niger, Fusarium solani, and Fusarium oxysporum. Notably, P. caribaeo-quercicola INL3-2 strain is highly effective against A. flavus, with an inhibition percentage of 57.63%. In addition, this study investigates the antioxidant activity of P. caribaeo-quercicola INL3-2 strain crude extracts using ethyl acetate and methanol as solvents. The results showed that the methanolic fraction of P. caribaeo-quercicola exhibits potential as an antioxidant agent, with an IC50 value of 171.90 ± 1.15 µg/mL. This investigation is first of its kind and marks the initial report of this fungal basidiomycete, P. caribaeo-quercicola, as an endophyte associated with a medicinal plant. The findings of this study highlight the potential of P. caribaeo-quercicola INL3-2 strain as a dual-action agent with both biocontrol and antioxidant properties consistent with the medicinal properties of Inula racemosa. This endophytic fungus could be a promising source of natural compounds for use in agriculture, medicine, and beyond.
Collapse
Affiliation(s)
- Misbah Majid
- Section of Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Abdul H Wani
- Section of Plant Pathology, Mycology and Microbiology Research Laboratory, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bashir A Ganai
- Center of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Vijayaram S, Razafindralambo H, Sun YZ, Piccione G, Multisanti CR, Faggio C. Synergistic interaction of nanoparticles and probiotic delivery: A review. JOURNAL OF FISH DISEASES 2024; 47:e13916. [PMID: 38226408 DOI: 10.1111/jfd.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Hary Razafindralambo
- ProBioLab, Campus Universitaire de la Faculté de Gembloux Agro-Bio Tech/Université de Liège, Gembloux, Belgium
| | - Yun Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
5
|
Nodola P, Miya GM, Mazwi V, Oriola AO, Oyedeji OO, Hosu YS, Kuria SK, Oyedeji AO. Citrus limon Wastes from Part of the Eastern Cape Province in South Africa: Medicinal, Sustainable Agricultural, and Bio-Resource Potential. Molecules 2024; 29:1675. [PMID: 38611954 PMCID: PMC11013870 DOI: 10.3390/molecules29071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
The fruits of Citrus limon are often purchased for their vitamin C-rich juice, while the fruit peel and the tree leaves are discarded as wastes. This study obtained the chemical profiles of the essential oils (EOs) of C. limon wastes (the peel and leaves), evaluated their medicinal value as antioxidants, their potential for sustainable use in agriculture as an insecticide for post-harvest preservation of grains, and their potential as a bioresource in livestock feed formulations. The EOs were isolated from C. limon leaves and peel using a hydro-distillation method on a Clevenger apparatus. The oil constituents were identified using the gas chromatography-mass spectrometry (GC-MS) hyphenated technique. The oils were evaluated for their in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power methods. An insecticidal study was conducted using contact toxicity, fumigation, and repellence bioassay methods against Sitophilus zeamais (maize weevils). Finally, the predicted income from using lemon peel as an alternative or substitute ingredient for maize in livestock feed formulations was obtained through a conventional simulation method. Chemically, limonene was found to be present in all the EOs analyzed (12-52%), while α-pinene was only found in the fresh leaf and peel oils (13.3% and 10.6%). Caryophyllene oxide was identified as the major component of the dried leaf oil (17.7%). At 20 µg m, the dry peel oil exhibited the highest inhibitory activity (52.41 ± 0.26%) against the DPPH radical, which was comparable to L-ascorbic acid (a standard antioxidant) at 54.25 ± 3.55%. The insecticidal study revealed that the dry peel oil is a better insect repellent (73.33 ± 6.95% at 10 µL) and fumigant (LC50 = 0.17 µL g-1 after 48 h) natural agent compared to the peel oil. Conversely, the dry peel oil showed a better contact activity (LC50 = 1.69 µL g-1) against the maize weevils compared to the dry leaf oil. The simulation study showed the cost of using dry lemon peel as an alternative to maize in livestock feed formulation to be ZAR 2.8 billion, compared against the higher cost of feed formulation with maize, which currently stands at ZAR 24.9 billion. This study has shown that C. limon wastes (the peel and leaves) contain EOs with unique chemical profiles, valuable medicinal properties as free radical scavengers, and considerable insecticidal properties for agricultural use in post-harvest grain preservation, presenting a cost-effective and promising bioresource for livestock feed production.
Collapse
Affiliation(s)
- Phumelele Nodola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa; (P.N.); (G.M.M.); (V.M.); (A.O.O.)
| | - Gugulethu M. Miya
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa; (P.N.); (G.M.M.); (V.M.); (A.O.O.)
| | - Vuyokazi Mazwi
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa; (P.N.); (G.M.M.); (V.M.); (A.O.O.)
| | - Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa; (P.N.); (G.M.M.); (V.M.); (A.O.O.)
| | | | - Yiseyon S. Hosu
- Department of Business Management and Economics, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Simon K. Kuria
- Department of Biological and Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Adebola O. Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5117, South Africa; (P.N.); (G.M.M.); (V.M.); (A.O.O.)
| |
Collapse
|
6
|
Kousar M, Kim YR, Kim JY, Park J. Enhancement of Growth and Secondary Metabolites by the Combined Treatment of Trace Elements and Hydrogen Water in Wheat Sprouts. Int J Mol Sci 2023; 24:16742. [PMID: 38069065 PMCID: PMC10706805 DOI: 10.3390/ijms242316742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.
Collapse
Affiliation(s)
- Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yu Rim Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Center for Functional Biomaterials, Seoul National University of Science and Technology, 232-Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
7
|
Sarkar J, Mridha D, Davoodbasha MA, Banerjee J, Chanda S, Ray K, Roychowdhury T, Acharya K, Sarkar J. A State-of-the-Art Systemic Review on Selenium Nanoparticles: Mechanisms and Factors Influencing Biogenesis and Its Potential Applications. Biol Trace Elem Res 2023; 201:5000-5036. [PMID: 36633786 DOI: 10.1007/s12011-022-03549-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Selenium is a trace element required for the active function of numerous enzymes and various physiological processes. In recent years, selenium nanoparticles draw the attention of scientists and researchers because of its multifaceted uses. The process involved in chemically synthesized SeNPs has been found to be hazardous in nature, which has paved the way for safe and ecofriendly SeNPs to be developed in order to achieve sustainability. In comparison to chemical synthesis, SeNPs can be synthesized more safely and with greater flexibility utilizing bacteria, fungi, and plants. This review focused on the synthesis of SeNPs utilizing bacteria, fungi, and plants; the mechanisms involved in SeNP synthesis; and the effect of various abiotic factors on SeNP synthesis and morphological characteristics. This article discusses the synergies of SeNP synthesis via biological routes, which can help future researchers to synthesize SeNPs with more precision and employ them in desired fields.
Collapse
Affiliation(s)
- Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Mubarak Ali Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, PIN-600048, India
| | - Jishnu Banerjee
- Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal, PIN-700118, India
| | - Sumeddha Chanda
- Department of Botany, Scottish Church College, Kolkata, PIN-700006, India
| | - Kasturi Ray
- Department of Botany, North Campus, University of Delhi, University Road, Delhi, PIN-110007, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, PIN-700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, Kolkata, PIN-700019, India.
| | - Joy Sarkar
- Department of Botany, Dinabandhu Andrews College, Kolkata, PIN-700084, India.
| |
Collapse
|
8
|
Norouzi S, Daneshyar M, Farhoomand P, Tukmechi A, Tellez-Isaiasc G. In vitro evaluation of probiotic properties and selenium bioaccumulation of lactic acid bacteria isolated from poultry gastrointestinal, as an organic selenium source. Res Vet Sci 2023; 162:104934. [PMID: 37421824 DOI: 10.1016/j.rvsc.2023.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The purpose of this study was to examine the probiotic characteristics and selenium (Se) bioaccumulation potential of five Lactobacillus strains in vitro. Lactobacillus acidophilus, L. delbrueckii subsp. lactis, L. reuteri, L. gallinarum, and L. animalis were among the strains employed. As significant aspects of probiotics, identification, and evaluation of their survival potential in the gastrointestinal system were undertaken. Although all experimental Lactobacillus strains bioaccumulated Se (IV) concentrations in media culture, three Lactobacillus strains (L. animalis, L. gallinarum, and L. acidophilus) bioaccumulated the highest Se concentrations (23.08, 8.62, and 8.51 mg/g, respectively) after culture in the presence of 1.5 mg/ml sodium selenite. By disc diffusion, all isolates were evaluated for antibiotic susceptibility against six antibiotics, including ciprofloxacin, ampicillin, methicillin, streptomycin, tetracycline, and trimethoprim-sulfamethoxazole. Many of the isolates tested positive for resistance to some of the antibiotics utilized. The L. reuteri and L. gallinarum were found to be resistant to about 50% of the antibiotics that were tested. In terms of acid tolerance, L. animalis showed significant resistance at acidic pH by 1.72 log unit reduction whereas L. delbrueckii and L. galliinarum showed significant sensitivity at acidic pH (P > 0.05). Bile tolerance was addressed as an important aspect of the safety assessment for probiotics. There were variances in acid and bile tolerance among species, although all of them tolerated stress conditions to an acceptable degree. Upon comparing the various species, it was observed that L. gallinarum exhibited a significant decline in growth, as evidenced by a decrease of 1.39 log units in cell viability. On the other hand, L. acidophilus and L. animalis demonstrated remarkable bile tolerance, with 0.09 and 0.23 log unit reduction respectively (P < 0.05). These results suggest that L. animalis, L. gallinarum, and L. acidophilus, can be good candidates to evaluate them in vivo in further investigations due to their tolerance to acid, and bile, antibiotic resistance, and strong ability to bioaccumulate Se in chickens.
Collapse
Affiliation(s)
- Shokoufeh Norouzi
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran.
| | - Parviz Farhoomand
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Amir Tukmechi
- Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | | |
Collapse
|
9
|
Khade HD, Saxena S, Hajare SN, Gautam S. Gamma radiation processing for extending shelf-life and ensuring quality of minimally processed ready-to-eat onions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2265-2274. [PMID: 37273564 PMCID: PMC10232703 DOI: 10.1007/s13197-023-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 06/06/2023]
Abstract
Onions are always in high demand owing to various culinary as well as health protective properties and these days there is increased consumer preference for ready-to-eat or ready-to-cook onions. In this context, the current study was aimed to extend the keeping quality of minimally processed onions for an extended period while ensuring microbial safety as well as sprouting inhibition through an integrated approach. The optimized combinatorial approach included gamma radiation treatment (Dmin60 Gy), minimal processing (de-skinning and scooping) and packaging in trays wrapped with polypropylene (PP; 10 µm thick) film followed by storage at low temperature (4-6 °C, relative humidity RH 65-70%). The parameters like shelf life, physico-chemical (colorimetry, moisture), organoleptic and nutritional properties were comprehensively assessed and found to be well retained up to 30 days with moisture loss of ≤ 5% and overall acceptability rating of 7 on 9-point hedonic scale. Microbiological analyses confirmed absence of Salmonella spp in these stored onions thus ensuring microbial safety. Nutritional profiling including carbohydrate, protein, fat, energy, and ash content revealed no significant change due to the processing as well as during storage. Thus, the radiation processing of freshly harvested bulbs followed by minimal processing, packing in formulated package and storage under low temperature conditions were found acceptable up to 30 days in the ready-to-eat form. Current findings provide credible evidences ascertaining extended shelf-life as well ensuring microbial safety of processed onions for commercial utilization by the food industries.
Collapse
Affiliation(s)
- H. D. Khade
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Sudhanshu Saxena
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Sachin N. Hajare
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094 India
| |
Collapse
|
10
|
Shamsheer R, Sunoqrot S, Kasabri V, Shalabi D, Alkhateeb R, Alhiari Y, Ababneh R, Ikhmais B, Abumansour H. Preparation and Characterization of Capsaicin Encapsulated Polymeric Micelles and Studies of Synergism with Nicotinic Acids as Potential Anticancer Nanomedicines. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:107-125. [PMID: 37705853 PMCID: PMC10496848 DOI: 10.4103/jpbs.jpbs_311_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/04/2023] [Accepted: 02/20/2023] [Indexed: 09/15/2023] Open
Abstract
Background/Objective/Methods Capsaicin micelles were prepared by the direct dissolution using the amphiphilic copolymer Pluronic P123 and advanced for substantially novel submicro-nanocytotoxicity. Results Superior cytotoxicity of capsaicin loaded nanomicelles vs. both the raw capsaicin and reference cisplatin in pancreatic PANC1, breast MCF7, colorectal resistant CACO2, skin A375, lung A549 and prostate PC3 cancer cell lines were delineated. Nicotinic acid (NA) derivative 39 (2-Amino IsoNA) had antiinflammatory potential but consistently lacked antiproliferation in MCF7, PANC1 and CACO2. Besides NA derivatives 8 (5-MethylNA) and 44 (6-AminoNA) exhibited lack of antiinflammation but had comparable antitumorigenesis potency to cisplatin in PANC1 cells. Though capsaicin loaded nanomicelles exerted pronounced antiinflammation (with IC50 value of 510 nM vs. Indomethacin's) in lipopolysacchride-induced inflammation of RAW247.6 macrophages; they lacked DPPH scavenging propensities. Free capsaicin proved more efficacious vs. its loaded nanocarriers to chemosensitize cytotoxicity of combinations with NAs 1(6-Hexyloxy Nicotinic Acid), 5(6-OctyloxyNA), 8(5-MethylNA), 12(6-Thien-2yl-NA), 13(5,6-DichloroNA) and 44(6-AminoNA) in CACO2, PANC1 and prostate PC3. Conclusion Capsaicin loaded nanomicelles proved more efficacious vs. free capsaicin to chemo-sensitize antiproliferation of cotreatments with NA derivatives, 1, 5, 8, 12, 13 and 44 (in skin A375), 1, 5, 8 and 12 (in breast MCF7), and 1, 5, 12 and 44 (in lung A549).
Collapse
Affiliation(s)
- Rawan Shamsheer
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, School of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Violet Kasabri
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Dana Shalabi
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Rema Alkhateeb
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Yusuf Alhiari
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan, Amman, Jordan
- Department of Pharmacy, School of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Riad Ababneh
- Physics Department, Yarmouk University, Irbid, Jordan
| | - Balqis Ikhmais
- Department of Pharmacy, School of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| | - Hamza Abumansour
- Department of Pharmacy, School of Pharmacy, AL-Zaytoonah University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Iftikhar K, Siddique F, Ameer K, Arshad M, Kharal S, Mohamed Ahmed IA, Yasmin Z, Aziz N. Phytochemical profiling, antimicrobial, and antioxidant activities of hydroethanolic extracts of prickly pear ( Opuntia ficus indica) fruit and pulp. Food Sci Nutr 2023; 11:1916-1930. [PMID: 37051353 PMCID: PMC10084978 DOI: 10.1002/fsn3.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023] Open
Abstract
Phenolic compounds in prickly pear [Opuntia ficus indica (L.) Mill.] are known to contribute to the antioxidant and antimicrobial activities of the prickly pear. The present study aimed to evaluate the antioxidants and in vitro antimicrobial potential in the hydroethanolic extracts of different parts (fruit, cladode, and pulp) of prickly pear. Different polyphenolic compounds were analyzed by using high-performance liquid chromatography. The results indicated that cladode possessed a higher quantity of phenolics compared with that observed in fruit and pulp. The most important phenolic compound in high quantity was gallic acid (66.19 μg/g) in cladode. The 100% aqueous extract of cladode exhibited the highest antioxidant (92%) and antimicrobial activities against Salmonella typhi (3.40 mg/ml), Helicobacter pylori (1.37 mg/ml), Escherichia coli (1.41 mg/ml), and Staphylococcus aureus (1.41 mg/ml). Principal component analysis (PCA) indicated that antioxidant activity and minimum inhibitory concentration (MIC) responses had a significant negative correlation with each other. Overall, the current results provided basic data for choosing prickly pear cladode with high antioxidant capacity for the development and consumption of antioxidant-based alternative medicines and value addition of formulated foods.
Collapse
Affiliation(s)
- Khansa Iftikhar
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Muhammad Arshad
- Department of ZoologyUniversity of SargodhaSargodhaPunjabPakistan
| | - Sadia Kharal
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
- Department of Food Science and NutritionCollege of Food and Agricultural Sciences, King Saud UniversityRiyadhSaudi Arabia
| | - Zarina Yasmin
- Post Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Nida Aziz
- Department of ZoologyUniversity of PunjabLahorePakistan
| |
Collapse
|
12
|
Hu X, Li C, Li Y, Jin Y, Wei L, Wang X, Xu Y, Hu Z. A Novel Glucose-6-Phosphate Isomerase Exists in Chicken Breast Meat: A Selenium-Containing Enzyme that Should Be Re-recognized Through New Eyes. Protein J 2023:10.1007/s10930-023-10105-9. [PMID: 36964419 DOI: 10.1007/s10930-023-10105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
Glucose-6-phosphate isomerase (GPI) is a highly conserved glycolytic enzyme in nature, and less information was available for GPI from hens. In this study a newly discovered selenocysteine (Sec)-containing GPI in common chicken breast meat was first isolated, purified and identified. Data about LC-MS/MS, FTIR and Se species analyses show that the molecular weight of the enzyme is 62,091 Da and only one Sec is inserted at the 403rd position in the highly conserved primary domain SIS_PGI with sugar conversion function. The enzyme shows excellent activity against hydroxyl radicals as vitamin C (Vc) in vitro. It is deduced that the Sec-containing GPI in the chicken meat may depend on Sec in its molecular structure to resist reactive oxygen species (ROS) stress produced by the accompanying biochemical reactions in cells, to protect its stability and maintain its efficient function that catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate in the critical glycolytic pathway.
Collapse
Affiliation(s)
- Xin Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Chenxi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yuancheng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Lulu Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Xinlei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Yanlong Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China
| | - Zhongqiu Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Yang X, Zhang C, Li Q, Cheng JH. Physicochemical Properties of Plasma-Activated Water and Its Control Effects on the Quality of Strawberries. Molecules 2023; 28:molecules28062677. [PMID: 36985649 PMCID: PMC10052570 DOI: 10.3390/molecules28062677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, the effects of plasma-activated water (PAW), generated by dielectric barrier discharge cold plasma at the gas–liquid interface, on the quality of fresh strawberries during storage were investigated. The results showed that, with the prolongation of plasma treatment time, the pH of PAW declined dramatically and the electrical conductivity increased significantly. The active components, including NO2−, NO3−, H2O2, and O2−, accumulated gradually in PAW, whereas the concentration of O2− decreased gradually with the treatment time after 2 min. No significant changes were found in pH, firmness, color, total soluble solids, malondialdehyde, vitamin C, or antioxidant activity in the PAW-treated strawberries (p > 0.05). Furthermore, the PAW treatment delayed the quality deterioration of strawberries and extended their shelf life. Principal component analysis and hierarchical cluster analysis showed that the PAW 2 treatment group demonstrated the best prolonged freshness effect, with the highest firmness, total soluble solids, vitamin C, and DPPH radical scavenging activity, and the lowest malondialdehyde and ∆E* values, after 4 days of storage. It was concluded that PAW showed great potential for maintaining the quality of fresh fruits and extending their shelf life.
Collapse
Affiliation(s)
- Xiao Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Can Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qunfang Li
- Shanwei Cathay Group, Shanwei 516601, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Shanwei Cathay Group, Shanwei 516601, China
- Correspondence:
| |
Collapse
|
14
|
Chatzilia T, Kaderides K, Goula AM. Drying of peaches by a combination of convective and microwave methods. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Theodora Chatzilia
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment Aristotle University Thessaloniki Greece
| | - Kyriakos Kaderides
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment Aristotle University Thessaloniki Greece
| | - Athanasia M. Goula
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment Aristotle University Thessaloniki Greece
| |
Collapse
|
15
|
Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
16
|
Ahghari MR, Amiri-Khamakani Z, Maleki A. Synthesis and characterization of Se doped Fe 3O 4 nanoparticles for catalytic and biological properties. Sci Rep 2023; 13:1007. [PMID: 36653396 PMCID: PMC9849448 DOI: 10.1038/s41598-023-28284-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, Se-doped Fe3O4 with antibacterial properties was synthesized using by a coprecipitation method. The chemistry and morphology of the Se doped Fe3O4 nanocomposite were characterized by energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and Brunauer-Emmett-Teller spectroscopy. The antibacterial activity of the Fe3O4/Se nanocomposite was examined against G+ (Gram-positive) and G- (Gram-negative) bacteria, in the order Staphylococcus aureus, Staphylococcus saprophyticus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli, which are the most harmful and dangerous bacteria. Fe3O4/Se, as a heterogeneous catalyst, was successfully applied to the synthesis of pyrazolopyridine and its derivatives via a one-pot four-component reaction of ethyl acetoacetate, hydrazine hydrate, ammonium acetate, and various aromatic aldehydes. Fe3O4/Se was easily separated from the bacteria-containing solution using a magnet. Its admissible magnetic properties, crystalline structure, antibacterial activity, mild reaction conditions, and green synthesis are specific features that have led to the recommendation of the use of Fe3O4/Se in the water treatment field and medical applications. Direct Se doping of Fe3O4 was successfully realized without additional complicated procedures.
Collapse
Affiliation(s)
- Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
17
|
Makena W, Hambolu JO, Umana UE, Iliya AI, Timbuak JA, Bazabang SA. Antidiabetic and in vitro antioxidant potential of Mormodica charantia L. fruit in Experimentally Induced Wistar Rat Model of Type 2 Diabetes. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: The liver is a vital organ responsible for regulating the normal glucose homeostasis in the body system, and hepatic glucose metabolic dysregulation is one of the most critical elements in the pathogenesis of DM. METHOD: Twenty-five healthy rats aged seven weeks were divided into the following main groups; non-diabetic, diabetic untreated, diabetic treated with 250 mg/kg and 500 mg/kg of MC fruit, and diabetic treated with Metformin (500 mg/kg). Different models of in vitro antioxidant assays of MC fruit were also determined. RESULTS: The results showed that MC fruit has high antioxidant potential against DPPH, hydrogen peroxide, hydroxyl radicals, good reducing ferric power, significant Inhibition of lipid peroxidation and total antioxidant activities. The FBG levels decreased significantly in MC fruit treatment groups compared to diabetes control (DC) rats. The histology of the hepatic tissue of the diabetic untreated rats revealed a marked depletion in glycogen granules and hepatic DNA. These negative features were ameliorated in the MC fruit treated rats, as consistent glycogen granule storage and improved hepatic DNA presence were observed in the MC fruit treated rats. CONCLUSION: MC fruit reduces blood glucose levels in a diabetic rat model, and it also preserves the hepatic DNA and glycogen granules. MC fruit has a significant in vitro antioxidant activity.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | | | - Uduak Emmanuel Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State, Nigeria
| | | |
Collapse
|
18
|
Hernández-Grijalva MI, Serrano-Sandoval SN, Gutiérrez-Uribe JA, Serna-Saldivar SO, Milán-Carrillo J, Antunes-Ricardo M, Villela-Castrejón J, Guardado-Félix D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Bifidobacterium animalis Promotes the Growth of Weaning Piglets by Improving Intestinal Development, Enhancing Antioxidant Capacity, and Modulating Gut Microbiota. Appl Environ Microbiol 2022; 88:e0129622. [DOI: 10.1128/aem.01296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the modern swine industry, weaning is a critical period in the pig’s life cycle. Sudden dietary, social, and environmental changes can easily lead to gut microbiota dysbiosis, diarrhea, and a decrease in growth performance.
Collapse
|
20
|
Wang Z, Shi L, Li H, Song W, Li J, Yuan L. Selenium-Enriched Black Soybean Protein Prevents Benzo( a)pyrene-Induced Pyroptotic Colon Damage and Gut Dysbacteriosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12629-12640. [PMID: 36129345 DOI: 10.1021/acs.jafc.2c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Selenium-enriched black soybean protein (SeBSP) is a kind of high-quality selenium resource with many physiological functions. Benzo(a)pyrene (BaP) is a well-known injurant that widely exists in high-temperature processed food and has been previously found to cause colon injury. In this study, the effects of SeBSP on colonic damage induced by BaP in BALB/C mice were investigated by comparing it with normal black soybean protein (BSP). SeBSP inhibited the BaP-induced reductions on body weight, food intake, and water intake. Moreover, metabolic enzymes, including AhR, CYP1A1, CYP1B1, and GST-P1, that were promoted by BaP were downregulated by SeBSP, reducing oxidative damage caused by BaP in the metabolic process. The classical pyroptosis indexes (i.e., NLRP3, ASC, Caspase-1, GSDMD) and inflammatory factors (i.e., TNF-α, IL-1β, IL-18, iNOS, COX-2) were downregulated by SeBSP in BaP-treated mice, suggesting the benefits of SeBSP in reducing colonic toxicity. Notably, SeBSP enhanced microbial diversity of gut microbiota and increased relative abundances of prebiotic bacteria, for example, Lactobacillus reuteri, Bacteroides thetaiotaomicron, and genera Bifidobacterium, and Blautia, along with the promotion of short-chain fatty acids. Integrative analysis showed strong links between the antioxidant and anti-inflammatory effects of SeBSP and its altered gut microbiota. Collectively, our study demonstrates the pronounced benefits of Se-enriched black soybean in preventing the colonic toxicity of BaP, and such effects could be mediated by gut microbiota.
Collapse
Affiliation(s)
- Zhulin Wang
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Lin Shi
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Hao Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Song
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jianke Li
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Li Yuan
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
21
|
Phenolic profile, safety, antioxidant and anti-inflammatory activities of wasted Bunium ferulaceum Sm. aerial parts. Food Res Int 2022; 160:111714. [DOI: 10.1016/j.foodres.2022.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
|
22
|
Ajibare AC, Ebuehi OAT, Adisa RA, Sofidiya MO, Olugbuyiro JA, Akinyede KA, Iyiola HA, Adegoke YA, Omoruyi SI, Ekpo OE. Fractions of Hoslundia opposita Vahl and hoslundin induced apoptosis in human cancer cells via mitochondrial-dependent reactive oxygen species (ROS) generation. Biomed Pharmacother 2022; 153:113475. [DOI: 10.1016/j.biopha.2022.113475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022] Open
|
23
|
Saju AK, Blossom K, Thomas A, Safeena M. “Evaluation of Shelf Life Extension of Vacuum Packed Sardine Marinade Formulated with Leaves of Tamarind ( Tamarindus indica) and Malabar Tamarind ( Garcinia gummigutta).”. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Anjana K. Saju
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - K.L Blossom
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - Ancy Thomas
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| | - M.P. Safeena
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, India
| |
Collapse
|
24
|
Polyphenolic Contents, Free Radical Scavenging and Cholinesterase Inhibitory Activities of Dalbergiella welwitschii Leaf Extracts. PLANTS 2022; 11:plants11152066. [PMID: 35956544 PMCID: PMC9370258 DOI: 10.3390/plants11152066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
A decoction of Dalbergiella welwitschii leaves has been used ethnomedicinally for the treatment of mental illness and inflammatory diseases amongst other diseases. In this study, the leaf methanol extract of D. welwitschii and its partition fractions: n-hexane, ethyl acetate and aqueous, were tested and evaluated for their polyphenolic contents, free radical scavenging and cholinesterase inhibitory activities. The total phenolic (TPC), flavonoid (TFC) and proanthocyanidin (TPA) contents were determined using standard colorimetric methods. The anti-radical activity of the extracts against the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion and nitric oxide (NO) radicals as well as their effects on lipid peroxidation were monitored spectrophotometrically. The cholinesterase enzyme (AChE and BuChE) inhibitions by the extracts were determined by a modified method of Ellman. The result showed a concentration-dependent increase in inhibition of the free radicals and the cholinesterase enzymes, except for that of lipid peroxidation. The ethyl acetate (EtOAc) fraction exhibited the highest polyphenolic contents among the fractions, with a TPC of 1.08 mgGAE/g, TFC of 0.38 mgQuE/g and TPA of 0.21 mgGAE/g. It also demonstrated the highest free radical scavenging activities with 72.63% and 65.43% inhibitions of DPPH and NO, respectively. The EtOAc fraction inhibited AChE and BuChE enzymes with IC50 values of 0.94 and 8.49 mg/mL, respectively. Our findings show that the plant may have polyphenol contents, in particular in the methanol extract and EtOAc fraction. These extracts showed considerable free radical scavenging and cholinesterase inhibitory properties. Thus, the observed bioactivities may serve as a justification for its folkloric use as a remedy for mental illness. The study also provides relevant information that could help in the search for lead cholinesterase inhibitors from medicinal plants that can be exploited against neurodegenerative disorders.
Collapse
|
25
|
Zhang Y, Zhou P, Shen X. Effects of Se-Enriched Malt on the Immune and Antioxidant Function in the Se-Deprived Reclamation Merino Sheep in Southern Xinjiang. Biol Trace Elem Res 2022; 200:3621-3629. [PMID: 34636021 DOI: 10.1007/s12011-021-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We have found that the Reclamation merino sheep in Southern Xinjiang, China, showed emaciation, stiff limbs, instability, and sudden death, which is related to the impairment of immune function and antioxidant capacity caused by selenium (Se) deficiency. The experiments were to study the effects of Se-enriched malt on the immune and antioxidant function in Se-deprived Reclamation merino sheep in Southern Xinjiang, China. The samples of soil and forage had been collected from tested pastures, and animal tissues were also collected in tested animals. The mineral content of soil, forage, and animal tissues was measured in the collected samples. Hematological indexes and biochemical values were also examined. The findings showed that the Se contents were extremely lower in affected soil and forage than those from healthy soil and forage (P < 0.01). The Se contents in affected blood and wool were also extremely lower than those from healthy blood and wool (P < 0.01). The values in glutathione peroxidase and total antioxidant capacity in affected serum samples were also extremely lower than those from healthy serum samples, and levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide were extremely higher in affected serum samples than those from healthy serum samples (P < 0.01). Meanwhile, the values of hemoglobin, packed cell volume, and platelet count from affected blood were extremely lower than those from healthy blood (P < 0.01). The levels of interleukin (IL)-1β, IL-2, tumor necrosis factor-alpha, immunoglobulin A, and immunoglobulin G in serum were extremely decreased in the affected Reclamation merino sheep (P < 0.01). The levels of IL-6 and immunoglobulin M in serum were extremely reduced in the affected Reclamation merino sheep compared to healthy animals (P < 0.01). The animals in affected pastures were orally treated with Se-enriched malt, and the Se contents in blood were extremely increased (P < 0.01). The immune function and antioxidant indicator returned to within the healthy range. Consequently, our findings were indicated that the disorder of the Reclamation merino sheep was mainly caused by the Se deficiency in soil and forage. The Se-enriched malt could not only markedly increase the Se content in blood but also much improve the immune function and the antioxidant capacity in the Se-deprived Reclamation merino sheep.
Collapse
Affiliation(s)
- Yunzhuo Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
| | - Ping Zhou
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Guiyang, 550004, Southwest China, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
26
|
The Biological Activity of Tea Tree Oil and Hemp Seed Oil. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interest in hemp seed oil (HSO) and tea tree oil (TTO) in the medical and food industries is increasing. The current study compares their bioactivity to other plant oils, mainly focusing on hemp seed oils (HSOs) with various cannabidiol (CBD) contents. A DPPH assay was employed to evaluate the antioxidant activity. The antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis was evaluated using time–kill, minimum inhibition concentration (MIC), and Kirby–Bauer disk diffusion methods. Tea tree oil showed significantly higher antimicrobial activity against S. enteritidis compared to E. coli and S. aureus (p < 0.05). The antioxitant activity range (lowest to highest) was sesame < vetiver < rosehip < tea tree < organic hemp < pure hemp < 5% CBD < vitamin C. Tea tree oil and 5% CBD showed antioxidant activity at IC50 of 64.45 μg/mL and 11.21 μg/mL, respectively. The opposing antimicrobial and antioxidant results for TTO and HSO indicate that these activities arise from different components within the oil compositions.
Collapse
|
27
|
Chatterjee A, Maity S, Banerjee S, Dutta S, Adhikari M, Guchhait R, Biswas C, De S, Pramanick K. Toxicological impacts of nanopolystyrene on zebrafish oocyte with insight into the mechanism of action: An expression-based analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154796. [PMID: 35341844 DOI: 10.1016/j.scitotenv.2022.154796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Many studies have investigated the negative impacts of microplastics on teleost fishes with very little or no evidence of their mechanism of action. This scenario entreats us to investigate the toxicities of nanopolystyrene in zebrafish oocyte with emphasis on the mechanism of action. In the present study, the cellular levels of mRNA transcripts of different genetic markers (such as: sod, gpx, nrf2, inos, ucp2, and atp6 (redox-sensitive markers); nfkβ, tnfα, il-10, ikβ, gdf9, and bmp15 (immune markers); gadd45, rad51, p53 and bcl2 (DNA damage and apoptotic)) have been quantified by real-time PCR after 6 h of incubation of isolated oocyte with different doses of nanopolystyrene viz. P0 (control i.e. no polystyrene in culture medium), P1 (100 ng/ml), and P2 (400 ng/ml). Results showed that both the treatment concentrations of nanopolystyrene induce oxidative stress with % DPPH = 30.75, 31.61, and 32.43% for P0, P1, and P2, respectively. Increase in oxidative stress in oocytes with increasing doses of nanopolystyrene was also observed in TBARS assay with MDA content 0.12 and 0.21 μM for P1 and P2, respectively as compaired to the control 0.08 μM. This increased oxidative stress can regulate the expression pattern (upregulation/downregulation) of selected genes leading to different toxic effects like - oxidative stress, immunotoxicity, and apoptosis in oocytes, which suggests the impairment of reproductive functions by nanopolystyrene.
Collapse
Affiliation(s)
- Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sambuddha Banerjee
- Department of Zoology, Visva Bharati University, Bolpur, West Bengal, India
| | - Shibsankar Dutta
- Department of Physics, Presidency University, West Bengal, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India; P.G. Department of Zoology, Mahishadal Raj College, Garkamalpur, Purba Medinipur, West Bengal, India
| | - Chayan Biswas
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India
| | - Sukanta De
- Department of Physics, Presidency University, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, West Bengal, India.
| |
Collapse
|
28
|
Márquez K, Márquez N, Ávila F, Cruz N, Burgos-Edwards A, Pardo X, Carrasco B. Oleuropein-Enriched Extract From Olive Mill Leaves by Homogenizer-Assisted Extraction and Its Antioxidant and Antiglycating Activities. Front Nutr 2022; 9:895070. [PMID: 35832049 PMCID: PMC9273007 DOI: 10.3389/fnut.2022.895070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Olive oil consumption has increased in the last two decades and consequently, its wastes have increased, which generates a tremendous environmental impact. Among the by-products are the olive mill leaves, which are easier and inexpensive to treat than other olive by-products. However, little research has been done on their chemical composition and potential bioactivity. Hence, in this study, olive mill leaves were used to obtain Oleuropein-Enriched Extracts (OLEU-EE) using Conventional Extraction, Ultrasound-Assisted Extraction, and Homogenization-Assisted Extraction. These three techniques were evaluated using a Factorial Design to determine the parameters to obtain an OLEU-EE with high contents of Total Phenolic Compounds (TPC), Antioxidant Activity (AA), and Oleuropein concentration (OLEU). From the results, the Homogenizer-Assisted Extraction (HAE) technique was selected at 18,000 rpm, solid:liquid ratio 1:10, and 30 s of homogenization with 70% ethanol, due to its high TPC (5,196 mg GA/100 g), AA (57,867 μmol of TE/100 g), and OLEU (4,345 mg of OLEU/100 g). In addition, the antiglycating effect of OLEU-EE on the levels of (1) fluorescent Advanced Glycation End Products (AGEs) were IC50 of 0.1899 and 0.1697 mg/mL for 1λEXC 325/λEM 440 and 2λEXC 389/λEM 443, respectively; (2) protein oxidative damage markers such as dityrosine (DiTyr), N-formylkynurenine (N-formyl Kyn), and kynurenine (Kyn) were IC50 of 0.1852, 0.2044, and 0.1720 mg/mL, respectively. In conclusion, OLEU-EE from olive mill leaves has different capacities to inhibit AGEs evidenced by the IC50 of fluorescent AGEs and protein oxidation products, together with the scavenging free radical evidenced by the concentration of Trolox Equivalent. Therefore, OLEU-EE could be potential functional ingredients that prevent oxidative damage caused by free radicals and AGEs accumulation.
Collapse
Affiliation(s)
- Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
- *Correspondence: Katherine Márquez ; orcid.org/0000-0001-6298-2597
| | - Nicole Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Alberto Burgos-Edwards
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| | - Ximena Pardo
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R0912001, Talca, Chile
| |
Collapse
|
29
|
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, Loke CF. Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential. Molecules 2022; 27:molecules27123650. [PMID: 35744776 PMCID: PMC9230150 DOI: 10.3390/molecules27123650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.
Collapse
Affiliation(s)
- Kai Song Ng
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Fung Loke
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| |
Collapse
|
30
|
Garg D, Dar RA, Phutela UG. Characterization of novel euryhaline microalgal cultures from Punjab, India for bioactive compounds. Arch Microbiol 2022; 204:370. [PMID: 35668133 DOI: 10.1007/s00203-022-03002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022]
Abstract
Microalgae have gained recognition due to the occurrence of nutraceuticals which are sustainable reservoir to substitute the organic chemical-based health supplements. The biomass of microalgae incorporates various functional biomolecules like chlorophyll, carotenoids and phenols that exhibit therapeutic properties and act as nutraceuticals. In spite of the higher production of the microalgal biomass, difference in their biochemical composition, and lack of characterization for nutraceutical properties are the prime hindrance in upscaling these bio-factories. Two euryhaline microalgal strains viz. BGLR8 and BGLR16, isolated from water-logged areas of Punjab, India were screened for biomass production and characterized for the nutraceutical properties using biochemical estimations. Results of the study indicated that BGLR8 retained maximum amount of lipids (86 mg/g), total chlorophyll (29.42 mg/g), carotenoids (28.82 mg/g), phenols (4.46 mg/g), phycocyanin (52 mg/g), astaxanthin (19.27 mg/g) and β-carotene (5.6 mg/g) and anti-oxidant activity (31.73%) as compared to BGLR 16. The results of gas chromatography-mass spectrometry (GC-MS) study revealed the presence of 8 therapeutic compounds like Dimethyl (E)-but-2-enedioate, Hexasilacyclododecane, Heptasilacyclotetradecane, Methyl (Z)-pentadec-8-enoate, Methyl octadec-13-enoate, Methyl hexadecanoate, Methyl octadecanoate, Methyl-octadeca-9,12-dienoate in BGLR8. Molecular identification through 18S rRNA gene sequencing confirmed BGLR8 to be a member of genus Coelastrella. (GenBank accession no. MW443083.1). Microalgae can be used as an alternate and feasible source of PUFAs; however, only a few species are employed for PUFA synthesis, necessitating additional in-depth research and the isolation of novel strains.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Rouf Ahmad Dar
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Urmila Gupta Phutela
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
31
|
A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Wen C, He X, Zhang J, Liu G, Xu X. A review on selenium-enriched proteins: preparation, purification, identification, bioavailability, bioactivities and application. Food Funct 2022; 13:5498-5514. [PMID: 35476089 DOI: 10.1039/d1fo03386g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) deficiency can cause many diseases and thereby affect human health. Traditional inorganic Se supplements have disadvantages of toxicity and low bioavailability. Se-Enriched proteins exhibit good bio-accessibility and high biological activities. This review provides a comprehensive overview of the preparation, purification, identification, bioavailability, bioactivities and application of Se-enriched proteins. The method of extracting Se-enriched proteins from animals, microorganisms and plants mainly includes solvent extraction (water, salt, ethanol and alkali solution extraction) and novel extraction technologies (ultrasound-assisted and pulsed electric field assisted extraction). Se-Enriched proteins and their hydrolysates exhibit good bioactivities, mainly including antioxidant activity, immune regulation, neuroprotective activity, and inhibition of hyperglycemic activity, among others. Future research should focus on the relationship between Se-enriched protein metabolism and the selenium regulatory protein metabolic pathway by using multi-omics technology. In addition, it is necessary to comprehensively study the structure-activity relationship of Se-enriched proteins/hydrolysates from different sources, to further clarify their bioactive mechanism and to verify their health benefits in vivo.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China. .,Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
33
|
Oral and external intervention on the crosstalk between microbial barrier and skin via foodborne functional component. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Zhang X, Wang S, Wu Y, Liu X, Wang J, Han D. Ellagic Acid Alleviates Diquat-Induced Jejunum Oxidative Stress in C57BL/6 Mice through Activating Nrf2 Mediated Signaling Pathway. Nutrients 2022; 14:1103. [PMID: 35268077 PMCID: PMC8912502 DOI: 10.3390/nu14051103] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Ellagic acid (EA) is the main constituent found in pomegranate rind, which has anti-inflammatory and antioxidant effects. However, whether EA can alleviate diquat-induced oxidative stress is still unknown. Here, the effects and mechanisms of EA on jejunum oxidative stress induced by diquat was investigated. Oxidative stress was induced in mice by administrating diquat (25 mg/kg body weight) followed by treatment with 100 mg/kg body weight EA for 5 days. Results showed that oral administration of EA significantly ameliorated diquat-induced weight loss and oxidative stress (p < 0.05) evidenced by reduced ROS production in the jejunum. Furthermore, EA up-regulated the mRNA expression of the antioxidant enzymes (Nrf2, GPX1 and HO-1) when mice were challenged with diquat, compared with the diquat group (p < 0.05). Importantly, pharmacological inhibition of Nrf2 by ML385 counteracted the EA-mediated alleviation of jejunum oxidative stress, as evidence by body weight and ROS production. Also, immunohistochemistry staining confirmed the markedly decreased jejunal Nrf2 expression. The up-regulated effect on NQO1 and HO-1 mRNA expression induced by EA was diminished in mice treated with ML385 (p < 0.05). Together, our results demonstrated that therapeutic and preventative EA treatment was effective in reducing weight loss and oxidative stress induced by diquat through the Nrf2 mediated signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.Z.); (S.W.); (Y.W.); (X.L.); (J.W.)
| |
Collapse
|
35
|
Amirani E, Zatollah Asemi, Taghizadeh M. The effects of selenium plus probiotics supplementation on glycemic status and serum lipoproteins in patients with gestational diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2022; 48:56-62. [DOI: 10.1016/j.clnesp.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
|
36
|
Niknam SM, Kashaninejad M, Escudero I, Sanz MT, Beltrán S, Benito JM. Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach. Foods 2022; 11:279. [PMID: 35159431 PMCID: PMC8834604 DOI: 10.3390/foods11030279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
In this study, we aimed to prepare stable water-in-oil (W/O) nanoemulsions loaded with a phenolic-rich aqueous phase from olive cake extract by applying the response surface methodology and using two methods: rotor-stator mixing and ultrasonic homogenization. The optimal nanoemulsion formulation was 7.4% (w/w) of olive cake extract as the dispersed phase, and 11.2% (w/w) of a surfactant mixture of polyglycerol polyricinoleate (97%) and Tween 80 (3%) in Miglyol oil as the continuous phase. Optimum results were obtained by ultrasonication for 15 min at 20% amplitude, yielding W/O nanoemulsion droplets of 104.9 ± 6.7 nm in diameter and with a polydispersity index (PDI) of 0.156 ± 0.085. Furthermore, an optimal nanoemulsion with a droplet size of 105.8 ± 10.3 nm and a PDI of 0.255 ± 0.045 was prepared using a rotor-stator mixer for 10.1 min at 20,000 rpm. High levels of retention of antioxidant activity (90.2%) and phenolics (83.1-87.2%) were reached after 30 days of storage at room temperature. Both W/O nanoemulsions showed good physical stability during this storage period.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Benito
- Department of Biotechnology and Food Science (Chemical Engineering Section), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (S.M.N.); (M.K.); (I.E.); (M.T.S.); (S.B.)
| |
Collapse
|
37
|
Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol 2022; 204:140. [PMID: 35039945 PMCID: PMC8763303 DOI: 10.1007/s00203-021-02650-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022]
Abstract
Since endophytic fungi are pivotal sources of various bioactive natural compounds, the present study is aimed to investigate the antioxidant compounds of the endophytic fungus Nigrospora sphaerica isolated from a pantropical weed, Euphorbia hirta L. The fungus was fermented in four different media and each filtered broth was sequentially extracted in various solvents. Crude extracts collected from different solvents were subjected to phytochemical analysis and antioxidant activity. The total phenolic content (TPC) and total flavonoid content (TFC) were maximal in ethyl acetate crude extract (EtOAcE) of endophyte fermented in potato dextrose broth (PDB) medium (77.74 ± 0.046mgGAE/g and 230.59 ± 2.0 mgRE/g) with the highest 96.80% antioxidant activity. However, TPC and TFC were absent in hexane extract of Czapek Dox broth (CDB) medium exhibiting the lowest 4.63 ± 2.75% activity. The EtOAcE (PDB) showed a positive correlation between TFC and antiradical activity (R2 = 0.762; P < 0.05), whereas a high positive correlation was noticed between TPC and antioxidant activity (R2 = 0.989; P < 0.05). Furthermore, to determine the antioxidant activity, EtOAcE (PDB) was subjected to TLC bioautography-based partial purification, while GC/MS analysis of the partial purified extract was done to confirm the presence of phenolics along with antioxidant compounds that resulted in the detection of 2,4-Di-tert-butylphenol (13.83%), a phenolic compound accountable for the antioxidant potential. Conclusively, N. sphaerica is a potential candidate for natural antioxidant.
Collapse
|
38
|
Majumdar S, Mandal T, Dasgupta Mandal D. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1. Int J Biol Macromol 2022; 195:384-397. [PMID: 34863970 DOI: 10.1016/j.ijbiomac.2021.11.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
β-carotene is a natural compound with immense healthcare benefits. To overcome insolubility and lack of stability which restricts its application, in this study, β-carotene from Planococcus sp. TRC1 was entrapped into formulations of chitosan‑sodium alginate microspheres (MF1, MF2 and MF3) and chitosan nanoparticles (NF1, NF2 and NF3). The maximum entrapment efficiency (%) and loading capacity (%) were 80.6 ± 4.28 and 26 ± 3.05 (MF2) and 92.1 ± 3.44 and 41.86 ± 4.65 (NF2) respectively. Korsmeyer-Peppas model showed best fit with release, revealing non-Fickian diffusion. Thermal and UV treatment exhibited higher activation energy (kJ/mol), 17.76 and 15.57 (MF2) and 37.03 and 19.33 (NF2) compared to free β-carotene (3.7 and 3.9), uncovering enhanced stability. MF2 and NF2 revealed swelling index (%) 721 ± 1.7 and 18.1 ± 1.5 (pH 6.8) and particle size 69.5 ± 3.2 μm and 92 ± 2.5 nm respectively. FESEM, FT-IR, XRD and DSC depicted spherical morphology, intactness of functional groups and masking of crystallinity. The IC50 (μg ml-1) values for antioxidant and anticancer (A-549) activities were 33.1 ± 1.7, 45.1 ± 2.8, 39.3 ± 2.9 and 31.3 ± 1.7, 27.9 ± 2.4, 25.3 ± 2.2 for β-carotene, MF2 and NF2 respectively with no significant cytotoxicity on HEK-293 cells and RBCs (p > 0.05). This comparative study of microspheres and nanoparticles may allow the diverse applications of an unconventional bacterial β-carotene with promising stability and efficacies.
Collapse
Affiliation(s)
- Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
39
|
Husain F, Duraisamy S, Balakrishnan S, Ranjith S, Chidambaram P, Kumarasamy A. Phenotypic assessment of safety and probiotic potential of native isolates from marine fish Moolgarda seheli towards sustainable aquaculture. Biologia (Bratisl) 2022; 77:775-790. [PMID: 35034969 PMCID: PMC8744026 DOI: 10.1007/s11756-021-00957-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 01/27/2023]
Abstract
Aquaculture is a highly productive and fast-growing agricultural sector. The occurrence of epidemic or sporadic disease outbreak is a major limiting factor in this sector, thus better alternatives are the need of the hour. Use of indigenous probiotics is a promising strategy to control infectious diseases. Thus, the present study was aimed to screen and characterize potent indigenous probiotics from marine fish, Moolgarda seheli, towards enhancing sustainable aquaculture production. Totally 347 bacterial isolates were obtained from M. seheli gastrointestinal tract, out of these, four isolates (KAF121, 124, 135, 136) were confirmed as potent probiotics in terms of biosafety, highly resistant to acidic pH, gastric juice, bile salt, high hydrophobicity to solvents, auto and co-aggregation potential. These four isolates also exhibited virtuous antioxidant activity. Further the isolates, KAF124 and 135 proved their efficiency in growth and survival of fish after challenged againt Aeromonas hydrophila. The isolates were identified based on their 16S rRNA gene sequence and the data were submitted to Genbank as Pseudomonas aeruginosa KAF121 (MH393516), Bacillus cereus KAF124 (MH393226), Bacillus thuringiensis KAF135 (MH393230), and Pseudomonas otitidis KAF136 (MH393230). The results conclude that two isolates, KAF124 and KAF135 are highly safe and potent probiotics which are first time isolated from the marine fish M. seheli. The two Bacillus strains could be used as better alternatives to antibiotics and other chemical-based drugs to prevent/control infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Senthilkumar Balakrishnan
- Department of Medical and Molecular Microbiology, Microtech Laboratories, Attur, Tamil Nadu 636 102 India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Prahalathan Chidambaram
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024 India
| |
Collapse
|
40
|
Zhu H, Lu C, Gao F, Qian Z, Yin Y, Kan S, Chen D. Selenium-enriched Bifidobacterium longum DD98 attenuates irinotecan-induced intestinal and hepatic toxicity in vitro and in vivo. Biomed Pharmacother 2021; 143:112192. [PMID: 34649340 DOI: 10.1016/j.biopha.2021.112192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Irinotecan (CPT-11) is a camptothecin chemotherapy drug largely used in treating cancers. However, its strong adverse effects, such as gastrointestinal and hepatic toxicities, tend to reduce the patients' life qualities and to limit the clinical use of CPT-11. The protective roles of selenium (Se) and probiotics against CPT-11-induced toxicity have been widely reported. However, the application of Se-enriched probiotics in the adjuvant therapy of CPT-11 has not been well explored. The purpose of this study is to evaluate the in-vitro and in-vivo effects of Se-enriched Bifidobacterium longum DD98 (Se-B. longum DD98) as a chemotherapy preventive agent on alleviating intestinal and hepatic toxicities induced by CPT-11 chemotherapy. The results showed that Se-B. longum DD98 positively regulated the aberrant cell viability and oxidative stress induced by CPT-11 both in human normal liver (L-02) and rat small intestinal epithelial (IEC-6) cell lines. In vivo experiment revealed that Se-B. longum DD98 significantly attenuated intestinal and hepatic toxicities by ameliorating symptoms such as body weight loss and diarrhea, and by improving the biochemical indicators of hepatotoxicity and oxidative stress. Furthermore, we discovered that the protective effects of Se-B. longum DD98 based largely upon decreasing the pro-inflammatory cytokines IL-1β and IL-18 and enhancing the expression of tight-junction proteins occludin and ZO-1, as well as restoring the composition and diversity of gut microbiota. Results suggested that Se-B. longum DD98 effectively protected livers and intestines against the CPT-11-induced damages, and therefore, could be considered as a promising adjuvant therapeutic agent with CPT-11 for the cancer treatment.
Collapse
Affiliation(s)
- Hui Zhu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chunyi Lu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Fei Gao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhixiang Qian
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shidong Kan
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
41
|
Zhao X, Gao J, Hogenkamp A, Knippels LMJ, Garssen J, Bai J, Yang A, Wu Y, Chen H. Selenium-Enriched Soy Protein Has Antioxidant Potential via Modulation of the NRF2-HO1 Signaling Pathway. Foods 2021; 10:foods10112542. [PMID: 34828827 PMCID: PMC8623322 DOI: 10.3390/foods10112542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Selenium (Se)-enriched proteins are an important dietary source of Se for humans; however, only a few Se-enriched proteins have been identified. In the present study, we tested for potential antioxidant activity by Se-enriched soy protein, both in vitro and in vivo. Se-enriched soy protein isolate (S-SPI) was shown to have a higher free radical scavenging ability compared to ordinary soy protein isolate (O-SPI). Furthermore, Caco-2 cell viability was improved by S-SPI at low doses, whereas O-SPI did not. In addition, S-SPI was shown to inhibit oxidative stress via modulation of the NRF2-HO1 signaling pathway, upregulating the expression of downstream antioxidant enzymes (GPx, SOD). To further study the antioxidant capacity of S-SPI, BALB/c female mice were given oral gavages with 0.8 mL of S-SPI or O-SPI (5 g/kg/d, 20 g/kg/d and 40 g/kg/d) or saline as control. Hepatic GPx and SOD activity increased with increasing S-SPI dosage, but not with O-SPI. Taken together, our results suggest that Se-enriched soy protein has a high antioxidant ability and may be used as a dietary supplement for people with oxidative dam-age-mediated diseases.
Collapse
Affiliation(s)
- Xiaoli Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone/Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
42
|
Baussanne I, Firstova O, Dediu AB, Larosa C, Furdui B, Ghinea IO, Thomas A, Chierici S, Dinica R, Demeunynck M. Interest of novel N-alkylpyridinium-indolizine hybrids in the field of Alzheimer's disease: Synthesis, characterization and evaluation of antioxidant activity, cholinesterase inhibition, and amyloid fibrillation interference. Bioorg Chem 2021; 116:105390. [PMID: 34670332 DOI: 10.1016/j.bioorg.2021.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
A small library of molecules combining indolizine and N-alkyl pyridinium was synthesized and evaluated in a multi-target-directed-ligand strategy for Alzheimer's disease (AD) treatment. The new compounds were classified in three series depending on the number of methylene residues linking the two heterocycles (Ind-PyCx with x = 0, 2 or 3). The molecules were synthesized from the corresponding bis-pyridines by two-step formation of the indolizine core including mono-alkylation of pyridine and 1,3-dipolar cycloaddition with an alkylpropiolate. Their activities against AD's key-targets were evaluated in vitro: acetyl- and butyrylcholinesterase (AChE and BChE) inhibition, antioxidant properties and inhibition of amyloid fibril formation. None of the three series showed significant activities against all the targets. The Ind-PyC2 and Ind-PyC3 series are active on eeAChE and hAChE (µM IC50 values). Most of the positively charged molecules from these two series also appeared active against eqBChE, however they lost their activity on hBChE. Comparative molecular modeling of 13 and 15 docked in hAChE and hBChE highlighted the importance of the substituent (p-methoxybenzoyl or methyloxycarbonyl, respectively) located on the indolizine C-3 for the binding. The larger molecule 13 fits more tightly at the active site of the two enzymes than 15 that shows a larger degree of freedom. The Ind-PyC2 and Ind-PyC3 hybrids displayed some antioxidant activity when tested at 750 µg/mL (up to 95% inhibition of DPPH radical scavenging for 10). In both series, most hybrids were also able to interact with amyloid fibers, even if the inhibitory effect was observed at a high 100 µM concentration. The Ind-PyC0 molecules stand out completely due to their spectroscopic properties which prevent their evaluation by Ellman's and ThT assays. However, these molecules showed interesting features in the presence of preformed fibers. In particular, the strong increase in fluorescence of 3 in the presence of amyloid fibers is very promising for its use as a fibrillation fluorescent reporter dye.
Collapse
Affiliation(s)
| | - Olga Firstova
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France; Univ. Grenoble Alpes, CNRS, DCM, Grenoble, France
| | - Andreea Botezatu Dediu
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | | | - Bianca Furdui
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Ioana Ottilia Ghinea
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, DPM, Grenoble, France
| | | | - Rodica Dinica
- Dunarea de Jos University of Galaţi, Faculty of Science and Environment, 111 Domneasca Street, 800201 Galaţi, Romania.
| | | |
Collapse
|
43
|
Food-grade lactic acid bacteria and probiotics as a potential protective tool against erythrotoxic dietary xenobiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Synthesis, Docking, and Biological activities of novel Metacetamol embedded [1,2,3]-triazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY. Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57192-57206. [PMID: 34086174 DOI: 10.1007/s11356-021-14530-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
This experiment was to explore the possible defensive properties and potential molecular mechanisms of Camellia japonica (CJ) against APAP-stimulated acute liver failure (ALF) in mice. In this study, we investigated the effects of CJ on APAP-induced hepatotoxicity. Mice were orally treated with CJ before or after challenge with APAP. Both pretreatment and post-treatment with CJ attenuated APAP-induced hepatotoxicity, as confirmed by significantly reduced serum toxicity biomarkers and improved hepatic pathological damage. Pretreatment with CJ drastically decreased the rise of hepatic inflammatory cytokines levels and weakened neutrophil infiltration. Furthermore, pretreatment with CJ dramatically decreased the levels of hepatic oxidative stress markers such as hepatic malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE) expression and rescued the reduced hepatic level of GSH caused by APAP overdose. Additionally, CJ pretreatment markedly attenuated cyclooxygenase-2 (COX-2) activation, transcription factor nuclear factor-kappa B (NF-κB) phosphorylation, c-Jun-N-terminal kinase (JNK) phosphorylation, and activated AMP-activated protein kinase (AMPK) signaling pathway in the liver. The present study thus reveals that CJ attenuated APAP-induced ALF by inhibiting COX-2 activation, NF-κB, and JNK phosphorylation and activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Zhao
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
46
|
Averina OV, Poluektova EU, Marsova MV, Danilenko VN. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota. Biomedicines 2021; 9:1340. [PMID: 34680457 PMCID: PMC8533434 DOI: 10.3390/biomedicines9101340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactobacilli and bifidobacteria are an important part of human gut microbiota. Among numerous benefits, their antioxidant properties are attracting more and more attention. Multiple in vivo and in vitro studies have demonstrated that lactobacilli and bifidobacteria, along with their cellular components, possess excellent antioxidant capacity, which provides a certain degree of protection to the human body against diseases associated with oxidative stress. Recently, lactobacilli and bifidobacteria have begun to be considered as a new source of natural antioxidants. This review summarizes the current state of research on various antioxidant properties of lactobacilli and bifidobacteria. Special emphasis is given to the mechanisms of antioxidant activity of these bacteria in the human gut microbiota, which involve bacterial cell components and metabolites. This review is also dedicated to the genes involved in the antioxidant properties of lactobacilli and bifidobacteria strains as indicators of their antioxidant potential in human gut microbiota. Identification of the antioxidant biomarkers of the gut microbiota is of great importance both for creating diagnostic systems for assessing oxidative stress and for choosing strategies aimed at restoring the normal functioning of the microbiota and, through it, restoring human health. In this review, the practical application of probiotic strains with proven antioxidant properties to prevent oxidative stress is also considered.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Mariya V. Marsova
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russion Academy of Sciences, 119991 Moscow, Russia; (E.U.P.); (M.V.M.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
47
|
The Antioxidative Role of Natural Compounds from a Green Coconut Mesocarp Undeniably Contributes to Control Diabetic Complications as Evidenced by the Associated Genes and Biochemical Indexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9711176. [PMID: 34367469 PMCID: PMC8337112 DOI: 10.1155/2021/9711176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to look into the effects of green coconut mesocarp juice extract (CMJE) on diabetes-related problems in streptozotocin- (STZ-) induced type 2 diabetes, as well as the antioxidative functions of its natural compounds in regulating the associated genes and biochemical markers. CMJE's antioxidative properties were evaluated by the standard antioxidant assays of 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radical, nitric oxide, and ferrous ions along with the total phenolic and flavonoids content. The α-amylase inhibitory effect was measured by an established method. The antidiabetic effect of CMJE was assayed by fructose-fed STZ-induced diabetic models in albino rats. The obtained results were verified by bioinformatics-based network pharmacological tools: STITCH, STRING, GSEA, and Cytoscape plugin cytoHubba bioinformatics tools. The results showed that GC-MS-characterized compounds from CMJE displayed a very promising antioxidative potential. In an animal model study, CMJE significantly (P < 0.05) decreased blood glucose, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, uric acid, and lipid levels and increased glucose tolerance as well as glucose homeostasis (HOMA-IR and HOMA-b scores). The animal's body weights and relative organ weights were found to be partially restored. Tissue architectures of the pancreas and the kidney were remarkably improved by low doses of CMJE. Compound-protein interactions showed that thymine, catechol, and 5-hydroxymethylfurfural of CMJE interacted with 84 target proteins. Of the top 15 proteins found by Cytoscape 3.6.1, 8, CAT and OGG1 (downregulated) and CASP3, COMT, CYP1B1, DPYD, NQO1, and PTGS1 (upregulated), were dysregulated in diabetes-related kidney disease. The data demonstrate the highly prospective use of CMJE in the regulation of tubulointerstitial tissues of patients with diabetic nephropathy.
Collapse
|
48
|
Antioxidant and Antimicrobial Activities of the Extracts from Different Garcinia Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5542938. [PMID: 34249131 PMCID: PMC8238564 DOI: 10.1155/2021/5542938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
Background Garcinia is a large genus which has promising bioactivities. However, the properties of many Garcinia species have not been investigated thoroughly. Aim To determine the antioxidant and antimicrobial capabilities of the extracts from different Garcinia species. Methodology. Six Garcinia species, including Garcinia fusca, Garcinia hopii, Garcinia planchonii, Garcinia nigrolineata, Garcinia gaudichaudii, and Garcinia tinctoria were extracted using n-hexane, ethyl acetate, and methanol, producing n-hexane extract (HE), ethyl acetate extract (EAE), and methanol extract (ME). After that, the total polyphenol content was evaluated using Folin–Ciocalteu assay. DPPH, hydroxyl radical scavenging, and total antioxidant capacity assays were performed to test the antioxidant activity. Subsequently, the antimicrobial activities against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains were assessed using Kirby Bauer and the broth microdilution methods. Results Many Garcinia extracts contained high total polyphenol content consisting of ME of G. hopii ad G. tinctoria, and EAE of G. planchonii and G. tinctoria. The EAE of G. tinctoria showed effective antioxidant capacity (IC50 = 1.5 µg/mL). Additionally, the EAE of G. gaudichaudii was effective against Gram-positive bacteria with minimal inhibition concentration (MIC) of 15.625–25 µg/mL whereas ME of G. planchonii was effective against both Gram-positive bacteria (MIC = 160 µg/mL) and Gram-negative bacteria (MIC = 75 µg/mL). Conclusion Several extracts of Garcinia species demonstrated valuable antioxidant and antimicrobial properties.
Collapse
|
49
|
Khan MA, Srivastava V, Kabir M, Samal M, Insaf A, Ibrahim M, Zahiruddin S, Ahmad S. Development of Synergy-Based Combination for Learning and Memory Using in vitro, in vivo and TLC-MS-Bioautographic Studies. Front Pharmacol 2021; 12:678611. [PMID: 34276370 PMCID: PMC8283279 DOI: 10.3389/fphar.2021.678611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
The present study is aimed at developing a synergistic combination to enhance learning and memory in Alzheimer’s patients with the help of eight common medicinal plants used in the AYUSH system. Aqueous and hydroalcoholic extracts of eight medicinal plants from the AYUSH system of medicine were prepared. These were subjected to in vitro anticholinesterase activity, to find out the combination index of synergistic combination. The synergistic combination and their individual extracts were subjected to total phenol, flavonoid and antioxidant activity estimation. Further, in vivo neurobehavioral studies in rats were carried out followed by TLC-MS-bioautographic identification of bioactive metabolites. Out of the sixteen extracts, aqueous extracts of Withania somnifera (L.) Dunal (WSA) and Myristica fragrans (L.) Dunal (MFA) were selected for the development of synergistic combination based on their IC50 value in vitro anticholinesterase assay. The synergistic combination inhibited the anticholinesterase activity significantly as compared to the individual extracts of WSA and MFA. The synergistic combination also showed more phenolic and flavonoid contents with potential antioxidant activity. The TLC-bioautography showed four white spots in WSA, signifying sitoindosides VII, VIII, quercetin, isopelletierine and Withanolide S as AChE inhibitory compounds while showing five white spots of anti-cholinesterase active metabolites identified as eugenol, methyl eugenol, myristic acid, galbacin and β-sitosterol in MFA. The observation of neurocognitive behavior in amnesia induced subjects manifested that both the synergistic combinations showed comparable results to that of standard piracetam, though the synergistic combination containing a higher concentration of WSA showed more appreciable results in ameliorating dementia in rats. The study suggests that the synergy based combination successfully enhanced memory and learning by abating free radical and acetylcholine levels, and increased learning and memory in rats, providing a strong rationale for its use in the treatment of dementia and Alzheimer’s disease.
Collapse
Affiliation(s)
- Maaz Ahmed Khan
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mariya Kabir
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Monalisha Samal
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Ibrahim
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
50
|
Tian W, Heo S, Kim DW, Kim IS, Ahn D, Tae HJ, Kim MK, Park BY. Ethanol Extract of Maclura tricuspidata Fruit Protects SH-SY5Y Neuroblastoma Cells against H 2O 2-Induced Oxidative Damage via Inhibiting MAPK and NF-κB Signaling. Int J Mol Sci 2021; 22:ijms22136946. [PMID: 34203307 PMCID: PMC8268219 DOI: 10.3390/ijms22136946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.
Collapse
Affiliation(s)
- Weishun Tian
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Suyoung Heo
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Dae-Woon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - In-Shik Kim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Dongchoon Ahn
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Hyun-Jin Tae
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
| | - Myung-Kon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea;
- Correspondence: (M.-K.K.); (B.-Y.P.); Tel.: +82-63-270-4874 (B.-Y.P.)
| | - Byung-Yong Park
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea; (W.T.); (S.H.); (I.-S.K.); (D.A.); (H.-J.T.)
- Correspondence: (M.-K.K.); (B.-Y.P.); Tel.: +82-63-270-4874 (B.-Y.P.)
| |
Collapse
|