1
|
Sim S, Choi Y, Park HS. Update on Inflammatory Biomarkers for Defining Asthma Phenotype. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:462-472. [PMID: 39363766 PMCID: PMC11450439 DOI: 10.4168/aair.2024.16.5.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Asthma is a chronic heterogeneous disease characterized by various symptoms and persistent airway inflammation, resulting in progressive lung function decline. Classifying asthma phenotypes/endotypes is crucial because the underlying mechanisms and long-term outcomes vary from patient to patient. Recent trials have identified several biomarkers for classifying asthma phenotypes/endotypes, and current treatments have been developed on the basis of these biomarkers. Conventional biomarkers, including immunoglobulin E, blood/sputum eosinophil counts, airway obstruction or reversibility, and fractional exhaled nitric oxide, are widely used to diagnose asthma. However, these markers have some limitations, necessitating the discovery of additional biomarkers. Therefore, this review summarizes recently suggested biomarkers for representing type 2-high (eosinophilic) vs. type 2-low (neutrophilic) asthma, non-steroidal anti-inflammatory drug-exacerbated respiratory disease, and severe asthma. Additionally, we discuss the potential benefits of these biomarkers in classifying specific phenotypes/endotypes and managing asthmatic patients.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
2
|
Fathollahpour A, Abdi Abyaneh F, Darabi B, Ebrahimi M, Kooti W, Nasiri Kalmarzi R. Main Polymorphisms in Aspirin-Exacerbated Respiratory Disease. Gene 2023; 870:147326. [PMID: 37011853 DOI: 10.1016/j.gene.2023.147326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a condition caused by increased bronchoconstriction in people with asthma after taking aspirin or another NSAID. Molecular analysis of the human genome has opened up new perspectives on human polymorphisms and disease. This study was conducted to identify the genetic factors that influence this disease due to its unknown genetic factors. We evaluated research studies, letters, comments, editorials, eBooks, and reviews. PubMed/MEDLINE, Web of Sciences, Cochrane Library, and Scopus were searched for information. We used the keywords polymorphisms, aspirin-exacerbated respiratory disease, asthma, allergy as search terms. This study included 38 studies. AERD complications were associated with polymorphisms in ALOX15, EP2, ADRB2, SLC6A12, CCR3, CRTH2, CysLTs, DPCR1, DPP10, FPR2, HSP70, IL8, IL1B, IL5RA, IL-13, IL17RA, ILVBL, TBXA2R, TLR3, HLA-DRB and HLA-DQ, HLA-DR7, HLA-DP. AERD was associated with heterogeneity in gene polymorphisms, making it difficult to pinpoint specific gene changes. Therefore, diagnosing and treating AERD may be facilitated by examining common variants involving the disease.
Collapse
|
3
|
Tuncay G, Damadoglu E, Cihanbeylerden M, Can Bostan O, Kayıkcı H, Özer S, Karakaya G, Kalyoncu AF. Comparison of the clinical outcomes of patients with NSAID-exacerbated respiratory disease receiving aspirin or biologicals. J Asthma 2023:1-10. [PMID: 36971076 DOI: 10.1080/02770903.2023.2196567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE NSAID-exacerbated respiratory disease (NERD) is characterized by exacerbation of respiratory symptoms after NSAID intake. While research for specific treatment options continues in patients who cannot tolerate or are unresponsive to aspirin treatment after aspirin desensitization (ATAD), biologicals have emerged as a new therapeutic option in NERD patients. The aim of this study was to compare the quality of life, and the sinonasal and respiratory outcomes of NERD patients treated with ATAD or biologicals. METHODS Patients who have been followed up at a tertiary care allergy center and who have been receiving at least one of ATAD, mepolizumab or omalizumab for at least six months were included. Evaluations were made using sinonasal outcome test (SNOT-22), asthma control test (ACT), short form-36 (SF-36), blood eosinophil counts, need for recurrent functional endoscopic sinus surgeries (FESS), and asthma or rhinitis exacerbations requiring oral corticosteroids (OCS). RESULTS A total of 59 patients comprised of 35 (59%) females and 24 (41%) males with a mean age of 46.1 (min-max, 20-70) years were included. The baseline blood eosinophil count was higher, and a significant decrease in blood eosinophil counts was observed in the mepolizumab group compared to ATAD group (p = 0.001, p < 0.001, respectively). At follow-up, the rate of recurrent FESS was lower in the group that received mepolizumab (p = 0.02). CONCLUSIONS In NERD patients, mepolizumab significantly decreased blood eosinophil counts and recurrent FESS. There was no significant difference between the patients receiving ATAD or mepolizumab regarding other clinical parameters.
Collapse
|
4
|
Rhyou HI, Nam YH, Park HS. Emerging Biomarkers Beyond Leukotrienes for the Management of Nonsteroidal Anti-inflammatory Drug (NSAID)-Exacerbated Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:153-167. [PMID: 35255534 PMCID: PMC8914608 DOI: 10.4168/aair.2022.14.2.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is a unique condition characterized by aspirin/NSAID hypersensitivity, adult-onset asthma, and/or chronic rhinosinusitis with nasal polyps. Arachidonic acid metabolism dysregulation and intense eosinophilic/type 2 inflammation are central mechanisms in NERD. Studies have been conducted on various biomarkers, and urinary leukotriene E4 is considered the most available biomarker of NERD. However, the pathophysiology of NERD is heterogeneous and complex. Epithelial cells and platelets can interact with immune cells in NERD, and novel biomarkers related to these interactions have recently been investigated. We summarize emerging novel biomarkers of NERD and discuss their roles in the management of NERD.
Collapse
Affiliation(s)
- Hyo-In Rhyou
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young-Hee Nam
- Department of Internal Medicine, College of Medicine, Dong-A University, Busan, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Jin Y, Song J, Xu F, Zhang D, He J, Zheng J, Zhang Y, Li J, Guo Y, Xu M, Yu X, Liu Y, Liu Q, Yan J. Association between YKL-40 and asthma: a systematic meta-analysis. Sleep Breath 2021; 26:1011-1022. [PMID: 34657273 DOI: 10.1007/s11325-021-02495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Many studies have shown that chitinase-3-like protein 1 (CHI3L1), also known as YKL-40, is associated with asthma. The purpose of this meta-analysis was to evaluate the role of serum YKL-40 in the diagnosis and differential diagnosis of asthma, severity grading, and determination of disease state. METHODS The PubMed, Ovid, and Cochrane databases were searched. A total of 17 articles involving 5696 subjects were included in this meta-analysis. RESULTS The results showed that the level of YKL-40 was significantly higher in asthmatic patients than in the normal group regardless of age and residential location, and increased with severity and acute exacerbation (p < 0.05). YKL-40 levels were significantly different between chronic obstructive pulmonary disease (COPD) and asthma, and also between asthma-COPD overlap syndrome (ACO) and asthma (p < 0.05). CONCLUSION YKL-40 may act as a potential serological marker for the diagnosis of asthma, assessment of severity, indicator of the disease state, and differential diagnosis of COPD, ACO, and asthma.
Collapse
Affiliation(s)
- Yihan Jin
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jie Song
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Fang Xu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jinfang He
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jiakun Zheng
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yanan Zhang
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jintong Li
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yikun Guo
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Mengjiao Xu
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiangfeng Yu
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yanbin Liu
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinghua Liu
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jun Yan
- Department of Respiratory Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
6
|
Sim S, Choi Y, Lee DH, Lee HR, Seob Shin Y, Park HS. Contribution of dipeptidyl peptidase 10 to airway dysfunction in patients with NSAID-exacerbated respiratory disease. Clin Exp Allergy 2021; 52:115-126. [PMID: 34431147 DOI: 10.1111/cea.14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Genetic variants of dipeptidyl peptidase 10 (DPP10) have been suggested to contribute to the development of NSAID-exacerbated respiratory disease (NERD). However, the mechanisms of how DPP10 contributes to NERD phenotypes remain unclear. OBJECTIVE To demonstrate the exact role of DPP10 in the pathogenesis of NERD. METHODS Patients with NERD (n = 110), those with aspirin-tolerant asthma (ATA, n = 130) and healthy control subjects (HCs, n = 80) were enrolled. Clinical characteristics were analysed according to the serum DPP10 levels in both NERD and ATA groups. The function of DPP10 in airway inflammation and remodelling was investigated with in vitro, ex vivo and in vivo experiments. RESULTS NERD patients had higher levels of serum DPP10 and TGF-β1 with lower FEV1 than ATA patients or HCs (p < .05 for each). NERD patients with higher DPP10 levels had higher TGF-β1, but lower FEV1 (p < .05 for all), whilst no differences were noted in ATA patients. Moreover, the seum DPP10 levels had a positive correlation with TGF-β1 (r = 0.384, p < .001), but a negative correlation with FEV1 (r = -0.230, p = .016) in NERD patients. In in vitro studies, expression of DPP10 in airway epithelial cells was enhanced by TGF-β1 treatments. Furthermore, DPP10 was found to be produced from immune cells and this molecule induced the ERK phosphorylation in airway epithelial cells, which was suppressed by anti-DPP10 treatment. In asthmatic mouse models, increased levels of DPP10 in the serum and TGF-β1 in the bronchoalveolar lavage fluid were noted, which were suppressed by anti-DPP10 treatment. Moreover, anti-DPP10 treatment inhibited the ERK phosphorylation and extracellular matrix deposition in the lungs. CONCLUSIONS AND CLINICAL RELEVANCE These findings suggest that increased production of DPP10 may contribute to TGF-β1-mediated airway dysfunction in NERD patients, where blockade of DPP10 may have potential benefits.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
7
|
Trinh HKT, Pham LD, Le KM, Park HS. Pharmacogenomics of Hypersensitivity to Non-steroidal Anti-inflammatory Drugs. Front Genet 2021; 12:647257. [PMID: 34249079 PMCID: PMC8269449 DOI: 10.3389/fgene.2021.647257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are extensively prescribed in daily clinical practice. NSAIDs are the main cause of drug hypersensitivity reactions all over the world. The inhibition of cyclooxygenase enzymes by NSAIDs can perpetuate arachidonic acid metabolism, shunting to the 5-lipoxygenase pathway and its downstream inflammatory process. Clinical phenotypes of NSAID hypersensitivity are diverse and can be classified into cross-reactive or selective responses. Efforts have been made to understand pathogenic mechanisms, in which, genetic and epigenetic backgrounds are implicated in various processes of NSAID-induced hypersensitivity reactions. Although there were some similarities among patients, several genetic polymorphisms are distinct in those exhibiting respiratory or cutaneous symptoms. Moreover, the expression levels, as well as the methylation status of genes related to immune responses were demonstrated to be involved in NSAID-induced hypersensitivity reactions. There is still a lack of data on delayed type reactions. Further studies with a larger sample size, which integrate different genetic pathways, can help overcome current limitations of gen etic/epigenetic studies, and provide valuable information on NSAID hypersensitivity reactions.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Le Duy Pham
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kieu Minh Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
8
|
Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, Poetker DM, Soler Z, Welch KC, Wise SK, Adappa N, Alt JA, Anselmo-Lima WT, Bachert C, Baroody FM, Batra PS, Bernal-Sprekelsen M, Beswick D, Bhattacharyya N, Chandra RK, Chang EH, Chiu A, Chowdhury N, Citardi MJ, Cohen NA, Conley DB, DelGaudio J, Desrosiers M, Douglas R, Eloy JA, Fokkens WJ, Gray ST, Gudis DA, Hamilos DL, Han JK, Harvey R, Hellings P, Holbrook EH, Hopkins C, Hwang P, Javer AR, Jiang RS, Kennedy D, Kern R, Laidlaw T, Lal D, Lane A, Lee HM, Lee JT, Levy JM, Lin SY, Lund V, McMains KC, Metson R, Mullol J, Naclerio R, Oakley G, Otori N, Palmer JN, Parikh SR, Passali D, Patel Z, Peters A, Philpott C, Psaltis AJ, Ramakrishnan VR, Ramanathan M, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Sedaghat AR, Senior BA, Sindwani R, Smith K, Snidvongs K, Stewart M, Suh JD, Tan BK, Turner JH, van Drunen CM, Voegels R, Wang DY, Woodworth BA, Wormald PJ, Wright ED, Yan C, Zhang L, Zhou B. International consensus statement on allergy and rhinology: rhinosinusitis 2021. Int Forum Allergy Rhinol 2021; 11:213-739. [PMID: 33236525 DOI: 10.1002/alr.22741] [Citation(s) in RCA: 413] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
I. EXECUTIVE SUMMARY BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. METHODS ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. RESULTS ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. CONCLUSION This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.
Collapse
Affiliation(s)
| | | | | | | | | | - Amber U Luong
- University of Texas Medical School at Houston, Houston, TX
| | | | - Zachary Soler
- Medical University of South Carolina, Charleston, SC
| | - Kevin C Welch
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | - Claus Bachert
- Ghent University, Ghent, Belgium.,Karolinska Institute, Stockholm, Sweden.,Sun Yatsen University, Gangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David A Gudis
- Columbia University Irving Medical Center, New York, NY
| | - Daniel L Hamilos
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Richard Harvey
- University of New South Wales and Macquarie University, Sydney, New South Wales, Australia
| | | | | | | | | | - Amin R Javer
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital, UCLH, London, UK
| | - Kevin C McMains
- Uniformed Services University of Health Sciences, San Antonio, TX
| | | | - Joaquim Mullol
- IDIBAPS Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | - Alkis J Psaltis
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | - Luke Rudmik
- University of Calgary, Calgary, Alberta, Canada
| | - Raymond Sacks
- University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | - De Yun Wang
- National University of Singapore, Singapore, Singapore
| | | | | | | | - Carol Yan
- University of California San Diego, La Jolla, CA
| | - Luo Zhang
- Capital Medical University, Beijing, China
| | - Bing Zhou
- Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Gans MD, Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr Respir Rev 2020; 36:118-127. [PMID: 31678040 DOI: 10.1016/j.prrv.2019.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a common disease in paediatrics and adults with a significant morbidity, mortality, and financial burden worldwide. Asthma is now recognized as a heterogeneous disease and emerging clinical and laboratory research has elucidated understanding of asthma's underlying immunology. The future of asthma is classifying asthma by endotype through connecting discernible characteristics with immunological mechanisms. This comprehensive review of the immunology of asthma details the currently known pathophysiology and clinical practice biomarkers in addition to forefront biologic and targeted therapies for all of the asthma endotypes. By understanding the immunology of asthma, practitioners will be able to diagnose patients by asthma endotype and provide personalized, biomarker-driven treatments to effectively control patients' asthma.
Collapse
Affiliation(s)
- Melissa D Gans
- Division of Allergy and Immunology, Montefiore Medical Center, 1525 Blondell Ave, Bronx, NY 10461, USA.
| | - Tatyana Gavrilova
- Division of Allergy and Immunology, Montefiore Medical Center, 1525 Blondell Ave, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Wang X, Su YR, Petersen PS, Bien S, Schmit SL, Drew DA, Albanes D, Berndt SI, Brenner H, Campbell PT, Casey G, Chang-Claude J, Gallinger SJ, Gruber SB, Haile RW, Harrison TA, Hoffmeister M, Jacobs EJ, Jenkins MA, Joshi AD, Li L, Lin Y, Lindor NM, Marchand LL, Martin V, Milne R, Maclnnis R, Moreno V, Nan H, Newcomb PA, Potter JD, Rennert G, Rennert H, Slattery ML, Thibodeau SN, Weinstein SJ, Woods MO, Chan AT, White E, Hsu L, Peters U. Exploratory Genome-Wide Interaction Analysis of Nonsteroidal Anti-inflammatory Drugs and Predicted Gene Expression on Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:1800-1808. [PMID: 32651213 PMCID: PMC7556991 DOI: 10.1158/1055-9965.epi-19-1018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. METHODS Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. RESULTS Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10-4), KRT16 (PG×E = 2.3 × 10-4), CD14 (PG×E = 9.38 × 10-4), and CYP27A1 (PG×E = 1.44 × 10-3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10-5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR < 0.2. CONCLUSIONS By incorporating functional information, we discovered several novel genes that interacted with NSAID use. IMPACT These findings provide preliminary support that could help understand the chemopreventive mechanisms of NSAIDs on colorectal cancer.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Yu-Ru Su
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paneen S Petersen
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Stephanie Bien
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham Casey
- Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Steven J Gallinger
- Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Division of General Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert W Haile
- Department of Health Research and Policy (Epidemiology), Stanford University School of Medicine, Palo Alto, California
- Department of Medicine (Oncology), Stanford Cancer Institute, Palo Alto, California
| | - Tabitha A Harrison
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Yi Lin
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Vicente Martin
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Roger Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Robert Maclnnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Polly A Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - John D Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Steve N Thibodeau
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emily White
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Li Hsu
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ulrike Peters
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| |
Collapse
|
11
|
Woo SD, Luu QQ, Park HS. NSAID-Exacerbated Respiratory Disease (NERD): From Pathogenesis to Improved Care. Front Pharmacol 2020; 11:1147. [PMID: 32848759 PMCID: PMC7399220 DOI: 10.3389/fphar.2020.01147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Nonsteroidal antiinflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is characterized by moderate-to-severe asthma and a higher prevalence of chronic rhinosinusitis/nasal polyps, but is a highly heterogeneous disorder with various clinical manifestations. Two major pathogenic mechanisms are: (1) overproduction of cysteinyl leukotrienes with dysregulation of arachidonic acid metabolism and (2) increased type 2 eosinophilic inflammation affected by genetic mechanisms. Aspirin challenge is the gold standard to diagnose NERD, whereas reliable in vitro biomarkers have yet not been identified. Therapeutic approaches have been done on the basis of disease severity with the avoidance of culprit and cross-reacting NSAIDs, and when indicated, aspirin desensitization is an effective treatment option. Biologic approaches targeting Type 2 cytokines are emerging as potential therapeutic options. Here, we summarize the up-to-date evidence of pathophysiologic mechanisms and diagnosis/management approaches to the patients with NERD with its phenotypic classification.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Quoc Quang Luu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
12
|
Narendra D, Blixt J, Hanania NA. Immunological biomarkers in severe asthma. Semin Immunol 2019; 46:101332. [PMID: 31735516 DOI: 10.1016/j.smim.2019.101332] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Severe asthma is heterogeneous in its clinical presentation, underlying pathophysiology, course and response to therapy. Clinical and physiological assessment of severe asthma is often inadequate in predicting underlying disease mechanisms and or response to medications. With the emergence of novel targeted therapies in severe asthma, the need for reproducible, easily measured biomarkers became obvious but only few are currently available for clinical use. These biomarkers along with the clinical presentation of the patient play an important role in identifying phenotypes and endotypes, predicting the clinical course and prognosis and improving the precision therapeutic approach to asthma.
Collapse
Affiliation(s)
- Dharani Narendra
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - John Blixt
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, United States.
| |
Collapse
|
13
|
Tripathi P, Deng F, Scruggs AM, Chen Y, Huang SK. Variation in doses and duration of particulate matter exposure in bronchial epithelial cells results in upregulation of different genes associated with airway disorders. Toxicol In Vitro 2018; 51:95-105. [PMID: 29753051 PMCID: PMC6464127 DOI: 10.1016/j.tiv.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 11/25/2022]
Abstract
Exposure to particulate matter < 2.5 μm (PM2.5) is associated with a variety of airway diseases. Although studies have demonstrated that high doses of PM2.5 cause cytotoxicity and changes to gene expression in bronchial epithelial cells, the effect of lower doses and repeated exposure to PM2.5 are less well studied. Here, we treated BEAS-2B cells with varying doses of PM2.5 for 1-7 days and examined the expression of a variety of genes implicated in airway disorders. At high doses, PM2.5 increased the expression of IL6, TNF, TSLP, CSF2, PTGS2, IL4R, and SPINK5. Other genes such as ADAM33, ORMDL3, DPP10 and CYP1A1, however, were increased by PM2.5 at much lower doses (≤1 μg/cm2). Repeated exposure to PM2.5 at 1 or 5 μg/cm2 every day for 7 days increased the sensitivity and magnitude of change for all of the aforementioned genes. Genes such as IL13 and TGFB1, increased only when cells were repeatedly exposed to PM2.5. Treatment with an antioxidant, or inhibitors to aryl hydrocarbon receptor or NF-κB attenuated the effect of PM2.5. These data demonstrate that PM2.5 exerts pleiotropic actions that differ by dose and duration that affect a variety of genes important to the development of airway disease.
Collapse
Affiliation(s)
- Priya Tripathi
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Plaza-Serón MDC, García-Martín E, Agúndez JA, Ayuso P. Hypersensitivity reactions to nonsteroidal anti-inflammatory drugs: an update on pharmacogenetics studies. Pharmacogenomics 2018; 19:1069-1086. [PMID: 30081739 DOI: 10.2217/pgs-2018-0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the medications most frequently involved in hypersensitivity reactions to drugs. These can be induced by specific immunological and nonimmunological mechanisms, being the latter the most frequent. The nonimmunological mechanism is related to an imbalance of inflammatory mediators, which is aggravated by the cyclooxygenase inhibition. Genetic studies suggest that multiples genes and additional mechanisms might be involved. The proposals of this review is summarize the contribution of variations in genes involved in the arachidonic acid, inflammatory and immune pathways as well as the recent genome-wide association studies findings related to cross-intolerant nonsteroidal anti-inflammatory drugs hypersensitivity reactions. In addition, using integration of different genetic studies, we propose new target genes. This will help to understand the underlying mechanism of these reactions.
Collapse
Affiliation(s)
- María Del Carmen Plaza-Serón
- Research Laboratory-Allergy Unit, Biomedical Institute of Malaga (IBIMA), Regional University Hospital of Malaga (Carlos Haya Hospital), Avda. Hospital Civil s/n, 29009 Malaga, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jose Augusto Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Pedro Ayuso
- Infection Pharmacology Group, Department of Molecular & Clinical Pharmacology University of Liverpool, L69 3GF, Liverpool, UK
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The pathophysiology of aspirin-exacerbated respiratory disease (AERD) is not fully understood and diagnostic methods and so far, treatments for AERD have not been standardized. We summarize recent research into the pathological mechanisms of AERD, diagnostic methods, and treatments for AERD patients. RECENT FINDINGS In AERD pathophysiology, not only the reduced expression of E prostanoid 2 but also the dysfunction of its pathway could be involved. Moreover, eosinophils of AERD patients could be directly activated by aspirin to produce prostaglandin D2. Platelet activations are well known to be involved in AERD; however, plasma markers do not change during aspirin challenge tests. Additionally, novel genetic polymorphisms, such as P2RY12 and dipeptidyl peptidase 10 gene, and epigenetic predispositions of AERD were found. In AERD diagnosis, bronchial and nasal aspirin challenges have been applied in addition to oral challenge. Serum periostin has been suggested as a potential biomarker for AERD. Apart from standard pharmacological treatment and aspirin desensitization, biologics, including omalizumab and mepolizumab, as well as CRTH2 antagonists have been suggested as promising therapies for AERD treatment. SUMMARY AERD is usually associated with severe asthma phenotypes. AERD pathophysiology mainly involves the dysregulation of eicosanoid metabolisms, activations of effector cells, which could be influenced by genetic/epigenetic factors. Understanding the pathophysiology of AERD is key to improve the diagnostic methods and proper management of AERD patients.
Collapse
|
16
|
Chaker AM. [Biologics in Rhinology - Forthcoming Personalized Concepts: the Future Starts Today]. Laryngorhinootologie 2018; 97:S142-S184. [PMID: 29905356 PMCID: PMC6541111 DOI: 10.1055/s-0043-123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinunasale Erkrankungen zählen mit zu den häufigsten chronischen Erkrankungen und führen zu einer erheblichen Störung der Lebensqualität, ein komorbides Asthma ist häufig. Trotz leitliniengerechter Therapie ist anzunehmen, dass mind. 20% der Patienten ihre Erkrankungssymptome nicht adäquat kontrollieren können. Neben den etablierten chirurgischen und konservativen Therapieoptionen finden sich nun vielversprechende Therapieansätze, die bspw. mittels therapeutischer Antikörper mechanistisch gezielt in die Pathophysiologie der Erkrankungen eingreifen können. Die Auswahl der geeigneten Patienten durch geeignete Biomarker und die richtige Therapie zum richtigen Stadium der Erkrankung anbieten zu können, ist das Ziel stratifizierter Medizin und eine wichtige Perspektive für die HNO.Chronic diseases of the nose and the paranasal sinuses are most common, frequently associated with bronchial asthma, and result in substantial reduction of quality of life. Despite optimal treatment according to guidelines, approx. 20 % of the patients will report inadequate control of symptoms. Apart from well established surgical and conservative approaches in therapy new therapeutic antibodies are available that aim specifically pathophysiological targets. The optimal allocation of effective therapy for patients using appropriate biomarkers at the most suitable timepoint is the hallmark of stratified medicine and an important perspective in ENT.
Collapse
Affiliation(s)
- Adam M. Chaker
- Klinik für Hals-Nasen-Ohrenheilkunde und Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
17
|
Zhang Y, Poobalasingam T, Yates LL, Walker SA, Taylor MS, Chessum L, Harrison J, Tsaprouni L, Adcock IM, Lloyd CM, Cookson WO, Moffatt MF, Dean CH. Manipulation of dipeptidylpeptidase 10 in mouse and human in vivo and in vitro models indicates a protective role in asthma. Dis Model Mech 2018; 11:dmm.031369. [PMID: 29361513 PMCID: PMC5818078 DOI: 10.1242/dmm.031369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
We previously identified dipeptidylpeptidase 10 (DPP10) on chromosome 2 as a human asthma susceptibility gene, through positional cloning. Initial association results were confirmed in many subsequent association studies but the functional role of DPP10 in asthma remains unclear. Using the MRC Harwell N-ethyl-N-nitrosourea (ENU) DNA archive, we identified a point mutation in Dpp10 that caused an amino acid change from valine to aspartic acid in the β-propeller region of the protein. Mice carrying this point mutation were recovered and a congenic line was established (Dpp10145D). Macroscopic examination and lung histology revealed no significant differences between wild-type and Dpp10145D/145D mice. However, after house dust mite (HDM) treatment, Dpp10 mutant mice showed significantly increased airway resistance in response to 100 mg/ml methacholine. Total serum IgE levels and bronchoalveolar lavage (BAL) eosinophil counts were significantly higher in homozygotes than in control mice after HDM treatment. DPP10 protein is present in airway epithelial cells and altered expression is observed in both tissue from asthmatic patients and in mice following HDM challenge. Moreover, knockdown of DPP10 in human airway epithelial cells results in altered cytokine responses. These results show that a Dpp10 point mutation leads to increased airway responsiveness following allergen challenge and provide biological evidence to support previous findings from human genetic studies.
This article has an associated First Person interview with the first author of the paper. Summary: Here, we show a novel mouse model carrying a point mutation in dipeptidylpeptidase 10 (Dpp10). Our data provide evidence that DPP10 might play a protective role in asthma.
Collapse
Affiliation(s)
- Youming Zhang
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Thanushiyan Poobalasingam
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Laura L Yates
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Simone A Walker
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Martin S Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3, 7BN
| | | | | | - Loukia Tsaprouni
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - William O Cookson
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Miriam F Moffatt
- Genomics Medicine Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK .,MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| |
Collapse
|
18
|
Dahlin A, Weiss ST. Genetic and Epigenetic Components of Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2017; 36:765-789. [PMID: 27712769 DOI: 10.1016/j.iac.2016.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) severity and its clinical phenotypes are characterized by genetic variation within pathways for arachidonic acid metabolism, inflammation, and immune responses. Epigenetic effects, including DNA methylation and histone protein modification, contribute to regulation of many genes that contribute to inflammatory states in AERD. The development of noninvasive, predictive clinical tests using data from genetic, epigenetic, pharmacogenetic, and biomarker studies will improve precision medicine efforts for AERD and asthma treatment.
Collapse
Affiliation(s)
- Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Lee JH, Jung CG, Park HS. An update on the management of aspirin-exacerbated respiratory disease. Expert Rev Respir Med 2017; 12:137-143. [PMID: 29249187 DOI: 10.1080/17476348.2018.1417843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Clinical features of aspirin-exacerbated respiratory disease (AERD) consist of moderate to severe asthma associated with chronic rhinosinusitis (CRS), which are derived from overproduction of cysteinyl leukotrienes along with chronic type 2 mediated inflammation in the upper and lower airway mucosa. Area covered: This review provides recent up-to-date information regarding phenotypes of AERD and encompasses comprehensive diagnostic methods and treatment options. To confirm the diagnosis of AERD, provocation testing via nasal, inhalation or the oral route of aspirin remains the gold standard; in vitro diagnostic methods are still not available. Essential management is to avoid cross-reacting cyclooxygenase 1 (COX-1) inhibitors along with use of highly selective COX-2 inhibitors and to maintain pharmacologic treatment depending on the severity of asthma and chronic rhinosinusitis. Recent biologics, including anti-IgE and anti-IL5 antibodies, are required in severe AERD patients with CRS. Aspirin desensitization can be recommended when indicated. Expert commentary: AERD is a heterogeneous disease in terms of severity and associated allergic disease. When performing diagnosis and treatment for AERD, such disease characteristics need to be kept in mind.
Collapse
Affiliation(s)
- Ji-Ho Lee
- a Department of Allergy and Clinical Immunology , Ajou University School of Medicine , Suwon , South Korea
| | - Chang-Gyu Jung
- b Division of Allergy and Clinical Immunology, Department of Internal Medicine , Keimyung University, Dongsan Medical Center , Daegu , South Korea
| | - Hae-Sim Park
- a Department of Allergy and Clinical Immunology , Ajou University School of Medicine , Suwon , South Korea
| |
Collapse
|
20
|
Kim H, Ellis AK, Fischer D, Noseworthy M, Olivenstein R, Chapman KR, Lee J. Asthma biomarkers in the age of biologics. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2017; 13:48. [PMID: 29176991 PMCID: PMC5691861 DOI: 10.1186/s13223-017-0219-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023]
Abstract
The heterogeneous nature of asthma has been understood for decades, but the precise categorization of asthma has taken on new clinical importance in the era of specific biologic therapy. The simple categories of allergic and non-allergic asthma have given way to more precise phenotypes that hint at underlying biologic mechanisms of variable airflow limitation and airways inflammation. Understanding these mechanisms is of particular importance for the approximately 10% of patients with severe asthma. Biomarkers that aid in phenotyping allow physicians to "personalize" treatment with targeted biologic agents. Unfortunately, testing for these biomarkers is not routine in patients whose asthma is refractory to standard therapy. Scientific advances in the recognition of sensitive and specific biomarkers are steadily outpacing the clinical availability of reliable and non-invasive assessment methods designed for the prompt and specific diagnosis, classification, treatment, and monitoring of severe asthma patients. This article provides a practical overview of current biomarkers and testing methods for prompt, effective management of patients with severe asthma that is refractory to standard therapy.
Collapse
Affiliation(s)
- Harold Kim
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, 1151 Richmond St, London, ON N6A 5C1 Canada
- Division of Clinical Immunology & Allergy, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1 Canada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen’s University, 15 Arch Street, Kingston, ON K7L 3N6 Canada
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen’s University, Kingston, ON Canada
| | - David Fischer
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, 1151 Richmond St, London, ON N6A 5C1 Canada
- Canadian Society of Allergy and Clinical Immunology, P.O. Box 51045, Orleans, ON K1E 3W4 Canada
| | - Mary Noseworthy
- Alberta Children’s Hospital, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Ron Olivenstein
- Division of Respiratory Medicine, Faculty of Medicine, McGill University, 3605 Rue De la Montagne, Montreal, QC H3G 2M1 Canada
- Acute Care Division, Montreal Chest Institute, 1001 Décarie Blvd, Montreal, QC H4A 3J1 Canada
| | - Kenneth R. Chapman
- Asthma and Airway Centre, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON M5T 2S8 Canada
- Division of Respirology, Department of Medicine, University of Toronto, 1 King’s College Circle, #3172, Toronto, ON M5S 1A8 Canada
| | - Jason Lee
- Toronto Allergy and Asthma Centre, 123 Edward St, Toronto, ON M5G 1E2 Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8 Canada
- Department of Surgery, School of Medicine, University of Toronto, 1 King’s College Circle, #3172, Toronto, ON M5S 1A8 Canada
- Evidence Based Medical Educator Inc., 123 Edward St., Suite 920, Toronto, ON M5G 1E2 Canada
| |
Collapse
|
21
|
Pavón-Romero GF, Ramírez-Jiménez F, Roldán-Alvarez MA, Terán LM, Falfán-Valencia R. Physiopathology and genetics in aspirin-exacerbated respiratory disease. Exp Lung Res 2017; 43:327-335. [PMID: 29035123 DOI: 10.1080/01902148.2017.1358776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Aspirin-exacerbated respiratory disease (AERD) is a clinical entity characterized by hypersensitivity to aspirin leading to asthma and chronic rhinosinusitis with nasosinusal polyposis. The pathophysiology of the disease involves disruption at the level of arachidonic acid metabolism. Therefore, genetic association studies have been focused on the genes coding this pathway. As other mechanisms involved in the genesis of the disease were elucidated, the corresponding genes were also explored. AIM To describe the association reported in the literature between gene polymorphisms involved in the pathophysiology or therapeutic processes of AERD. RESULTS There is a genetic association between polymorphisms of genes involved in the synthesis of proteins related to arachidonic acid metabolism (LTC4S, ALOX5), antigen presentation (HLA), inflammation (IL5, IL17), and aspirin metabolism (CYP2C19). CONCLUSIONS Genetic association research in AERD has evaluated studies of SNPs in metabolic pathways related to arachidonic acid. Recently, whole genome analysis strategies have allowed the detection of new genetic variants that were previously not considered. Furthermore, these studies have identified SNPs that are associated with inflammatory processes, which could serve as diagnostic markers or predictors of the therapeutic response.
Collapse
Affiliation(s)
| | | | | | - Luis M Terán
- a Departamento de Investigación en Inmunogenética y Alergia.,b Biomedicine In the Post-Genomic Era , Tlalpan , Mexico City , Mexico
| | - Ramcés Falfán-Valencia
- c HLA Laboratory , Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas , Mexico City , Mexico
| |
Collapse
|
22
|
Wang S, Jeong HH, Kim D, Wee K, Park HS, Kim SH, Sohn KA. Integrative information theoretic network analysis for genome-wide association study of aspirin exacerbated respiratory disease in Korean population. BMC Med Genomics 2017; 10:31. [PMID: 28589859 PMCID: PMC5461529 DOI: 10.1186/s12920-017-0266-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Aspirin Exacerbated Respiratory Disease (AERD) is a chronic medical condition that encompasses asthma, nasal polyposis, and hypersensitivity to aspirin and other non-steroidal anti-inflammatory drugs. Several previous studies have shown that part of the genetic effects of the disease may be induced by the interaction of multiple genetic variants. However, heavy computational cost as well as the complexity of the underlying biological mechanism has prevented a thorough investigation of epistatic interactions and thus most previous studies have typically considered only a small number of genetic variants at a time. METHODS In this study, we propose a gene network based analysis framework to identify genetic risk factors from a genome-wide association study dataset. We first derive multiple single nucleotide polymorphisms (SNP)-based epistasis networks that consider marginal and epistatic effects by using different information theoretic measures. Each SNP epistasis network is converted into a gene-gene interaction network, and the resulting gene networks are combined as one for downstream analysis. The integrated network is validated on existing knowledgebase of DisGeNET for known gene-disease associations and GeneMANIA for biological function prediction. RESULTS We demonstrated our proposed method on a Korean GWAS dataset, which has genotype information of 440,094 SNPs for 188 cases and 247 controls. The topological properties of the generated networks are examined for scale-freeness, and we further performed various statistical analyses in the Allergy and Asthma Portal (AAP) using the selected genes from our integrated network. CONCLUSIONS Our result reveals that there are several gene modules in the network that are of biological significance and have evidence for controlling susceptibility and being related to the treatment of AERD.
Collapse
Affiliation(s)
- Sehee Wang
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, 77030, USA.,Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dokyoon Kim
- Department of Biomedical & Translational Informatics, Geisinger Health System, Danville, PA, 17822, USA.,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Kyubum Wee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea. .,Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, South Korea.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
23
|
Stevens WW, Schleimer RP. Aspirin-Exacerbated Respiratory Disease as an Endotype of Chronic Rhinosinusitis. Immunol Allergy Clin North Am 2016; 36:669-680. [PMID: 27712762 PMCID: PMC5119761 DOI: 10.1016/j.iac.2016.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aspirin-Exacerbated Respiratory Disease (AERD) and Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) are both characterized by the presence of chronic sinonasal inflammation and nasal polyps. Unlike in CRSwNP, AERD patients develop respiratory reactions following ingestion of COX-1 inhibitors. AERD patients also, on average, have worse upper respiratory disease with increased sinonasal symptoms, mucosal inflammation and requirements for revision sinus surgery when compared to CRSwNP patients. While no single genetic factor has been identified in either CRSwNP or AERD to date, differences in the metabolism of arachidonic acid as well as innate immune cell activation may uniquely contribute to AERD pathogenesis.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL 60611, USA
| | - Robert P Schleimer
- Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL 60611, USA; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, 675 N St. Clair St Suite 15-200, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Di Rosa M, Brundo VM, Malaguarnera L. New insights on chitinases immunologic activities. World J Immunol 2016; 6:96-104. [DOI: 10.5411/wji.v6.i2.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/29/2015] [Accepted: 04/11/2016] [Indexed: 02/05/2023] Open
Abstract
Mammalian chitinases and the related chilectins (ChiLs) belong to the GH18 family, which hydrolyse the glycosidic bond of chitin by a substrate-assisted mechanism. Chitin the fundamental component in the coating of numerous living species is the most abundant natural biopolymer. Mounting evidence suggest that the function of the majority of the mammalian chitinases is not exclusive to catalyze the hydrolysis of chitin producing pathogens, but include crucial role specific in the immunologic activities. The chitinases and chitinase-like proteins are expressed in response to different proinflammatory cues in various tissues by activated macrophages, neutrophils and in different monocyte-derived cell lines. The mechanism and molecular interaction of chitinases in relation to immune regulation embrace bacterial infection, inflammation, dismetabolic and degenerative disease. The aim of this review is to update the reader with regard to the role of chitinases proposed in the recent innate and adaptive immunity literature. The deep scrutiny of this family of enzymes could be a useful base for further studies addressed to the development of potential procedure directing these molecules as diagnostic and prognostic markers for numerous immune and inflammatory diseases.
Collapse
|
25
|
Pham DL, Kim JH, Trinh THK, Park HS. What we know about nonsteroidal anti-inflammatory drug hypersensitivity. Korean J Intern Med 2016; 31:417-32. [PMID: 27030979 PMCID: PMC4855107 DOI: 10.3904/kjim.2016.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Nonsteroidal anti-inf lammatory drugs (NSAIDs) are widely prescribed for the treatment of inflammatory diseases, but their use is frequently related to hypersensitivity reactions. This review outlines our current knowledge of NSAID hypersensitivity (NHS) with regard to its pathogenic, molecular, and genetic mechanisms, as well as diagnosis and treatment. The presentation of NHS varies from a local (skin and/or airways) reaction to systemic reactions, including anaphylaxis. At the molecular level, NHS reactions can be classified as cross-reactive (mediated by cyclooxygenase inhibition) or selective (specific activation of immunoglobulin E antibodies or T cells). Genetic polymorphisms and epigenetic factors have been shown to be closely associated with NHS, and may be useful as predictive markers. To diagnose NHS, inhalation or oral challenge tests are applied, with the exclusion of any cross-reactive NSAIDs. For patients diagnosed with NHS, absolute avoidance of NSAIDs/aspirin is essential, and pharmacological treatment, including biologics, is often used to control their respiratory and cutaneous symptoms. Finally, desensitization is recommended only for selected patients with NHS. However, further research is required to develop new diagnostic methods and more effective treatments against NHS.
Collapse
Affiliation(s)
- Duy Le Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Ji-Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Tu Hoang Kim Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5150 Fax: +82-31-219-5154 E-mail:
| |
Collapse
|
26
|
Genetic basis of hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Curr Opin Allergy Clin Immunol 2016; 15:285-93. [PMID: 26110677 DOI: 10.1097/aci.0000000000000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW NSAIDs are the main triggers of hypersensitivity reactions to drugs. However, the full genetic and molecular basis of these reactions has yet to be uncovered. In this article, we have summarized research from recent years into the effects of genetic variants on the different clinical entities induced by NSAID hypersensitivity, focusing on prostaglandin and leukotriene-related genes as well as others beyond the arachidonic acid pathway. RECENT FINDINGS We introduce recent contributions of high-throughput approaches including genome-wide association studies as well as available information from epigenetics and next-generation sequencing. Finally, we give our thoughts on future directions in this field, including the scope for bioinformatics and systems biology and the need for clear patient phenotyping. SUMMARY The full genetic and molecular basis of clinical entities induced by NSAIDs hypersensitivity has yet to be uncovered, and despite commendable efforts over recent years, no clinically proven genetic markers currently exist for these disorders. It is clear that we will continue to find more about these reactions in the coming years, concurrently with improvements in technology and experimental techniques, and a precise definition of different phenotypes.
Collapse
|
27
|
Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, Batra PS, Bernal-Sprekelsen M, Bhattacharyya N, Chandra RK, Chiu A, Citardi MJ, Cohen NA, DelGaudio J, Desrosiers M, Dhong HJ, Douglas R, Ferguson B, Fokkens WJ, Georgalas C, Goldberg A, Gosepath J, Hamilos DL, Han JK, Harvey R, Hellings P, Hopkins C, Jankowski R, Javer AR, Kern R, Kountakis S, Kowalski ML, Lane A, Lanza DC, Lebowitz R, Lee HM, Lin SY, Lund V, Luong A, Mann W, Marple BF, McMains KC, Metson R, Naclerio R, Nayak JV, Otori N, Palmer JN, Parikh SR, Passali D, Peters A, Piccirillo J, Poetker DM, Psaltis AJ, Ramadan HH, Ramakrishnan VR, Riechelmann H, Roh HJ, Rudmik L, Sacks R, Schlosser RJ, Senior BA, Sindwani R, Stankiewicz JA, Stewart M, Tan BK, Toskala E, Voegels R, Wang DY, Weitzel EK, Wise S, Woodworth BA, Wormald PJ, Wright ED, Zhou B, Kennedy DW. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 2016; 6 Suppl 1:S22-209. [DOI: 10.1002/alr.21695] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Valerie Lund
- Royal National Throat Nose and Ear Hospital; London UK
| | - Amber Luong
- University of Texas Medical School at Houston
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chaker AM, Klimek L. [Individualized, personalized and stratified medicine: a challenge for allergology in ENT?]. HNO 2016; 63:334-42. [PMID: 25940007 DOI: 10.1007/s00106-015-0004-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Individualized, personalized or stratified medicine approaches offer emerging opportunities in the field of allergy and ENT. Avoidance of side effects, targeted therapy approaches and stratified prevention promise better outcomes and optimal results for patients. Conceptual incongruencies remain with regard to definitions and perceptions of "personalized medicine". Serious ethical considerations have to be taken into account. The development of pharmacogenomics, molecular phenotyping, genomic sequencing and other -omics opens the door to unique mechanistic therapeutic advances. The molecular allergology and recombinant diagnostics available are tools that offer substantial improved diagnostics for the benefit of allergic patients, e. g. in anaphylaxis and food allergy. For stratified therapeutic approaches, however, regulatory affairs will have to keep pace with medical and scientific discovery.
Collapse
Affiliation(s)
- Adam M Chaker
- HNO-Klinik und ZAUM, Klinikum rechts der Isar, Technische Universität München, München, Deutschland
| | | |
Collapse
|