1
|
Yuan Z, Smith P, McCulloch CA. Extracellular vimentin amplifies inflammation: Perspectives for immune injury and therapeutics for periodontitis. FASEB J 2025; 39:e70286. [PMID: 39758044 DOI: 10.1096/fj.202402322r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Periodontitis is an inflammatory disease triggered by microbial biofilms that promote immune dysfunction and tissue destruction of tooth-supporting tissues. The search for soluble mediators that amplify inflammatory responses and matrix degradation in periodontal tissues has implicated extracellular vimentin (ECV) as a signaling ligand and damage-associated molecular pattern in the pathogenesis of periodontitis. Intracellular vimentin filaments are essential for the structural integrity of cells and the preservation of matrix homeostasis. These are important determinants of health in the periodontium and many other organs. But in inflamed tissues, intracellular vimentin filaments are disassembled. Vimentin is subsequently released from cells into the extracellular space in a soluble form where it drives immune signaling and tissue destruction. We discuss the role of ECV as a signaling molecule in several tissues. We apply these data to understand how in inflammatory diseases like periodontitis, ECV amplifies immune responses that contribute to disease progression. Arising from these data, we consider novel therapeutic opportunities for limiting tissue destruction by targeting ECV for treatment of inflammatory disorders like periodontitis.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Patricio Smith
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
2
|
Wu T, Li Y, Liu Y, Chu CQ. Preclinical RA: How to halt its progression. Best Pract Res Clin Rheumatol 2024:102030. [PMID: 39721896 DOI: 10.1016/j.berh.2024.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder with a complex pathogenesis that evolves through various stages before clinical symptoms emerge. This review outlines the natural history of RA, starting from genetic predisposition and environmental triggers to preclinical autoimmunity and subsequent joint inflammation. Key genetic factors interact with environmental elements like smoking and infections, producing autoantibodies such as anti-citrullinated protein antibodies (ACPA) and rheumatoid factor, which precede clinical manifestations by several years. The preclinical phases offer critical opportunities for intervention aiming at halting disease progression. Preventive strategies including lifestyle modifications, dietary interventions, and targeted immune modulation may halt the progression to clinical RA in those at-risk individuals.
Collapse
Affiliation(s)
- Tong Wu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Lecheng Hospital, Sichuan University, Boao, Hainan, 571435, China.
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA; Rheumatology Section, VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Bonilla M, Martín-Morales N, Gálvez-Rueda R, Raya-Álvarez E, Mesa F. Impact of Protein Citrullination by Periodontal Pathobionts on Oral and Systemic Health: A Systematic Review of Preclinical and Clinical Studies. J Clin Med 2024; 13:6831. [PMID: 39597974 PMCID: PMC11594594 DOI: 10.3390/jcm13226831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: This review synthesizes the role of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in modulating immune responses through citrullination and assesses its impact on periodontitis and systemic conditions. Methods: A systematic review was conducted on preclinical and clinical studies focusing on P. gingivalis- and A. actinomycetemcomitans-induced citrullination and its effects on immune responses, particularly inflammatory pathways, and systemic diseases. The search included PubMed, Scopus, Google Scholar, Web of Science, and gray literature. Quality and risk of bias were assessed using OHAT Rob Toll and QUIN-Tool. The review is registered in PROSPERO (ID: CRD42024579352). Results: 18 articles published up to August 2024 were included. Findings show that P. gingivalis and A. actinomycetemcomitans citrullination modulates immune responses, leading to neutrophil dysfunction and chronic inflammation. Key mechanisms include citrullination of antimicrobial peptides, CXCL10, histone H3, α-enolase, and C5a, impairing neutrophil activation and promoting NET formation. Conclusions: This review suggests that P. gingivalis and A. actinomycetemcomitans citrullination modulates immune responses and may influence periodontitis and systemic conditions like RA. Beyond ACPA production, these pathogens affect key proteins such as H3, C5a, and CXCL10, as well as antimicrobial peptides, NET formation, and phagocytosis. These interactions lead to neutrophil dysfunction and potentially affect other cells, subsequently disrupting local and systemic inflammatory responses.
Collapse
Affiliation(s)
- Marco Bonilla
- Higher Technician in Clinical and Biomedical Laboratory, Centro de Investigación Biomédica (CIBM), 18016 Granada, Spain
| | - Natividad Martín-Morales
- Department of Pathology, School of Medicine, University of Granada, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS Institute), 18012 Granada, Spain
| | | | - Enrique Raya-Álvarez
- Department of Medicine, School of Medicine, University of Granada, 18016 Granada, Spain;
- Department of Rheumatology, San Cecilio University Clinical Hospital, 18006 Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
| |
Collapse
|
4
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
5
|
Prucsi Z, Zimny A, Płonczyńska A, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis Peptidyl Arginine Deiminase (PPAD) in the Context of the Feed-Forward Loop of Inflammation in Periodontitis. Int J Mol Sci 2023; 24:12922. [PMID: 37629104 PMCID: PMC10454286 DOI: 10.3390/ijms241612922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by a changed dysbiotic oral microbiome. Although multiple species and risk factors are associated with periodontitis, Porphyromonas gingivalis has been identified as a keystone pathogen. The immune-modulatory function of P. gingivalis is well characterized, but the mechanism by which this bacterium secretes peptidyl arginine deiminase (PPAD), a protein/peptide citrullinating enzyme, thus contributing to the infinite feed-forward loop of inflammation, is not fully understood. To determine the functional role of citrullination in periodontitis, neutrophils were stimulated by P. gingivalis bearing wild-type PPAD and by a PPAD mutant strain lacking an active enzyme. Flow cytometry showed that PPAD contributed to prolonged neutrophil survival upon bacterial stimulation, accompanied by the secretion of aberrant IL-6 and TNF-α. To further assess the complex mechanism by which citrullination sustains a chronic inflammatory state, the ROS production and phagocytic activity of neutrophils were evaluated. Flow cytometry and colony formation assays showed that PPAD obstructs the resolution of inflammation by promoting neutrophil survival and the release of pro-inflammatory cytokines, while enhancing the resilience of the bacteria to phagocytosis.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
6
|
Ahmadi P, Mahmoudi M, Kheder RK, Faraj TA, Mollazadeh S, Abdulabbas HS, Esmaeili SA. Impacts of Porphyromonas gingivalis periodontitis on rheumatoid arthritis autoimmunity. Int Immunopharmacol 2023; 118:109936. [PMID: 37098654 DOI: 10.1016/j.intimp.2023.109936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
In RA patients' synovial sites, citrullinated RA-related antigens such as type II collagens, fibrin (ogen), vimentin, and α-enolase could be targeted by ACCPAs. Since ACCPA production can be initiated a long time before RA sign appearance, primary auto-immunization against these citrullinated proteins can be originated from extra-articular sites. It has been shown that there is a significant association between P. gingivalis periodontitis, anti- P. gingivalis antibodies, and RA. P. gingivalis gingipains (Rgp, Kgp) can degrade proteins such as fibrin and α-enolase into some peptides in the form of Arg in the C-terminal which is converted to citrulline by PPAD. Also, PPAD can citrullinate type II collagen and vimentins (SA antigen). P. gingivalis induces inflammation and chemoattraction of immune cells such as neutrophils and macrophages through the increase of C5a (gingipain C5 convertase-like activity) and SCFA secretion. Besides, this microorganism stimulates anoikis, a special type of apoptosis, and NETosis, an antimicrobial form of neutrophil death, leading to the release of PAD1-4, α-enolase, and vimentin from apoptotic cells into the periodontal site. In addition, gingipains can degrade macrophages CD14 and decrease their ability in apoptotic cell removal. Gingipains also can cleave IgGs in the Fc region and transform them into rheumatoid factor (RF) antigens. In the present study, the effects of P. gingivalis on rheumatoid arthritis autoimmune response have been reviewed, which could attract practical insight both in bench and clinic.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research center north Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Romão VC, Fonseca JE. Disease mechanisms in preclinical rheumatoid arthritis: A narrative review. Front Med (Lausanne) 2022; 9:689711. [PMID: 36059838 PMCID: PMC9437632 DOI: 10.3389/fmed.2022.689711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
In the last decades, the concept of preclinical rheumatoid arthritis (RA) has become established. In fact, the discovery that disease mechanisms start years before the onset of clinical RA has been one of the major recent insights in the understanding of RA pathogenesis. In accordance with the complex nature of the disease, preclinical events extend over several sequential phases. In a genetically predisposed host, environmental factors will further increase susceptibility for incident RA. In the initial steps of preclinical disease, immune disturbance mechanisms take place outside the joint compartment, namely in mucosal surfaces, such as the lung, gums or gut. Herein, the persistent immunologic response to altered antigens will lead to breach of tolerance and trigger autoimmunity. In a second phase, the immune response matures and is amplified at a systemic level, with epitope spreading and widening of the autoantibody repertoire. Finally, the synovial and bone compartment are targeted by specific autoantibodies against modified antigens, initiating a local inflammatory response that will eventually culminate in clinically evident synovitis. In this review, we discuss the elaborate disease mechanisms in place during preclinical RA, providing a broad perspective in the light of current evidence.
Collapse
Affiliation(s)
- Vasco C. Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
9
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
11
|
Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. Int J Mol Sci 2021; 22:ijms221910576. [PMID: 34638916 PMCID: PMC8508717 DOI: 10.3390/ijms221910576] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is caused by prolonged periodic interactions between genetic, environmental, and immunologic factors. Posttranslational modifications (PTMs) such as citrullination, carbamylation, and acetylation are correlated with the pathogenesis of RA. PTM and cell death mechanisms such as apoptosis, autophagy, NETosis, leukotoxic hypercitrullination (LTH), and necrosis are related to each other and induce autoantigenicity. Certain microbial infections, such as those caused by Porphyromonasgingivalis, Aggregatibacter actinomycetemcomitans, and Prevotella copri, can induce autoantigens in RA. Anti-modified protein antibodies (AMPA) containing anti-citrullinated protein/peptide antibodies (ACPAs), anti-carbamylated protein (anti-CarP) antibodies, and anti-acetylated protein antibodies (AAPAs) play a role in pathogenesis as well as in prediction, diagnosis, and prognosis. Interestingly, smoking is correlated with both PTMs and AMPAs in the development of RA. However, there is lack of evidence that smoking induces the generation of AMPAs.
Collapse
|
12
|
Teng Y, Xie W, Tao X, Liu N, Yu Y, Huang Y, Xu D, Fan Y. Infection-provoked psoriasis: Induced or aggravated (Review). Exp Ther Med 2021; 21:567. [PMID: 33850539 PMCID: PMC8027725 DOI: 10.3892/etm.2021.9999] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a common chronic, immune-mediated, inflammatory skin disorder, with a reported prevalence of 0.0-2.1% among children and 0.91-8.50% among adults, worldwide. Psoriasis is induced by several environmental factors, including infection, alcohol consumption, drugs, trauma, acute withdrawal of systemic or potent topical corticosteroids, body mass index and endocrine disorders. Increasing evidence suggest that a variety of microorganisms play key roles in the induction and exacerbation of psoriasis. Pathogens, such as streptococci and staphylococci are considered causal factors, presumably via superantigen activation of skin-seeking T cells. In addition, fungal pathogens, such as Candida and Malassezia, and viral agents, such as human immunodeficiency virus, hepatitis C virus infection and human papillomavirus, are also closely associated with psoriasis. Recently, several types of pathogens, such as Helicobacter pylori infection, Zika virus and scabies, have been reported to potentially trigger psoriasis. The present review discusses the underlying molecular mechanisms by which these infections influence psoriasis to provide a better understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yan Teng
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Wenqing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Na Liu
- Department of Dermatology, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yong Yu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Danfeng Xu
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
PPAD Activity Promotes Outer Membrane Vesicle Biogenesis and Surface Translocation by Porphyromonas gingivalis. J Bacteriol 2021; 203:JB.00343-20. [PMID: 33257525 PMCID: PMC7847538 DOI: 10.1128/jb.00343-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022] Open
Abstract
Gram-negative bacteria produce nanosized OMVs that are actively released into their surroundings. The oral anaerobe P. gingivalis is prolific in OMV production, and many of the proteins packaged in these vesicles are proteolytic or protein-modifying enzymes. Many bacteria switch between a sessile and a motile mode in response to environmental and host-related signals. Porphyromonas gingivalis, an oral anaerobe implicated in the etiology of chronic periodontal disease, has long been described as a nonmotile bacterium. And yet, recent studies have shown that under certain conditions, P. gingivalis is capable of surface translocation. Considering these findings, this work aimed to increase our understanding of how P. gingivalis transitions between sessile growth and surface migration. Here, we show that the peptidylarginine deiminase secreted by P. gingivalis (PPAD), an enzyme previously shown to be upregulated during surface translocation and to constrain biofilm formation, promotes surface translocation. In the absence of PPAD, the production of outer membrane vesicles (OMVs) was drastically reduced. In turn, there was a reduction in gingipain-mediated proteolysis and a reduced zone of hydration around the site of inoculation. Transcriptome sequencing (RNA-Seq) and metabolomics analyses also showed that these changes corresponded to a shift in arginine metabolism. Overall, this report provides new evidence for the functional relevance of PPAD and proteases, as well as the importance of PPAD activity in OMV biogenesis and release. Our findings support the model that citrullination is a critical mechanism during lifestyle transition between surface-attached growth and surface translocation by modulating OMV-mediated proteolysis and arginine metabolism. IMPORTANCE Gram-negative bacteria produce nanosized OMVs that are actively released into their surroundings. The oral anaerobe P. gingivalis is prolific in OMV production, and many of the proteins packaged in these vesicles are proteolytic or protein-modifying enzymes. This includes key virulence determinants, such as the gingipains and PPAD (a unique peptidylarginine deiminase). Here, we show that PPAD activity (citrullination) is involved in OMV biogenesis. The study revealed an unusual mechanism that allows this bacterium to transform its surroundings. Since OMVs are detected in circulation and in systemic tissues, our study results also support the notion that PPAD activity may be a key factor in the correlation between periodontitis and systemic diseases, further supporting the idea of PPAD as an important therapeutic target.
Collapse
|
14
|
Alhabashneh R, Alawneh K, Alshami R, Al Naji K. Rheumatoid arthritis and periodontitis: a Jordanian case-control study. J Public Health (Oxf) 2020. [DOI: 10.1007/s10389-019-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
16
|
Larsen DN, Mikkelsen CE, Kierkegaard M, Bereta GP, Nowakowska Z, Kaczmarek JZ, Potempa J, Højrup P. Citrullinome of Porphyromonas gingivalis Outer Membrane Vesicles: Confident Identification of Citrullinated Peptides. Mol Cell Proteomics 2020; 19:167-180. [PMID: 31754044 PMCID: PMC6944236 DOI: 10.1074/mcp.ra119.001700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a key pathogen in chronic periodontitis and has recently been mechanistically linked to the development of rheumatoid arthritis via the activity of peptidyl arginine deiminase generating citrullinated epitopes in the periodontium. In this project the outer membrane vesicles (OMV) from P. gingivalis W83 wild-type (WT), a W83 knock-out mutant of peptidyl arginine deiminase (ΔPPAD), and a mutant strain expressing PPAD with the active site cysteine mutated to alanine (C351A), have been analyzed using a two-dimensional HFBA-based separation system combined with LC-MS. For optimal and positive identification and validation of citrullinated peptides and proteins, high resolution mass spectrometers and strict MS search criteria were utilized. This may have compromised the total number of identified citrullinations but increased the confidence of the validation. A new two-dimensional separation system proved to increase the strength of validation, and along with the use of an in-house build program, Citrullia, we establish a fast and easy semi-automatic (manual) validation of citrullinated peptides. For the WT OMV we identified 78 citrullinated proteins having a total of 161 citrullination sites. Notably, in keeping with the mechanism of OMV formation, the majority (51 out of 78) of citrullinated proteins were predicted to be exported via the inner membrane and to reside in the periplasm or being translocated to the bacterial surface. Citrullinated surface proteins may contribute to the pathogenesis of rheumatoid arthritis. For the C351A-OMV a single citrullination site was found and no citrullinations were identified for the ΔPPAD-OMV, thus validating the unbiased character of our method of citrullinated peptide identification.
Collapse
Affiliation(s)
| | | | | | - Grzegorz P Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Z Kaczmarek
- Research and Development Department, Ovodan Biotech A/S, 5000 Odense, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 S. Preston St., Louisville, Kentucky
| | - Peter Højrup
- University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
17
|
Sutanti V, Suyanto E, Mufidah M, Kurnianingsih N. Diversity of Sub-Gingival Fluids Microbiota Compositions in Periodontitis and Rheumatoid Arthritis Patients: A Case-Control Study. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2020. [DOI: 10.1590/pboci.2020.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Viranda Sutanti
- Brawijaya University, Indonesia; Brawijaya University, Indonesia
| | - Eko Suyanto
- Brawijaya University, Indonesia; Brawijaya University, Indonesia
| | | | | |
Collapse
|
18
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|
19
|
El-Sayed ASA, Shindia AA, Zeid AAA, Yassin AM, Sitohy MZ, Sitohy B. Aspergillus nidulans thermostable arginine deiminase-Dextran conjugates with enhanced molecular stability, proteolytic resistance, pharmacokinetic properties and anticancer activity. Enzyme Microb Technol 2019; 131:109432. [PMID: 31615671 DOI: 10.1016/j.enzmictec.2019.109432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
The potential anticancer activity of arginine deiminase (ADI) via deimination of l-arginine into citrulline has been extensively verified against various arginine-auxotrophic tumors, however, the higher antigenicity, structural instability and in vivo proteolysis are the major challenges that limit this enzyme from further clinical implementation. Since, this clinically applied enzyme was derived from Mycobacterium spp, thus, searching for ADI from eukaryotic microbes "especially thermophilic fungi" could have a novel biochemical, conformational and catalytic properties. Aspergillus nidulans ADI was purified with 5.3 folds, with molecular subunit structure 48 kDa and entire molecular mass 120 kDa, ensuring its homotrimeric identity. The peptide fingerprinting analysis revealing the domain Glu95-Gly96-Gly97 as the conserved active site of A. nidulans ADI, with higher proximity to Mycobacterium ADI clade IV. In an endeavor to fortify the structural stability and anticancer activity of A. nidulans ADI, the enzyme was chemically modified with dextran. The optimal activity of Dextran-ADI conjugates was determined at 0.08:20 M ratio of ADI: Dextran, with an overall increase to ADI molecular subunit mass to ˜100 kDa. ADI was conjugated with dextran via the ε-amino groups interaction of surface lysine residues of ADI. The resistance of Dextran-ADI conjugate to proteolysis had been increased by 2.5 folds to proteinase K and trypsin, suggesting the shielding of >50% of ADI surface proteolytic recognition sites. The native and Dextran-ADI conjugates have the same optimum reaction temperature (37 °C), reaction pH and pH stability (7.0-8.0) with dependency on K+ ions as a cofactor. Dextran-ADI conjugates exhibited a higher thermal stability by ˜ 2 folds for all the tested temperatures, ensuring the acquired structural and catalytic stability upon dextran conjugation. Dextran conjugation slightly protect the reactive amino and thiols groups of surface amino acids of ADI from amino acids suicide inhibitors. The affinity of ADI was increased by 5.3 folds to free L-arginine with a dramatic reduction in citrullination of peptidylarginine residues upon dextran conjugation. The anticancer activity of ADI to breast (MCF-7), liver (HepG-2) and colon (HCT8, HT29, DLD1 and LS174 T) cancer cell lines was increased by 1.7 folds with dextran conjugation in vitro. Pharmacokinetically, the half-life time of ADI was increased by 1.7 folds upon dextran conjugation, in vivo. From the biochemical and hematological parameters, ADIs had no signs of toxicity to the experimental animals. In addition to the dramatic reduction of L-arginine in serum, citrulline level was increased by 2.5 folds upon dextran conjugation of ADI. This is first report exploring thermostable ADI from thermophilic A. nidulans with robust structural stability, catalytic efficiency and proteolytic resistance.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt; Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden; Department of Radiation Sciences, Section of Oncology, Umeå University, SE-90185 Umeå, Sweden.
| | - Ahmed A Shindia
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Azza A Abou Zeid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Amany M Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden; Department of Radiation Sciences, Section of Oncology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
20
|
Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor. Int J Mol Sci 2019; 20:ijms20092174. [PMID: 31052493 PMCID: PMC6539144 DOI: 10.3390/ijms20092174] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022] Open
Abstract
Citrullination, a posttranslational modification, is catalyzed by peptidylarginine deiminases (PADs), a unique family of enzymes that converts peptidyl-arginine to peptidyl-citrulline. Overexpression and/or increased PAD activity is observed in rheumatoid arthritis (RA), Alzheimer’s disease, multiple sclerosis, and cancer. Moreover, bacterial PADs, such as Porphyromonas gingivalis PAD (PPAD), may have a role in the pathogenesis of RA, indicating PADs as promising therapeutic targets. Herein, six novel compounds were examined as potential inhibitors of human PAD4 and PPAD, and compared to an irreversible PAD inhibitor, Cl-amidine. Four of the tested compounds (compounds 2, 3, 4, and 6) exhibited a micromolar-range inhibition potency against PAD4 and no effect against PPAD in the in vitro assays. Compound 4 was able to inhibit the PAD4-induced citrullination of H3 histone with higher efficiency than Cl-amidine. In conclusion, compound 4 was highly effective and presents a promising direction in the search for novel RA treatment strategies.
Collapse
|
21
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
22
|
El-Sayed ASA, Shindia AA, AbouZaid AA, Yassin AM, Ali GS, Sitohy MZ. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb Technol 2019; 124:41-53. [PMID: 30797478 DOI: 10.1016/j.enzmictec.2019.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza A AbouZaid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Amany M Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- MREC, Department of Plant Pathology, University of Florida, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Vermilyea DM, Ottenberg GK, Davey ME. Citrullination mediated by PPAD constrains biofilm formation in P. gingivalis strain 381. NPJ Biofilms Microbiomes 2019; 5:7. [PMID: 32029738 PMCID: PMC6367333 DOI: 10.1038/s41522-019-0081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023] Open
Abstract
Porphyromonas gingivalis is the only known human-associated prokaryote that produces a peptidylarginine deiminase (PPAD), a protein-modifying enzyme that is secreted along with a number of virulence factors via a type IX secretion system (T9SS). While the function of PPAD in P. gingivalis physiology is not clear, human peptidylarginine deiminases are known to convert positively charged arginine residues within proteins to neutral citrulline and, thereby, impact protein conformation and function. Here, we report that the lack of citrullination in a PPAD deletion mutant (Δ8820) enhances biofilm formation. More Δ8820 cells attached to the surface than the parent strain during the early stages of biofilm development and, ultimately, mature Δ8820 biofilms were comprised of significantly more cell-cell aggregates and extracellular matrix. Imaging by electron microscopy discovered that Δ8820 biofilm cells secrete copious amounts of protein aggregates. Furthermore, gingipain-derived adhesin proteins, which are also secreted by the T9SS were predicted by mass spectrometry to be citrullinated and citrullination of these targets by wild-type strain 381 in vitro was confirmed. Lastly, Δ8820 biofilms contained more gingipain-derived adhesin proteins and more gingipain activity than 381 biofilms. Overall, our findings support the model that citrullination of T9SS cargo proteins known to play a key role in colonization, such as gingipain-derived adhesin proteins, is an underlying mechanism that modulates P. gingivalis biofilm development.
Collapse
Affiliation(s)
- Danielle M Vermilyea
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Gregory K Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Mary E Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University; Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510630, China
| | - Fang-Yuan Yang
- Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Er-Wei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University; Institute of Clinical Immunology, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong 510630, China
| |
Collapse
|
25
|
Aliko A, Kamińska M, Bergum B, Gawron K, Benedyk M, Lamont RJ, Malicki S, Delaleu N, Potempa J, Mydel P. Impact of Porphyromonas gingivalis Peptidylarginine Deiminase on Bacterial Biofilm Formation, Epithelial Cell Invasion, and Epithelial Cell Transcriptional Landscape. Sci Rep 2018; 8:14144. [PMID: 30237466 PMCID: PMC6147916 DOI: 10.1038/s41598-018-32603-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Peptidylarginine deiminase (PPAD) is a virulence factor unique to pathogenic Porphyromonas species, especially P. gingivalis. Mechanistically, PPAD activity, in conjunction with Arg-specific gingipains, generates protein fragments with citrullinated C-termini. Such polypeptides are potential de novo epitopes that are key drivers of rheumatoid arthritis. This process could underlie the observed clinical association between rheumatoid arthritis and periodontitis. However, the role of PPAD in host colonization by P. gingivalis and, subsequently, in triggering periodontitis is not known. Therefore, the aim of the current study was to delineate the role of PPAD in bacterial biofilm formation, and to define whether adherence to, invasion of, and host responses to bacteria of gingival keratinocytes depend on PPAD activity. We studied these aspects using PPAD-competent and PPAD-incompetent strains of P. gingivalis, and demonstrated that neither biofilm formation nor its composition was affected by PPAD activity. Similarly, flow cytometry revealed that PPAD did not impact the ability of P. gingivalis to adhere to and, subsequently, invade keratinocytes. Network analyses of gene expression patterns, however, revealed a group of host genes that were sensitive to PPAD activity (CXCL8, IL36G, CCL20, and IL1B). These genes can be categorized as potent immune modulators belonging to the interleukin 1 system, or chemoattractants of lymphocytes and neutrophils. Thus, we conclude that PPAD, although it is a potent modulator of the immune response, does not affect bacterial biofilm formation or the ability of P. gingivalis to adhere to and invade gingival epithelial cells.
Collapse
Affiliation(s)
- Ardita Aliko
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway
| | - Marta Kamińska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Brith Bergum
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway
| | - Katarzyna Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Małgorzata Benedyk
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Richard J Lamont
- University of Louisville School of Dentistry, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40202, USA
| | - Stanisław Malicki
- Małopolska Center of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | | | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
- University of Louisville School of Dentistry, Department of Oral Immunology and Infectious Diseases, Louisville, KY, 40202, USA.
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, N-5021, Bergen, Norway.
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
26
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
27
|
Jung H, Jung SM, Rim YA, Park N, Nam Y, Lee J, Park SH, Ju JH. Arthritic role of Porphyromonas gingivalis in collagen-induced arthritis mice. PLoS One 2017; 12:e0188698. [PMID: 29190705 PMCID: PMC5708830 DOI: 10.1371/journal.pone.0188698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
Epidemiological studies show an association between rheumatoid arthritis (RA) and periodontal disease. Porphyromonas gingivalis (P.gingivalis) is a well-known pathogen in periodontitis. This study investigated the pathogenic effects of P.gingivalis on autoimmune arthritis in vivo. Collagen-induced arthritis (CIA) mice were intraperitoneally injected with W83 and 2561 strains of P.gingivalis. Infection with P.gingivalis exacerbated arthritis score in CIA mice. Synovial inflammation and bone destruction in CIA mice infected with P.gingivalis were more severe than in uninfected CIA mice. Both W83 and 2561 strains were more pro-arthritic after arthritis symptom was fully activated. Interestingly, only W83 strain was arthritogenic before autoimmune reaction initiated. Citrullination was detected in synovial tissue of CIA mice and CIA mice inoculated with P.gingivalis, but not in normal control mice. The citrullinated area was greater in P.gingivalis-infected CIA mice than in non-infected CIA mice. This study showed that P.gingivalis exacerbated disease in a mouse model of autoimmune arthritis and increased the expression of citrullinated antigens in the synovium. The arthritogenic effects of P.gingivalis were at least in part, dependent upon the bacterial strain with or without fimbriae expression, route and time of infection. P.gingivalis-mediated citrullination may explain the possible link between periodontal disease and RA.
Collapse
Affiliation(s)
- Hyerin Jung
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Narae Park
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jennifer Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Rodríguez-Rodríguez M, Herrera-Esparza R, Bollain y Goytia JJ, Pérez-Pérez ME, Pacheco-Tovar D, Murillo-Vázquez J, Pacheco-Tovar G, Avalos-Díaz E. Activation of Peptidylarginine Deiminase in the Salivary Glands of Balb/c Mice Drives the Citrullination of Ro and La Ribonucleoproteins. J Immunol Res 2017; 2017:8959687. [PMID: 29318161 PMCID: PMC5727760 DOI: 10.1155/2017/8959687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p < 0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren's syndrome.
Collapse
Affiliation(s)
- Mayra Rodríguez-Rodríguez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Rafael Herrera-Esparza
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Juan-José Bollain y Goytia
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - María-Elena Pérez-Pérez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Deyanira Pacheco-Tovar
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Jessica Murillo-Vázquez
- Pharmacology PhD Program, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Guadalupe Pacheco-Tovar
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Esperanza Avalos-Díaz
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| |
Collapse
|
29
|
Abstract
Periodontitis is an extremely prevalent disease worldwide and is driven by complex dysbiotic microbiota. Here we analyzed the transcriptional activity of the periodontal pocket microbiota from all domains of life as well as the human host in health and chronic periodontitis. Bacteria showed strong enrichment of 18 KEGG functional modules in chronic periodontitis, including bacterial chemotaxis, flagellar assembly, type III secretion system, type III CRISPR-Cas system, and two component system proteins. Upregulation of these functions was driven by the red-complex pathogens and candidate pathogens, e.g. Filifactor alocis, Prevotella intermedia, Fretibacterium fastidiosum and Selenomonas sputigena. Nine virulence factors were strongly up-regulated, among them the arginine deiminase arcA from Porphyromonas gingivalis and Mycoplasma arginini. Viruses and archaea accounted for about 0.1% and 0.22% of total putative mRNA reads, respectively, and a protozoan, Entamoeba gingivalis, was highly enriched in periodontitis. Fourteen human transcripts were enriched in periodontitis, including a gene for a ferric iron binding protein, indicating competition with the microbiota for iron, and genes associated with cancer, namely nucleolar phosphoprotein B23, ankyrin-repeat domain 30B-like protein and beta-enolase. The data provide evidence on the level of gene expression in vivo for the potentially severe impact of the dysbiotic microbiota on human health.
Collapse
|
30
|
Nikitakis NG, Papaioannou W, Sakkas LI, Kousvelari E. The autoimmunity-oral microbiome connection. Oral Dis 2016; 23:828-839. [PMID: 27717092 DOI: 10.1111/odi.12589] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
To date, there is a major effort in deciphering the role of complex microbial communities, especially the oral and gut microbiomes, in the pathogenesis of various diseases. Increasing evidence indicates a key role for the oral microbiome in autoimmune diseases. In this review article, we discuss links of the oral microbiota to a group of autoimmune diseases, that is, Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), Crohn's disease (CD), and rheumatoid arthritis (RA). We particularly focus on factors that affect the balance between the immune system and the composition of microbiota leading to dysbiosis, loss of tolerance and subsequent autoimmune disease progression and maintenance.
Collapse
Affiliation(s)
- N G Nikitakis
- Department of Oral Pathology and Medicine, Dental School, University of Athens, Athens, Greece
| | | | - L I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - E Kousvelari
- Dental School, University of Athens, Athens, Greece
| |
Collapse
|
31
|
Sakkas LI, Bogdanos DP. Infections as a cause of autoimmune rheumatic diseases. AUTOIMMUNITY HIGHLIGHTS 2016; 7:13. [PMID: 27629582 PMCID: PMC5023637 DOI: 10.1007/s13317-016-0086-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
Abstract
Exogenous and endogenous environmental exposures and particularly infections may participate in the breakage of tolerance and the induction of autoimmunity in rheumatic diseases. Response to infections apparently occurs years before clinical manifestations and features of autoimmunity, such as autoantibodies, are detected years before clinical manifestations in autoimmune rheumatic diseases. In this review, we summarize the current evidence for a potential causal link between infectious agents and rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, Sjogren’s syndrome and ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, University of Thessaly Medical School, Biopolis, 40 500, Larissa, Greece.
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University of Thessaly Medical School, Biopolis, 40 500, Larissa, Greece
| |
Collapse
|
32
|
Saijo S, Nagai A, Kinjo S, Mashimo R, Akimoto M, Kizawa K, Yabe-Wada T, Shimizu N, Takahara H, Unno M. Monomeric Form of Peptidylarginine Deiminase Type I Revealed by X-ray Crystallography and Small-Angle X-ray Scattering. J Mol Biol 2016; 428:3058-73. [DOI: 10.1016/j.jmb.2016.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 02/01/2023]
|
33
|
Lerner A, Aminov R, Matthias T. Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins. Front Microbiol 2016; 7:84. [PMID: 26903965 PMCID: PMC4742538 DOI: 10.3389/fmicb.2016.00084] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/18/2016] [Indexed: 01/09/2023] Open
Abstract
The gut ecosystem with myriads of microorganisms and the high concentration of immune system cells can be considered as a separate organ on its own. The balanced interaction between the host and microbial cells has been shaped during the long co-evolutionary process. In dysbiotic conditions, however, this balance is compromised and results in abnormal interaction between the host and microbiota. It is hypothesize here that the changed spectrum of microbial enzymes involved in post-translational modification of proteins (PTMP) may contribute to the aberrant modification of host proteins thus generating autoimmune responses by the host, resulting in autoimmune diseases.
Collapse
Affiliation(s)
- Aaron Lerner
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifa, Israel; AESKU.KIPP InstituteWendelsheim, Germany
| | - Rustam Aminov
- School of Medicine and Dentistry, University of Aberdeen Aberdeen, UK
| | | |
Collapse
|
34
|
Bogdanos DP, Smyk DS, Rigopoulou EI, Sakkas LI, Shoenfeld Y. Infectomics and autoinfectomics: a tool to study infectious-induced autoimmunity. Lupus 2015; 24:364-73. [PMID: 25801879 DOI: 10.1177/0961203314559088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The exposome represents all exogenous and endogenous environmental exposures that begin at preconception and carry on throughout life, while the microbiome reflects the microbial component of the exposome. We recently introduced the concept of infectome and autoinfectome as a means of studying the totality of infections throughout life that participate in the induction as well as the progression of autoimmune diseases in an affected individual. The investigation of the autoinfectome could help us understand why some patients develop more than one autoimmune disease, a phenomenon also known as mosaic of autoimmunity. It could also explain the infectious and autoantibody burden of various autoimmune rheumatic diseases. The close interplay between infections and the immune system should be studied over time, long before the onset of autoaggression and autoimmunity. Tracking down each individual's exposure to infectious agents (as defined by the autoinfectome) would be important for the establishment of a causative link between infection and autoimmunity.
Collapse
Affiliation(s)
- D P Bogdanos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - D S Smyk
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | - E I Rigopoulou
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - L I Sakkas
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
35
|
Gabarrini G, de Smit M, Westra J, Brouwer E, Vissink A, Zhou K, Rossen JWA, Stobernack T, van Dijl JM, van Winkelhoff AJ. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Sci Rep 2015; 5:13936. [PMID: 26403779 PMCID: PMC4585897 DOI: 10.1038/srep13936] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an infective process that ultimately leads to destruction of the soft and hard tissues that support the teeth (the periodontium). Periodontitis has been proposed as a candidate risk factor for development of the autoimmune disease rheumatoid arthritis (RA). Porphyromonas gingivalis, a major periodontal pathogen, is the only known prokaryote expressing a peptidyl arginine deiminase (PAD) enzyme necessary for protein citrullination. Antibodies to citrullinated proteins (anti-citrullinated protein antibodies, ACPA) are highly specific for RA and precede disease onset. Objective of this study was to assess P. gingivalis PAD (PPAD) gene expression and citrullination patterns in representative samples of P. gingivalis clinical isolates derived from periodontitis patients with and without RA and in related microbes of the Porphyromonas genus. Our findings indicate that PPAD is omnipresent in P. gingivalis, but absent in related species. No significant differences were found in the composition and expression of the PPAD gene of P. gingivalis regardless of the presence of RA or periodontal disease phenotypes. From this study it can be concluded that if P. gingivalis plays a role in RA, it is unlikely to originate from a variation in PPAD gene expression.
Collapse
Affiliation(s)
- Giorgio Gabarrini
- Center for Dentistry and Oral Hygiene, University of Groningen and University Medical Center Groningen, the Netherlands
| | - Menke de Smit
- Center for Dentistry and Oral Hygiene, University of Groningen and University Medical Center Groningen, the Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen and University Medical Center Groningen, the Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen and University Medical Center Groningen, the Netherlands
| | - Kai Zhou
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Tim Stobernack
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- Center for Dentistry and Oral Hygiene, University of Groningen and University Medical Center Groningen, the Netherlands.,Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
36
|
Laugisch O, Wong A, Sroka A, Kantyka T, Koziel J, Neuhaus K, Sculean A, Venables PJ, Potempa J, Möller B, Eick S. Citrullination in the periodontium--a possible link between periodontitis and rheumatoid arthritis. Clin Oral Investig 2015; 20:675-83. [PMID: 26264638 DOI: 10.1007/s00784-015-1556-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of the present study was to assess human and bacterial peptidylarginine deiminase (PAD) activity in the gingival crevicular fluid (GCF) in the context of serum levels of antibodies against citrullinated epitopes in rheumatoid arthritis and periodontitis. MATERIALS AND METHODS Human PAD and Porphyromonas gingivalis-derived enzyme (PPAD) activities were measured in the GCF of 52 rheumatoid arthritis (RA) patients (48 with periodontitis and 4 without) and 44 non-RA controls (28 with periodontitis and 16 without). Serum antibodies against citrullinated epitopes were measured by ELISA. Bacteria being associated with periodontitis were determined by nucleic-acid-based methods. RESULTS Citrullination was present in 26 (50%) RA patients and 23 (48%) controls. PAD and PPAD activities were detected in 36 (69%) and 30 (58%) RA patients, respectively, and in 30 (68%) and 21 (50%) controls, respectively. PPAD activity was higher in RA and non-RA patients with periodontitis than in those without (p = 0.038; p = 0.004), and was detected in 35 of 59 P. gingivalis-positive samples, and in 16 of 37 P. gingivalis-negative samples in association with high antibody levels against that species. CONCLUSIONS PAD and PPAD activities within the periodontium are elevated in RA and non-RA patients with periodontitis. PPAD secreted by P. gingivalis residing in epithelial cells may exert its citrullinating activity in distant regions of the periodontium or even distant tissues. CLINICAL RELEVANCE In periodontitis, the citrullination of proteins/peptides by human and bacterial peptidylarginine deiminases may generate antibodies after breaching immunotolerance in susceptible individuals.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Alicia Wong
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Aneta Sroka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Tomasz Kantyka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
- Malopolska Center of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
| | - Klaus Neuhaus
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Patrick J Venables
- Kennedy Institute, Nuffield Dept of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387, Krakow, Poland
- Malopolska Center of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Burkhard Möller
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| |
Collapse
|
37
|
Montgomery AB, Kopec J, Shrestha L, Thezenas ML, Burgess-Brown NA, Fischer R, Yue WW, Venables PJ. Crystal structure of Porphyromonas gingivalis peptidylarginine deiminase: implications for autoimmunity in rheumatoid arthritis. Ann Rheum Dis 2015. [PMID: 26209657 PMCID: PMC4893104 DOI: 10.1136/annrheumdis-2015-207656] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Periodontitis (PD) is a known risk factor for rheumatoid arthritis (RA) and there is increasing evidence that the link between the two diseases is due to citrullination by the unique bacterial peptidylarginine deiminase (PAD) enzyme expressed by periodontal pathogen Pophyromonas gingivalis (PPAD). However, the precise mechanism by which PPAD could generate potentially immunogenic peptides has remained controversial due to lack of information about the structural and catalytic mechanisms of the enzyme. OBJECTIVES By solving the 3D structure of PPAD we aim to characterise activity and elucidate potential mechanisms involved in breach of tolerance to citrullinated proteins in RA. METHODS PPAD and a catalytically inactive mutant PPAD(C351A) were crystallised and their 3D structures solved. Key residues identified from 3D structures were examined by mutations. Fibrinogen and α-enolase were incubated with PPAD and P. gingivalis arginine gingipain (RgpB) and citrullinated peptides formed were sequenced and quantified by mass spectrometry. RESULTS Here, we solve the crystal structure of a truncated, highly active form of PPAD. We confirm catalysis is mediated by the following residues: Asp130, His236, Asp238, Asn297 and Cys351 and show Arg152 and Arg154 may determine the substrate specificity of PPAD for C-terminal arginines. We demonstrate the formation of 37 C-terminally citrullinated peptides from fibrinogen and 11 from α-enolase following incubation with tPPAD and RgpB. CONCLUSIONS PPAD displays an unequivocal specificity for C-terminal arginine residues and readily citrullinates peptides from key RA autoantigens. The formation of these novel citrullinated peptides may be involved in breach of tolerance to citrullinated proteins in RA.
Collapse
Affiliation(s)
- Anna B Montgomery
- Kennedy institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Marie-Laetitia Thezenas
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Patrick J Venables
- Kennedy institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Nat Rev Rheumatol 2015; 11:450-61. [PMID: 25986717 DOI: 10.1038/nrrheum.2015.59] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) and coeliac disease are inflammatory diseases that both have a strong association with class II HLAs: individuals carrying HLA-DQ2.5 and/or HLA-DQ8 alleles have an increased risk of developing coeliac disease, whereas those carrying HLA-DR shared epitope alleles exhibit an increased risk of developing RA. Although the molecular basis of the association with specific HLA molecules in RA remains poorly defined, an immune response against post-translationally modified protein antigens is a hallmark of each disease. In RA, understanding of the pathogenetic role of B-cell responses to citrullinated antigens, including vimentin, fibrinogen and α-enolase, is rapidly growing. Moreover, insight into the role of HLAs in the pathogenesis of coeliac disease has been considerably advanced by the identification of T-cell responses to deamidated gluten antigens presented in conjunction with predisposing HLA-DQ2.5 molecules. This article briefly reviews these advances and draws parallels between the immune mechanisms leading to RA and coeliac disease, which point to a crucial role for T-cell-B-cell cooperation in the development of full-blown disease. Finally, the ways in which these novel insights are being exploited therapeutically to re-establish tolerance in patients with RA and coeliac disease are described.
Collapse
|
39
|
Valesini G, Gerardi MC, Iannuccelli C, Pacucci VA, Pendolino M, Shoenfeld Y. Citrullination and autoimmunity. Autoimmun Rev 2015; 14:490-7. [PMID: 25636595 DOI: 10.1016/j.autrev.2015.01.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/19/2015] [Indexed: 01/27/2023]
Abstract
Autoimmune diseases are characterized by the body's own immune system attack to the self-tissues, a condition enabled, in predisposed subjects, by the reduction of self-tolerance. A central role has been recently recognized to post-translational modifications, since they can promote generation of neo-(auto)antigens and in turn an autoimmune response. During the last years great attention has been paid to citrullination, because of its role in inducing anti-citrullinated proteins/peptide antibodies (ACPA), a class of autoantibodies with diagnostic, predictive and prognostic value for Rheumatoid Arthritis (RA). Nonetheless, citrullination has been reported to be a process present in a wide range of inflammatory tissues. Indeed, citrullinated proteins have been detected also in other inflammatory arthritides and in inflammatory conditions other than arthritides (polymyositis, inflammatory bowel disease and chronic tonsillitis). Moreover, environmental exposure to cigarette smoke and nanomaterials of air pollution may be able to induce citrullination in lung cells prior to any detectable onset of inflammatory responses, suggesting that protein citrullination could be considered as a sign of early cellular damage. Accordingly, citrullination seems to be implicated in all those para-physiological processes, such as cells death pathways, in which intracellular calcium concentration raises to higher levels than in physiologic conditions: hence, peptidylarginine deiminases enzymes are activated during apoptosis, autophagy and NETosis, processes which are well-known to be implicated in autoimmunity. Taken together, these data support the hypothesis that rather than being a disease-dependent process, citrullination is an inflammatory-dependent condition that plays a central role in autoimmune diseases.
Collapse
Affiliation(s)
- Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia - Sapienza Università di Roma, Rome, Italy.
| | - Maria C Gerardi
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia - Sapienza Università di Roma, Rome, Italy
| | - Cristina Iannuccelli
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia - Sapienza Università di Roma, Rome, Italy
| | - Viviana A Pacucci
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia - Sapienza Università di Roma, Rome, Italy
| | - Monica Pendolino
- Dipartimento di Medicina Interna e Specialità Mediche, Reumatologia - Sapienza Università di Roma, Rome, Italy
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Tel-Aviv University, Israel
| |
Collapse
|
40
|
Utility of Autoantibodies as Biomarkers for Diagnosis and Staging of Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 122:1-51. [DOI: 10.1016/bs.irn.2015.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Joseph R, Raj MGJ, Sundareswaran S, Kaushik PC, Nagrale AV, Jose S, Rajappan S. Does a biological link exist between periodontitis and rheumatoid arthritis? World J Rheumatol 2014; 4:80-87. [DOI: 10.5499/wjr.v4.i3.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/30/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Periodontitis or Periodontal disease (PD) and Rheumatoid arthritis (RA) are two the most common chronic inflammatory diseases. Periodontitis is a biofilm associated destructive inflammatory disease of the periodontium caused by specific microorganisms. Rheumatoid arthritis is an autoimmune condition and is identified by elevated serum autoantibody titre directed against citrullinated peptides or rheumatoid factor. Periodontitis may involve some elements of autoimmunity. Recent studies have established that PD and RA show a common pathway and could be closely associated through a common dysregulation and dysfunction in inflammatory mechanism. The enzyme peptidyl arginine deiminase (PAD), expressed by Porphyromonas gingivalis (P. gingivalis) is responsible for the enzymatic deimination of arginine residuals to citrulline resulting in protein citrullination and its increased accumulation in RA. Citrullination by PAD may act as a putative biologic link between PD and RA. Association of Human leukocytic antigen-DR4 antigen has been established both with RA and PD. Several interleukins and inflammatory mediators (ILs) and Nuclear factor kappa beta ligand are linked to these common chronic inflammatory diseases. Antibodies directed against heat shock protein (hsp 70 ab) of P. gingivalis, P. melanogenicus and P. intermedia are raised in PD as well as RA. Both the conditions share many pathological and immunological similarities. Bacterial infection, genetic susceptibility, altered immune reaction and inflammatory mediators considered responsible for RA are also associated with PD. So it is plausible that a biological link may exist between PD and RA. Therapies aimed at modifying the expression and effect of inflammatory mediators and effector molecules such as matrix metalloproteinases, proinflammatory cytokines and autoantibodies of structural proteins may probably reduce the severity of both RA and PD.
Collapse
|
42
|
Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev 2014; 13:1114-20. [PMID: 25182207 DOI: 10.1016/j.autrev.2014.08.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the presence of rheumatoid factor (RF) and anti-citrullinated protein/peptide autoantibodies (ACPAs). Citrulline derives from arginine by peptidyl arginine deiminases, and ACPAs are directed against different citrullinated antigens, including fibrinogen, fibronectin, α-enolase, collagen type II, histones. ACPAs are present in two thirds of RA patients have higher specificity than RF for RA, and are associated with joint radiographic damage and extra-articular manifestations and they are detected years before the onset clinical arthritis. Recent studies suggest that citrullinated antigens are most likely arthritogenic autoantigens in RA. ACPA production is associated with the HLA-DRB1 shared epitope (HLA-DRB1 SE) and accounts for the well-known RA-HLA-DRB1 SE association, as T cells recognize citrullinated peptides. Smoking and periodontitis, known environmental risk factors for RA promote protein citrullination and ACPA production. Cirullinated proteins are capable of inducing arthritis in transgenic mice carrying HLA-DRB1 SE genes, and ACPAs induce macrophage TNF-α production, osteoclastogenesis and complement activation. They also induce the formation of neutrophil extracellular traps (NETs). NETs, increased in RA, are a source of citrullinated autoantigens in RA and induce fibroblast interleukin-8 production. This knowledge is likely to have therapeutic implications, as there is a need of matching therapy with patient profile. Abatacept, a T cell activation modulator, is the best therapy for ACPA(+) RA patients, although clinical data are sparse at present. Rituximab, a monoclonal antibody that depletes B cells, is also the best therapy for ACPA(+) RA patients, and clinical data support this view.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis 41110, Larissa, Greece; Center for Molecular Medicine, Old Dominion University, 23529 Norfolk, VA, USA.
| | - Dimitrios P Bogdanos
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis 41110, Larissa, Greece; Division of Transplantation Immunology and Mucosal Biology, Kings College London School of Medicine, SE5 9RS London, UK.
| | - Christina Katsiari
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis 41110, Larissa, Greece.
| | - Chris D Platsoucas
- Center for Molecular Medicine, Old Dominion University, 23529 Norfolk, VA, USA.
| |
Collapse
|
43
|
Gully N, Bright R, Marino V, Marchant C, Cantley M, Haynes D, Butler C, Dashper S, Reynolds E, Bartold M. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS One 2014; 9:e100838. [PMID: 24959715 PMCID: PMC4069180 DOI: 10.1371/journal.pone.0100838] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. METHODS A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. RESULTS The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. CONCLUSION This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now needed to elucidate the mechanisms which drive these processes.
Collapse
Affiliation(s)
- Neville Gully
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Richard Bright
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Marino
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Ceilidh Marchant
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - David Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Catherine Butler
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Dashper
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Bartold
- Colgate Australian Clinical Dental Research, School of Dentistry, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|