1
|
Costa SA, Severo M, Lopes C, Torres D. Association between bisphenol A exposure and cardiometabolic outcomes: A longitudinal approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135000. [PMID: 38909471 DOI: 10.1016/j.jhazmat.2024.135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Increased cardiometabolic risk is associated with abnormalities in blood biomarkers profile and adiposity measurements. Some substances found in the food matrix and the environment, called endocrine-disrupting chemicals, may impair cardiometabolic health in the early and later stages of life. Bisphenol A (BPA) is a food contaminant that migrates from food contact materials and may act as an endocrine disruptor, negatively affecting human health. The present work aims to longitudinally assess the association between BPA exposure and cardiometabolic outcomes, considering data from Portuguese population-based birth cohort Generation XXI. Blood insulin (0.06stdβ; 95 %CI:0.03,0.09) and insulin resistance (0.05stdβ; 95 %CI:0.02,0.08) presented a significant longitudinal association with BPA daily exposure after adjustment for important variables and energy. The same findings were observed for fat mass (0.03stdβ; 95 %CI 0.01,0.06) and waist circumference (0.06stdβ; 95 %CI:0.04,0.08). For z-BMI, a significant cross-sectional (0.03stdβ; 95 %CI:0.01,0.04) and longitudinal (0.02stdβ; 95 %CI:0.00,0.04) association was found. This was the first study assessing the association between BPA exposure and health outcomes from childhood to adolescence. We found an association between BPA exposure and increased blood insulin level, insulin resistance, fat mass percentage, waist circumference and z-BMI. Our results point to the need to reduce exposure to BPA in the early stages of life.
Collapse
Affiliation(s)
- Sofia Almeida Costa
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal.
| | - Milton Severo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Carla Lopes
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Departamento de Ciências da Saúde Pública e Forenses, e Educação Médica, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro Porto, Porto 4200-319, Portugal
| | - Duarte Torres
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, Porto 4050-600, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| |
Collapse
|
2
|
van Boxel J, Khargi RRJ, Nijmeijer SM, Heinzelmann MT, Pereira DDC, Lamoree MH, van Duursen MBM. Effects of polystyrene micro- and nanoplastics on androgen- and estrogen receptor activity and steroidogenesis in vitro. Toxicol In Vitro 2024; 101:105938. [PMID: 39243830 DOI: 10.1016/j.tiv.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
While many plastic additives show endocrine disrupting properties, this has not been studied for micro- and nanoplastics (MNPs) particles despite their ubiquitous presence in humans. The objective of this study was to determine the effects of various sizes and concentrations of polystyrene (PS)-MNPs (50-10,000 nm, 0.01-100 μg/mL) on estrogen- and androgen receptor (ER and AR) activity and steroidogenesis in vitro. Fluorescent (F)PS-MNPs of ≤1000 nm were internalized in VM7 and H295R cells and FPS-MNPs ≤200 nm in AR-ecoscreen cells. H295R cells displayed the highest uptake and particles were closer to the nucleus than other cell types. None of the sizes and concentrations PS-MNPs tested affected ER or AR activity. In H295R cells, PS-MNPs caused some statistically significant changes in hormone levels, though these showed no apparent concentration or size-dependent patterns. Additionally, PS-MNPs caused a decrease in estriol (E3) with a maximum of 37.5 % (100 μg/mL, 50 nm) and an increase in gene expression of oxidative stress markers GPX1 (1.26-fold) and SOD1 (1.23-fold). Taken together, our data show limited endocrine-disrupting properties of PS-MNPs in vitro. Nevertheless the importance of E3 in the placenta warrants further studies in the potential effects of MNPs during pregnancy.
Collapse
Affiliation(s)
- Jeske van Boxel
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Rani R J Khargi
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Sandra M Nijmeijer
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment, section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Daniel Da Costa Pereira
- Division of Molecular and Computational Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, section Chemistry for Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, section Environmental Health and Toxicology, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
3
|
Sadek KM, Khalifa NE, Alshial EE, Abdelnour SA, Mohamed AAR, Noreldin AE. Potential hazards of bisphenol A on the male reproductive system: Induction of programmed cell death in testicular cells. J Biochem Mol Toxicol 2024; 38:e23844. [PMID: 39252451 DOI: 10.1002/jbt.23844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Eman E Alshial
- Department of Biochemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amany A-R Mohamed
- Departmentof Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Demircioglu D, Cinar N, Pektas SD, Edgunlu T, Unal M, Yazgan Aksoy D. Bisphenol-A and pentachlorophenol sodium levels in patients with rosacea. Cutan Ocul Toxicol 2024; 43:232-236. [PMID: 39113570 DOI: 10.1080/15569527.2024.2383242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND/ OBJECTIVES Rosacea is a common chronic inflammatory skin disorder. Endocrinedisrupting chemicals (EDC) are toxic substances, that may gain entry through the skin and subsequently interfere with hormonal and immune functions. Bisphenol A (BPA) and pentachlorophenol sodium (PCS) are two of these EDCs, incriminated in the pathogenesis of certain inflammatory skin disorders. We aimed to test the hypothesis that exposure to BPA and PCS might be involved in the pathogenesis of rosacea. METHODS This prospective cross-sectional study involved 34 patients with rosacea (18F/16 M; mean age 48.5 ± 11 years) and 34 age and sex-matched healthy controls (20 F/14 M; mean age 48.2 ± 10.2 years). Main anthropometric measures, fasting plasma glucose (FPG), insulin, HOMA-IR, lipids, C-reactive protein (CRP), BPA, and PCS levels were quantified and recorded. RESULTS Serum CRP (9.6 ± 3.4 vs. 3.7 ± 1.6 mg/L, respectively, p0.05 for all). Serum BPA levels were 55.8 ± 14.4 and 51.9 ± 19.2 ng/mL, and PCS levels were 63.3 ± 45.9 ng/mL and 68.6 ± 40.8 ng/mL for patients and healthy controls, respectively. There was no significant difference in BPA and PCS levels between the two groups (p > 0.05 for both). No significant association was found among HOMAIR, CRP, BPA, and PCS levels (p > 0.05 for all). CONCLUSIONS Although the present study fails to provide presumptive evidence for the role of BPA and PCS in rosacea, the question as to other EDCs might be involved in its etiopathogenesis remains. This hypothesis requires confirmation in large-scale future prospective trials.
Collapse
Affiliation(s)
- Deniz Demircioglu
- Department of Dermatology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Nese Cinar
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Mugla Sitki Koçman University School of Medicine, Muğla, Turkey
| | - Suzan Demir Pektas
- Department of Dermatology, Mugla Sitki Koçman University School of Medicine, Muğla, Turkey
| | - Tuba Edgunlu
- Department of Medical Biology, Mugla Sitki Koçman University School of Medicine, Muğla, Turkey
| | - Mustafa Unal
- Haseki Eğitim ve Araştırma Hastanesi, Istanbul, Turkey
| | - Duygu Yazgan Aksoy
- Department of Internal Medicine, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| |
Collapse
|
5
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
6
|
Boni G, Placet V, Grimaldi M, Balaguer P, Pourchet S. Toward the Manufacturing of a Non-Toxic High-Performance Biobased Epoxy-Hemp Fibre Composite. Polymers (Basel) 2024; 16:2010. [PMID: 39065327 PMCID: PMC11280780 DOI: 10.3390/polym16142010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study describes the production of a new biobased epoxy thermoset and its use with long hemp fibres to produce high-performance composites that are totally biobased. The synthesis of BioIgenox, an epoxy resin derived from a lignin biorefinery, and its curing process have been optimised to decrease their environmental impact. The main objective of this study is to characterise the rheology and kinetics of the epoxy system with a view to optimising the composite manufacturing process. Thus, the epoxy resin/hardener system was chosen considering the constraints imposed by the implementation of composites reinforced with plant fibres. The viscosity of the chosen mixture shows the compatibility of the formulation with the traditional implementation processes of the composites. In addition, unlike BPA-a precursor of diglycidyl ether of bisphenol A (DGEBA) epoxy resin-BioIgenox and its precursor do not have endocrine disrupting activities. The neat polymer and its unidirectional hemp fibre composite are characterised using three-point bending tests. Results measured for the fully biobased epoxy polymer show a bending modulus, a bending strength, a maximum strain at failure and a Tg of, respectively, 3.1 GPa, 55 MPa, 1.82% and 120 °C. These values are slightly weaker than those of the DGEBA-based epoxy material. It was also observed that the incorporation of fibres into the fully biobased epoxy system induces a decrease in the damping peak and a shift towards higher temperatures. These results point out the effective stress transfers between the hemp fibres and the fully biobased epoxy system. The high mechanical properties and softening temperature measured in this work with a fully biobased epoxy system make this type of composite a very promising sustainable material for transport and lightweight engineering applications.
Collapse
Affiliation(s)
- Gilles Boni
- Institut de Chimie Moléculaire Université de Bourgogne (ICMUB), UMR 6302, 21000 Dijon, France;
| | - Vincent Placet
- Institut FEMTO-ST, CNRS, Université de Franche-Comté, 25000 Besançon, France;
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; (M.G.); (P.B.)
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; (M.G.); (P.B.)
| | - Sylvie Pourchet
- Institut de Chimie Moléculaire Université de Bourgogne (ICMUB), UMR 6302, 21000 Dijon, France;
| |
Collapse
|
7
|
Ciarelli J, Thangaraj SV, Sun H, Domke S, Alkhatib B, Vyas AK, Gregg B, Sargis RM, Padmanabhan V. Developmental programming: An exploratory analysis of pancreatic islet compromise in female sheep resulting from gestational BPA exposure. Mol Cell Endocrinol 2024; 588:112202. [PMID: 38552943 PMCID: PMC11427076 DOI: 10.1016/j.mce.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Developmental exposure to endocrine disruptors like bisphenol A (BPA) are implicated in later-life metabolic dysfunction. Leveraging a unique sheep model of developmental programming, we conducted an exploratory analysis of the programming effects of BPA on the endocrine pancreas. Pregnant ewes were administered environmentally relevant doses of BPA during gestational days (GD) 30-90, and pancreata from female fetuses and adult offspring were analyzed. Prenatal BPA exposure induced a trend toward decreased islet insulin staining and β-cell count, increased glucagon staining and α-cell count, and increased α-cell/β-cell ratio. Findings were most consistent in fetal pancreata assessed at GD90 and in adult offspring exposed to the lowest BPA dose. While not assessed in fetuses, adult islet fibrosis was increased. Collectively, these data provide further evidence that early-life BPA exposure is a likely threat to human metabolic health. Future studies should corroborate these findings and decipher the molecular mechanisms of BPA's developmental endocrine toxicity.
Collapse
Affiliation(s)
- Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Haijing Sun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Domke
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, USA
| | | | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA
| | | |
Collapse
|
8
|
De Nys S, Turkalj M, Duca RC, Covaci A, Elskens M, Godderis L, Vanoirbeek J, Van Meerbeek B, Van Landuyt KL. Level of BPA contamination in resin composites determines BPA release. Dent Mater 2024; 40:1025-1030. [PMID: 38755042 DOI: 10.1016/j.dental.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.
Collapse
Affiliation(s)
- Siemon De Nys
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Marko Turkalj
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Radu Corneliu Duca
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory (LNS), 3555 Dudelange, Luxembourg
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, D.S.551, 2610 Wilrijk, Belgium
| | - Marc Elskens
- Laboratory of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Ixelles, Belgium
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium; IDEWE, External service for prevention and protection at work, Heverlee, Belgium
| | - Jeroen Vanoirbeek
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium
| | - Kirsten L Van Landuyt
- KU Leuven, Department of Oral Health Sciences, BIOMAT & University Hospitals Leuven (UZ Leuven), Dentistry, Leuven, Belgium.
| |
Collapse
|
9
|
Rajkumar DS, Padmanaban R. Impact of bisphenol A and analogues eluted from resin-based dental materials on cellular and molecular processes: An insight on underlying toxicity mechanisms. J Appl Toxicol 2024. [PMID: 38711185 DOI: 10.1002/jat.4605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024]
Abstract
Dental resin systems, used for artificial replacement of teeth and their surrounding structures, have gained popularity due to the Food and Drug Administration's (FDA) recommendation to reduce dental amalgam use in high-risk populations and medical circumstances. Bisphenol A (BPA), an endocrine-disrupting chemical, is an essential monomer within dental resin in the form of various analogues and derivatives. Leaching of monomers from resins results in toxicity, affecting hormone metabolism and causing long-term health risks. Understanding cellular-level toxicity profiles of bisphenol derivatives is crucial for conducting toxicity studies in in vivo models. This review provides insights into the unique expression patterns of BPA and its analogues among different cell types and their underlying toxicity mechanisms. Lack of a consistent cell line for toxic effects necessitates exploring various cell lines. Among the individual monomers, BisGMA was found to be the most toxic; however, BisDMA and BADGE generates BPA endogenously and found to elicit severe adverse reactions. In correlating in vitro data with in vivo findings, further research is necessary to classify the elutes as human carcinogens or xenoestrogens. Though the basic mechanisms underlying toxicity were believed to be the production of intracellular reactive oxygen species and a corresponding decline in glutathione levels, several underlying mechanisms were identified to stimulate cellular responses at low concentrations. The review calls for further research to assess the synergistic interactions of co-monomers and other components in dental resins. The review emphasizes the clinical relevance of these findings, highlighting the necessity for safer dental materials and underscoring the potential health risks associated with current dental resin systems.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
10
|
Sangwan S, Bhattacharyya R, Banerjee D. Plastic compounds and liver diseases: Whether bisphenol A is the only culprit. Liver Int 2024; 44:1093-1105. [PMID: 38407523 DOI: 10.1111/liv.15879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Plastics, while providing modern conveniences, have become an inescapable source of global concern due to their role in environmental pollution. Particularly, the focus on bisphenol A (BPA) reveals its biohazardous nature and association with liver issues, specifically steatosis. However, research indicates that BPA is just one facet of the problem, as other bisphenol analogues, microplastics, nanoplastics and additional plastic derivatives also pose potential risks. Notably, BPA is implicated in every stage of non-alcoholic fatty liver disease (NAFLD) onset and progression, surpassing hepatitis B virus as a primary cause of chronic liver disease worldwide. As plastic contamination tops the environmental contaminants list, urgent action is needed to assess causative factors and mitigate their impact. This review delves into the molecular disruptions linking plastic pollutant exposure to liver diseases, emphasizing the broader connection between plastics and the rising prevalence of NAFLD.
Collapse
Affiliation(s)
- Sonal Sangwan
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
Suresh S, Vellapandian C. Cyanidin Ameliorates Bisphenol A-Induced Alzheimer's Disease Pathology by Restoring Wnt/β-Catenin Signaling Cascade: an In Vitro Study. Mol Neurobiol 2024; 61:2064-2080. [PMID: 37843801 DOI: 10.1007/s12035-023-03672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory loss and cognitive decline, linked to amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein accumulation in the brain. Environmental pollutant bisphenol A (BPA) has been implicated in AD pathology due to its neurotoxic effects. This study aims to evaluate cyanidin from flower bracts of Musa acuminata Colla (red variety; AAA group) for its neuroprotective properties against BPA-induced AD pathology. The extraction of cyanidin was optimized using 70% ethanol in acidified water, showing promising anti-acetylcholinesterase activity. Cyanidin was effectively purified from the resultant extract and characterized using spectroscopic techniques. Two gradient doses of cyanidin (90 and 10 µg/ml) were determined based on cell viability assay. The role of cyanidin in promoting nerve growth and differentiation was assessed in PC12 cells for up to 72 h. A discernible and statistically significant difference was assessed in neurite extension at both doses at 72 h, followed by pre-treatment with cyanidin. BPA stimulation significantly increased the p-tau expression compared to the control (p < 0.0001). Pre-treatment with cyanidin reduced the tau expression; however, a significant difference was observed compared to control cells (p = 0.0003). Cyanidin significantly enhanced the mRNA expression of Wnt3a (p < 0.0001), β-catenin (p = 0.0004), and NeuroD1 (p = 0.0289), and decreased the expression of WIF1(p = 0.0040) and DKK1 (p < 0.0001), which are Wnt antagonist when compared to cells stimulated with BPA. Conclusively, our finding suggests that cyanidin could agonize nerve growth factor and promote neuronal differentiation, reduce tau-hyperphosphorylation by restoring the Wnt/β-catenin signaling cascade, and thereby render its neuroprotective potential against BPA-induced AD pathology.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
12
|
Adem Z, Bekana D, Temesgen A, Teju E, Amde M, Jabesa A. Plasmon-based colorimetric assay using green synthesized gold nanoparticles for the detection of bisphenol A. ANAL SCI 2024; 40:671-679. [PMID: 38238534 DOI: 10.1007/s44211-023-00500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/17/2023] [Indexed: 03/26/2024]
Abstract
Herein, we report a green synthesized gold nanoparticle (AuNPs) based colorimetric detection of bisphenol A (BPA). The AuNPs were synthesized using khat leaf extract as a reducing agent by optimizing factors affecting the AuNPs synthesis, including gold precursor concentration (1 mM), and reaction temperature (60 °C). The AuNPs characterization was carried out using ultraviolet-visible spectrophotometry and transmission electron microscopy, and it was found spherical with an average particle size of 17.3 ± 3.7 nm. A colorimetric nanosensor was developed by conjugation of bio-inspired AuNPs with BPA-specific aptamer for a quick and easy detection of BPA in plastic bottled water. The colorimetric assay relies on the strong affinity of BPA for aptamer, which causes detachment of the aptamer from the AuNPs surface in the presence of BPA inducing AuNPs aggregation. To achieve the colorimetric detection of BPA, the concentrations of NaCl and aptamer were optimized. The detection of BPA was monitored visually using a naked eye, as well as quantitatively using an ultraviolet-visible spectrophotometer. The method visual limit of detection (LOD) was determined to be 0.1 ng/mL and reached 0.09 ng/mL using ultraviolet-visible spectrophotometer. The method demonstrated very good linearity (R2 = 0.9986) in the range of 0.1-100 ng/mL. The proposed method showed high sensitivity to BPA detection in plastic bottled water with 86.7-98.0%, recovery. Therefore, the proposed colorimetric nanosensor can be used for determination of BPA in plastic bottled waters with reliable performance at lower concentrations.
Collapse
Affiliation(s)
- Zinet Adem
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| | - Deribachew Bekana
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia.
| | - Ayalew Temesgen
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| | - Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| | - Meseret Amde
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Ethiopia
| |
Collapse
|
13
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Niu L, Jia J, Yang H, Liu S, Wang H, Yan Y, Li Q, Dong Q, Zhang H, Zhao G, Dai J, Yuan G, Pan Y. Bisphenol A: Unveiling Its Role in Glioma Progression and Tumor Growth. Int J Mol Sci 2024; 25:2504. [PMID: 38473752 DOI: 10.3390/ijms25052504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas represent the most common and lethal category of primary brain tumors. Bisphenol A (BPA), a widely recognized endocrine disruptor, has been implicated in the progression of cancer. Despite its established links to various cancers, the association between BPA and glioma progression remains to be clearly defined. This study aimed to shed light on the impact of BPA on glioma cell proliferation and overall tumor progression. Our results demonstrate that BPA significantly accelerates glioma cell proliferation in a time- and dose-dependent manner. Furthermore, BPA has been found to enhance the invasive and migratory capabilities of glioma cells, potentially promoting epithelial-mesenchymal transition (EMT) characteristics within these tumors. Employing bioinformatics approaches, we devised a risk assessment model to gauge the potential glioma hazards associated with BPA exposure. Our comprehensive analysis revealed that BPA not only facilitates glioma invasion and migration but also inhibits apoptotic processes. In summary, our study offers valuable insights into the mechanisms by which BPA may promote tumorigenesis in gliomas, contributing to the understanding of its broader implications in oncology.
Collapse
Affiliation(s)
- Liang Niu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Juan Jia
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Anesthesiology, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Hu Yang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Shangyu Liu
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Hongyu Wang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Yunji Yan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Qiao Li
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - He Zhang
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Guoming Zhao
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Junqiang Dai
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
15
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Zamora Z, Wang S, Chen YW, Diamante G, Yang X. Systematic transcriptome-wide meta-analysis across endocrine disrupting chemicals reveals shared and unique liver pathways, gene networks, and disease associations. ENVIRONMENT INTERNATIONAL 2024; 183:108339. [PMID: 38043319 PMCID: PMC11216742 DOI: 10.1016/j.envint.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
Cardiometabolic disorders (CMD) are a growing public health problem across the world. Among the known cardiometabolic risk factors are compounds that induce endocrine and metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially considering the complexity contributed by species-, chemical-, and dose-specific effects. Moreover, different experimental and analytical methodologies employed by different studies pose challenges when comparing findings across studies. To explore the molecular mechanisms of EDCs in a systematic manner, we established a data-driven computational approach to meta-analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological pathways, modeled gene regulatory networks and regulators, and determined CMD associations based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma (PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT exhibited highly divergent gene signatures, pathways, network regulators, and disease associations from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed highly variable transcriptomic patterns, providing molecular support for the variability in BPA responses. Our work offers insights into the commonality and differences in the molecular mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare molecular mechanisms of environmental substances to elucidate the underlying connections between chemical exposure and disease risks.
Collapse
Affiliation(s)
- Zacary Zamora
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Susanna Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yen-Wei Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Xia Yang
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Weiss MC, Wang L, Sargis RM. Hormonal Injustice: Environmental Toxicants as Drivers of Endocrine Health Disparities. Endocrinol Metab Clin North Am 2023; 52:719-736. [PMID: 37865484 PMCID: PMC10929240 DOI: 10.1016/j.ecl.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The toll of multiple endocrine disorders has increased substantially in recent decades, and marginalized populations bear a disproportionate burden of disease. Because of the significant individual and societal impact of these conditions, it is essential to identify and address all modifiable risk factors contributing to these disparities. Abundant evidence now links endocrine dysfunction with exposure to endocrine-disrupting chemicals (EDCs), with greater exposures to multiple EDCs occurring among vulnerable groups, such as racial/ethnic minorities, those with low incomes, and others with high endocrine disease burdens. Identifying and eliminating EDC exposures is an essential step in achieving endocrine health equity.
Collapse
Affiliation(s)
- Margaret C Weiss
- School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Luyu Wang
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA
| | - Robert M Sargis
- College of Medicine, University of Illinois at Chicago, 1853 West Polk Street, Chicago, IL 60612, USA; Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, 835 South Wolcott, Suite E625, M/C 640, Chicago, IL 60612, USA; Chicago Center for Health and Environment, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, Chicago, IL 60612, USA; Section of Endocrinology, Diabetes, and Metabolism, Jesse Brown Veterans Affairs Medical Center, 820 South Damen, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
19
|
Zhong AX, Chen Y, Chen PL. BRCA1 the Versatile Defender: Molecular to Environmental Perspectives. Int J Mol Sci 2023; 24:14276. [PMID: 37762577 PMCID: PMC10532398 DOI: 10.3390/ijms241814276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The evolving history of BRCA1 research demonstrates the profound interconnectedness of a single protein within the web of crucial functions in human cells. Mutations in BRCA1, a tumor suppressor gene, have been linked to heightened breast and ovarian cancer risks. However, despite decades of extensive research, the mechanisms underlying BRCA1's contribution to tissue-specific tumor development remain elusive. Nevertheless, much of the BRCA1 protein's structure, function, and interactions has been elucidated. Individual regions of BRCA1 interact with numerous proteins to play roles in ubiquitination, transcription, cell checkpoints, and DNA damage repair. At a cellular scale, these BRCA1 functions coordinate tumor suppression, R-loop prevention, and cellular differentiation, all of which may contribute to BRCA1's role in cancer tissue specificity. As research on BRCA1 and breast cancer continues to evolve, it will become increasingly evident that modern materials such as Bisphenol A should be examined for their relationship with DNA stability, cancer incidence, and chemotherapy. Overall, this review offers a comprehensive understanding of BRCA1's many roles at a molecular, cellular, organismal, and environmental scale. We hope that the knowledge gathered here highlights both the necessity of BRCA1 research and the potential for novel strategies to prevent and treat cancer in individuals carrying BRCA1 mutations.
Collapse
Affiliation(s)
- Amy X. Zhong
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Irvine, CA 92697, USA;
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Torres-Alamilla P, Castillo-Sanchez R, Cortes-Reynosa P, Gomez R, Perez Salazar E. Bisphenol A increases the size of primary mammary tumors and promotes metastasis in a murine model of breast cancer. Mol Cell Endocrinol 2023; 575:111998. [PMID: 37414130 DOI: 10.1016/j.mce.2023.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast tumor characterized for the absence of estrogen and progesterone receptors expression and low HER2/neu expression. Bisphenol A (BPA) is an endocrine disrupting chemical with estrogenic activity that has been associated with increasing rates of breast cancer. Moreover, BPA is a solid organic synthetic chemical employed in the manufacture of many consumer products, epoxy resins and polycarbonate plastics including baby bottles, containers for food and beverages, and the lining of beverage cans. The G-protein-coupled estrogen receptor (GPER) is activated by endogenous hormones and synthetic ligands, such as BPA. GPER is expressed in TNBC cells and its expression is associated with larger tumor size, metastasis and worse survival prognosis. In breast cancer cells, BPA induces activation of signal transduction pathways that mediates migration and invasion via GPER in human TNBC MDA-MB-231 cells. In this study, we demonstrate that BPA induces an increase of GPER expression and its translocation from cytosol to cytoplasmic membrane, metalloproteinase (MMP)-2 and MMP-9 secretion, migration and invasion in murine TNBC 4T1 cells. In a murine TNBC model "in vivo" using 4T1 cells, BPA induces the formation of mammary tumors with more weight and volume, and an increase in the number of mice with metastasis to lung and nodules in lung compared with tumors and metastasis to lung of untreated Balb/cJ mice. In conclusion, our findings demonstrate that BPA mediates the growth of mammary primary tumors and metastasis to lung in a murine model of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Rocio Gomez
- Departamento de Toxicologia, Cinvestav-IPN, Ciudad de Mexico, Mexico
| | | |
Collapse
|
21
|
Gaggi G, Di Credico A, Barbagallo F, Ballerini P, Ghinassi B, Di Baldassarre A. Antenatal Exposure to Plastic Pollutants: Study of the Bisphenols and Perfluoroalkyls Effects on Human Stem Cell Models. EXPOSURE AND HEALTH 2023. [DOI: 10.1007/s12403-023-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 09/02/2023]
Abstract
AbstractEndocrine disruptors (EDs), such as Bisphenols (BPs) and Perfluoroalkyls (PFs), are a class of plastic pollutants widely used in industrial applications. Human exposure to these molecules usually occurs through ingestion of contaminated food and water. Once entered the human body they can interfere with endogenous hormone signaling, leading to a wide spectrum of diseases. It has been reported that BPs and PFs can cross the placental barrier accumulating in the fetal serum, but the detrimental consequences for human development remain to be clarified. Here we analyze the effects of different doses of bisphenol A and S (BPA, BPS) perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) on proliferation and mitochondrial health on different types of stem cells: through an integrated approach that combines data from pluripotent stem cells (hiPSCs) with that from the “environment” in which the embryo develops (fetal annexes-derived perinatal stem cells) we verified the potential developmental toxicity of the in utero EDs exposure. Data obtained showed that overall, BPs, and PFs tended to increase the proliferation rate of perinatal stem cells; a similar response was observed in hiPSCs exposed to very low doses of BPs and PFs, while at higher concentrations these chemicals were toxic; in addition, both the BPs and the PFs exerted a mitotoxic effects hiPSCs at all the concentration studied. All these data suggest that antenatal exposure to BPs and PFs, also at very low concentrations, may modify the biological characteristics of stem cells present in both the developing fetus and the fetal annexes, thus perturbing normal human development.
Collapse
|
22
|
He H, Zhang F, Zhou S, Zhang S, Wang L, Li J, Zeng Q, Zhu Y, Tian J, Chang J, Cheng L, Lu Q, Miao X, Shen N, Zhong R. Interaction of metabolism-related pathway gene variants with bisphenol A exposure on serum lipid profiles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104173. [PMID: 37302441 DOI: 10.1016/j.etap.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) can be metabolized by metabolic enzymes and may induce abnormal lipid metabolism. We hypothesized that BPA exposure and its interaction with metabolism-related genes might be associated with serum lipid profiles. We performed a two-stage study among 955 middle-aged and elderly participants in Wuhan, China. Urinary BPA level was estimated without (BPA, μg/L) or with (BPA/Cr, μg/g) adjustments for urinary creatinine and ln-transformed values (ln-BPA or ln-BPA/Cr) were used to normalize the asymmetrical distributions. A total of 412 metabolism-related gene variants were selected and used for gene-BPA interaction analysis. Multiple linear regression was used to analyze the interactions between BPA exposure and metabolism-related genes on serum lipid profiles. In the discovery stage, both ln-BPA and ln-BPA/Cr was associated with decreased high-density lipoprotein cholesterol (HDL-C). Gene-urinary BPA interaction for IGFBP7 rs9992658 was observed to associate with HDL-C levels in both discovery and validation stages, with Pinteraction equal to 9.87×10-4 (ln-BPA) and 1.22×10-3 (ln-BPA/Cr) in combined analyses. In addition, the inverse association of urinary BPA with HDL-C levels was only observed among individuals carrying rs9992658 AA genotype, but not in individuals carrying rs9992658 AC or CC genotypes. The interaction between BPA exposure and metabolism-related gene IGFBP7 (rs9992658) was associated with HDL-C levels. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
Affiliation(s)
- Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuwei Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Zhou
- Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Shanshan Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Public Health, Wuhan University, Wuhan, China
| | - Jianbo Tian
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- School of Public Health, Wuhan University, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
23
|
Garruti G, Baj J, Cignarelli A, Perrini S, Giorgino F. Hepatokines, bile acids and ketone bodies are novel Hormones regulating energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1154561. [PMID: 37274345 PMCID: PMC10236950 DOI: 10.3389/fendo.2023.1154561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Current views show that an impaired balance partly explains the fat accumulation leading to obesity. Fetal malnutrition and early exposure to endocrine-disrupting compounds also contribute to obesity and impaired insulin secretion and/or sensitivity. The liver plays a major role in systemic glucose homeostasis through hepatokines secreted by hepatocytes. Hepatokines influence metabolism through autocrine, paracrine, and endocrine signaling and mediate the crosstalk between the liver, non-hepatic target tissues, and the brain. The liver also synthetizes bile acids (BAs) from cholesterol and secretes them into the bile. After food consumption, BAs mediate the digestion and absorption of fat-soluble vitamins and lipids in the duodenum. In recent studies, BAs act not simply as fat emulsifiers but represent endocrine molecules regulating key metabolic pathways. The liver is also the main site of the production of ketone bodies (KBs). In prolonged fasting, the brain utilizes KBs as an alternative to CHO. In the last few years, the ketogenic diet (KD) became a promising dietary intervention. Studies on subjects undergoing KD show that KBs are important mediators of inflammation and oxidative stress. The present review will focus on the role played by hepatokines, BAs, and KBs in obesity, and diabetes prevention and management and analyze the positive effects of BAs, KD, and hepatokine receptor analogs, which might justify their use as new therapeutic approaches for metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Gabriella Garruti
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Angelo Cignarelli
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sebastio Perrini
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giorgino
- Unit of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
González-Casanova JE, Bermúdez V, Caro Fuentes NJ, Angarita LC, Caicedo NH, Rivas Muñoz J, Rojas-Gómez DM. New Evidence on BPA's Role in Adipose Tissue Development of Proinflammatory Processes and Its Relationship with Obesity. Int J Mol Sci 2023; 24:ijms24098231. [PMID: 37175934 PMCID: PMC10179730 DOI: 10.3390/ijms24098231] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be found in the lining of canned foods, certain plastic containers, thermal printing papers, composite dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways and upregulating the expression and release of certain cytokines, such as IL6, IL1β, and TNFα. These, in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state, which allows the perpetuation of the typical physiological complications of obesity.
Collapse
Affiliation(s)
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nelson Javier Caro Fuentes
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile
| | - Lissé Chiquinquirá Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - Nelson Hernando Caicedo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali 760031, Colombia
| | - Jocelyn Rivas Muñoz
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| | - Diana Marcela Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| |
Collapse
|
25
|
Qian Q, Song J, Pu Q, Chen C, Yan J, Wang H. Acute/chronic exposure to bisphenol A induced immunotoxicity in zebrafish and its potential association with pancreatic cancer risk. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106514. [PMID: 37019016 DOI: 10.1016/j.aquatox.2023.106514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have confirmed that bisphenol A (BPA) induced immune toxicity and affected diseases, however, the underlying mechanism remains unknown. In the present study, zebrafish was employed as the model to assess the immunotoxicity and the potential disease risk of BPA exposure. Upon BPA exposure, a series of abnormalities were found, which included the increased oxidative stress, damaged innate and adaptive immune functions and the elevated insulin and blood glucose levels. According to the target prediction and RNA sequencing data of BPA, the differential expression genes were found enriched in immune- and pancreatic cancer-related pathway and process, and the potential role of stat3 in the regulation of these processes was revealed. The key immune- and pancreatic cancer-related genes were selected for further confirmation by RT-qPCR. Based on the changes in the expression levels of these genes, our hypothesis that BPA induced the occurrence of pancreatic cancer by modulating immune responses was further evidenced. Deeper mechanism was further disclosed by molecular dock simulation and survival analysis of key genes, proving that BPA stably bound to STAT3 and IL10 and STAT3 may serve as the target of BPA-inducing pancreatic cancer. These results are of great significance in deepening the molecular mechanism of immunotoxicity induced by BPA and our understanding of the risk assessment of contaminants.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR. China.
| |
Collapse
|
26
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
27
|
Antoniou G, Alampanos V, Kabir A, Zughaibi T, Furton KG, Samanidou V. Magnet Integrated Fabric Phase Sorptive Extraction for the Extraction of Resin Monomers from Human Urine Prior to HPLC Analysis. SEPARATIONS 2023. [DOI: 10.3390/separations10040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
In this work, a method for the simultaneous determination of four resin monomers: Bisphenol A, bisphenol A methacrylate glycidate, triethyleneglycol-dimethacrylate, and urethane dimethacrylate, from human urine using magnet integrated fabric phase sorptive extraction (MI-FPSE), followed by high performance liquid chromatography (HPLC) diode array detection (HPLC-DAD), is presented. MI-FPSE is a novel configuration of FPSE that incorporates the stirring and extraction mechanism into one device, resulting in an improved extraction kinetic factor. FPSE is a green sample preparation technique that uses a flexible surface, such as cellulose, coated with a polymeric material using sol–gel technology. Poly(tetrahydrofuran) (PTHF) material was selected, due to its higher efficiency in terms of recovery rate among the studied MI-FPSE membranes. Optimization of the extraction process was performed based on several extraction and elution parameters. The method was validated for its linearity, selectivity, accuracy, precision, and stability of the samples. For the four compounds, the LOD and LOQ were 0.170 ng/μL and 0.050 ng/μL, respectively. The relative standard deviation of the method was less than 9.8% and 11.9%, for the within-day and between-day precision, respectively. The relative recoveries were between 85.6 and 105.2% in all cases, showing a good accuracy. The effectiveness of the proposed method was confirmed through successful application to the bioanalysis of real urine samples.
Collapse
Affiliation(s)
- Georgios Antoniou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vasileios Alampanos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Abuzar Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Torki Zughaibi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kenneth G. Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
28
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
29
|
Yao Y, Chen T, Wu H, Yang N, Xu S. Melatonin attenuates bisphenol A-induced colon injury by dual targeting mitochondrial dynamics and Nrf2 antioxidant system via activation of SIRT1/PGC-1α signaling pathway. Free Radic Biol Med 2023; 195:13-22. [PMID: 36549428 DOI: 10.1016/j.freeradbiomed.2022.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Industrial advancement has led to an increase in the production and usage of bisphenol A (BPA), thereby resulting in serious environmental pollution problems. BPA ingestion causes multiorgan toxicity. However, the exact mechanism underlying BPA-induced colon damage remains elusive. Moreover, no safe treatment is available to alleviate BPA-induced colon injury. Therefore, the in vivo and in vitro approaches were employed to detect the protective effects of melatonin (MT) on BPA-induced colon injury and to determine the underpinning molecular mechanisms. MT treatment of mice and the colonic epithelial cells NCM460 alleviated BPA-induced colon damage by inhibiting the mitochondrial dynamic imbalance, enhancing mitochondrial respiratory chain (MRC) complexes expression, reducing reactive oxygen species (ROS) production, and suppressing apoptosis and necroptosis. MT upregulated the proteins level of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which further increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream antioxidant target genes heme oxygenase-1 (HO-1) and NAD(P)H quinone redox enzyme-1 (NQO1). Treatment with the SIRT1 inhibitor EX527 effectively reversed the MT-induced upregulation of the aforementioned protein levels. Thus, the MT-activated Sirt1/PGC-1α signaling pathway restored the mitochondrial dynamic balance and activated the Nrf2 antioxidant axis to attenuate BPA-induced colon injury. These results demonstrate that MT supplementation may potentially mitigate BPA toxicity.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
30
|
Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res 2023; 16:9. [PMID: 36631836 PMCID: PMC9832677 DOI: 10.1186/s13048-022-01091-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction and overabundance of androgens; it affects 6-20% of women of reproductive age. PCOS involves various pathophysiological factors, and affected women usually have significant insulin resistance (IR), which is a major cause of PCOS. IR and compensatory hyperinsulinaemia have differing pathogeneses in various tissues, and IR varies among different PCOS phenotypes. Genetic and epigenetic changes, hyperandrogenaemia, and obesity aggravate IR. Insulin sensitization drugs are a new treatment modality for PCOS. We searched PubMed, Google Scholar, Elsevier, and UpToDate databases in this review, and focused on the pathogenesis of IR in women with PCOS and the pathophysiology of IR in various tissues. In addition, the review provides a comprehensive overview of the current progress in the efficacy of insulin sensitization therapy in the management of PCOS, providing the latest evidence for the clinical treatment of women with PCOS and IR.
Collapse
Affiliation(s)
- Han Zhao
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Jiaqi Zhang
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiangyi Cheng
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Xiaozhao Nie
- grid.412467.20000 0004 1806 3501Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000 People’s Republic of China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning, 110000, People's Republic of China.
| |
Collapse
|
31
|
Panayi N, Cha JY, Kim KB. 3D Printed Aligners : Material science, Workflow and Clinical applications. Semin Orthod 2023. [DOI: 10.1053/j.sodo.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Manzoor MF, Tariq T, Fatima B, Sahar A, Tariq F, Munir S, Khan S, Nawaz Ranjha MMA, Sameen A, Zeng XA, Ibrahim SA. An insight into bisphenol A, food exposure and its adverse effects on health: A review. Front Nutr 2022; 9:1047827. [PMID: 36407508 PMCID: PMC9671506 DOI: 10.3389/fnut.2022.1047827] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/12/2022] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic chemical widely employed to synthesize epoxy resins, polymer materials, and polycarbonate plastics. BPA is abundant in the environment, i.e., in food containers, water bottles, thermal papers, toys, medical devices, etc., and is incorporated into soil/water through leaching. Being a potent endocrine disrupter, and has the potential to alter several body mechanisms. Studies confirmed its anti-androgen action and estrogen-like effects, which impart many negative health impacts, especially on the immune system, neuroendocrine process, and reproductive mechanism. Moreover, it can also induce mutagenesis and carcinogenesis, as per recent scientific research. This review focuses on BPA's presence and concentrations in different environments, food sources and the basic mechanisms of BPA-induced toxicity and health disruptions. It is a unique review of its type because it focuses on the association of cancer, hormonal disruption, immunosuppression, and infertility with BPA. These issues are widespread today, and BPA significantly contributes to their incidence because of its wide usage in daily life utensils and other accessories. The review also discusses researched-based measures to cope with the toxic chemical.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Birjees Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Farwa Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Seemal Munir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | | | - Aysha Sameen
- Department of Food Science and Technology, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
33
|
Flieger J, Śniegocki T, Dolar-Szczasny J, Załuska W, Rejdak R. The First Evidence on the Occurrence of Bisphenol Analogues in the Aqueous Humor of Patients Undergoing Cataract Surgery. J Clin Med 2022; 11:6402. [PMID: 36362630 PMCID: PMC9655480 DOI: 10.3390/jcm11216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human exposure to BPs is inevitable mostly due to contaminated food. In this preliminary study, for the first time, the presence of bisphenols (BPs) in aqueous humor (AH) collected from 44 patients undergoing cataract surgery was investigated. The measurements were performed using a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC−MS/MS). Chromatographic separation was achieved using a reverse-phase column and a gradient elution mode. Multiple reaction monitoring (MRM) was used. The method was validated for bisphenol A (BPA) and bisphenol F (BPF). The limits of quantification (LOQs) of both investigated analytes were 0.25 ng mL−1. The method was linear in the range of 0.25−20.0 ng mL−1 with correlation coefficients (R2) higher than 0.98. Recovery of analytes was in the range of 99.9 to 104.3% and intra-assay and inter-assay precision expressed by relative standard deviations (RSD%) were less than 5%. BPA was detected in 12 AH samples with mean concentrations of 1.41 ng mL−1. BPF was not detected at all. Furthermore, two structural isomers termed BPA-1, and BPA-2 were identified, for the first time, in 40.9% of the AH samples, with almost twice higher mean concentrations of 2.15 ng mL−1, and 2.25 ng mL−1, respectively. The total content of BPs were higher in patients with coexisting ocular pathologies such as glaucoma, age-related macular degeneration (AMD), and diabetes in comparison to cataracts alone. However, the difference between these groups did not reach statistical significance (p > 0.05). Performed investigations indicate the need for further research on a larger population with the aim of knowing the consequences of BPs’ accumulation in AH for visual function.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Tomasz Śniegocki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Joanna Dolar-Szczasny
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| |
Collapse
|
34
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Cerkvenik-Flajs V, Škibin A, Švara T, Gombač M, Pogačnik M, Šturm S. Bisphenol A in edible tissues of rams exposed to repeated low-level dietary dose by high-performance liquid chromatography with fluorescence detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76078-76090. [PMID: 35665893 PMCID: PMC9553849 DOI: 10.1007/s11356-022-21154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
The presented work deals with levels and distribution of bisphenol A (BPA) in the edible tissues of a large food-producing animal species. An experimental animal study included 14 young Istrian pramenka rams (Ovis aries), of which seven were exposed for 64 days to a low dietary dose of BPA at 25 µg/kg b.w./day, and seven served as a control group. Residue analysis of both aglycone and total BPA was performed in the muscle tissue, liver, kidney and fat tissue of the individual animals by means of enzymatic deconjugation (for total BPA), organic solvent extraction, molecularly imprinted polymer solid-phase extraction (MISPE) clean-up and high-performance liquid chromatography with fluorescence detection (HPLC-FLU). The analysis was optimized and validated for aglycone BPA in the fat tissue and for the total BPA in all tissues investigated. Edible tissues of the control group of rams generally remained BPA-free, while there were concentration differences between the control and treated groups for liver and kidney post last administration. The human health risk resulting from this study was assessed by the estimated dietary exposure in adults, which was < 0.1% related to the valid European Union Tolerable Daily Intake (TDI) value of 4 µg/kg b.w./day. However, it would be 58-fold higher than the newly proposed TDI value of 0.04 ng/kg b.w./day.
Collapse
Affiliation(s)
- Vesna Cerkvenik-Flajs
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Andrej Škibin
- Veterinary Faculty, Clinic of Reproduction and Farm Animals, Infrastructure Centre for Sustainable Recultivation Vremščica, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Tanja Švara
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Mitja Gombač
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Milan Pogačnik
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Sabina Šturm
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| |
Collapse
|
36
|
Cattey H, Boni G, Pourchet S, Plasseraud L. Crystal structure of the monoglycidyl ether of isoeugenol. Acta Crystallogr E Crystallogr Commun 2022; 78:1052-1055. [PMID: 36250116 PMCID: PMC9535827 DOI: 10.1107/s2056989022009264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 09/06/2024]
Abstract
The title compound, C13H16O3 [GE-isoEu; systematic name: 2-({2-meth-oxy-4-[(E)-1-propen-1-yl]phen-oxy}meth-yl)oxirane], which crystallizes in the triclinic P space group, was synthesized in one step from iso-eugenol, a bio-based phenyl-propanoid, with an excess of epi-chloro-hydrin. Colourless prismatic crystals suitable for X-ray diffraction were obtained from a mixture of ethyl acetate and cyclo-hexane, during purification by column chromatography on silica gel. GE-isoEu, which corresponds to the trans isomer of the monoglycidyl ether of iso-eugenol, is based on a 1,2,4-tris-ubstituted benzene ring by diglycidyl ether, meth-oxy and 1-(E)-propenyl groups, respectively. In the crystal, mol-ecules are organized through offset π-stacking inter-actions. Chemically, GE-isoEu constitutes an inter-mediate in the synthesis protocol of 2-[3-meth-oxy-4-(2-oxiranylmeth-oxy)phen-yl]-3-methyl-oxirane (GEEp-isoEu), a di-epoxy-dized monomer used in the manufacturing of thermosetting resins and intended for the elaboration of bio-composites.
Collapse
Affiliation(s)
- Hélène Cattey
- ICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
| | - Gilles Boni
- ICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
| | - Sylvie Pourchet
- ICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
| | - Laurent Plasseraud
- ICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
| |
Collapse
|
37
|
Kim JH, Lim SR, Jung DH, Kim EJ, Sung J, Kim SC, Choi CH, Kang JW, Lee SJ. Grifola frondosa Extract Containing Bioactive Components Blocks Skin Fibroblastic Inflammation and Cytotoxicity Caused by Endocrine Disrupting Chemical, Bisphenol A. Nutrients 2022; 14:nu14183812. [PMID: 36145189 PMCID: PMC9503552 DOI: 10.3390/nu14183812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Grifola frondosa (GF), a species of Basidiomycotina, is widely distributed across Asia and has been used as an immunomodulatory, anti-bacterial, and anti-cancer agent. In the present study, the pharmacological activity of the GF extract against an ecotoxicological industrial chemical, bisphenol A (BPA) in normal human dermal fibroblasts (NHDFs), was investigated. GF extract containing naringin, hesperidin, chlorogenic acid, and kaempferol showed an inhibitory effect on cell death and inflammation induced by BPA in the NHDFs. For the cell death caused by BPA, GF extract inhibited the production of reactive oxygen species responsible for the unique activation of the extracellular signal-regulated kinase. In addition, GF extract attenuated the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and the pro-inflammatory cytokine IL-1β by the suppression of the redox-sensitive transcription factor, nuclear factor-kappa B (NF-κB) in BPA-treated NHDFs. For the inflammation triggered by BPA, GF extract blocked the inflammasome-mediated caspase-1 activation that leads to the secretion of IL-1β protein. These results indicate that the GF extract is a functional antioxidant that prevents skin fibroblastic pyroptosis induced by BPA.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
| | - Seong-Ryeong Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Dae-Hwa Jung
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Eun-Ju Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Junghee Sung
- RFBio Research & Development Center, RFBio Co., Ltd., Gunpo-si 15807, Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea
| | - Ji-Woong Kang
- Department of Public Health, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (J.-W.K.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
38
|
Ni M, Li X, Zhang L, Kumar V, Chen J. Bibliometric Analysis of the Toxicity of Bisphenol A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137886. [PMID: 35805543 PMCID: PMC9266187 DOI: 10.3390/ijerph19137886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) is used worldwide and research on the toxicity of BPA has advanced rapidly in the last few decades. This study aimed to evaluate the global scientific output of toxicity of BPA and explore the hot spots and research trends. All available articles related to the toxicity of BPA until 2022 were retrieved from the Web of Science Core Collection database. The VOSviewer, a bibliometric analysis software, was used to analyze the information of included articles, including countries/institutions, international cooperation, journals, citations, and keywords. Among 1644 retrieved articles, 1611 eligible studies were identified for analysis, and the annual publications increased with time in the past three decades. China and the United States were the most active contributors in this field. Chinese Academy of Sciences and the Dow chemical company conducted relatively more research than others about BPA toxicity. The journal “Chemosphere” published the most studies on “BPA toxicity”. Before 2015, most research focused on estrogenic activity and the test system mainly utilized animal experiments. However, in recent years, research related to toxic mechanisms of BPA at the cellular level and the toxicity of its analogs have received widespread attention. Considering some critical research gaps, future research on BPA toxicology should probably focus on the molecular biology of toxic mechanism, mixture toxicity, and co-exposure of BPA substitutes. This study will help researchers understand past and current research trends, hot spots, and trends of toxicity studies of BPA and, thus, contribute to further research and risk management of BPA.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Xiaomeng Li
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Lishi Zhang
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d’ Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43201 Reus, Spain
- Correspondence: (V.K.); (J.C.)
| | - Jinyao Chen
- West China School of Public Health, West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610041, China; (M.N.); (X.L.); (L.Z.)
- Correspondence: (V.K.); (J.C.)
| |
Collapse
|
39
|
Histone deacetylase 2 inhibitor valproic acid attenuates bisphenol A-induced liver pathology in male mice. Sci Rep 2022; 12:10258. [PMID: 35715448 PMCID: PMC9205966 DOI: 10.1038/s41598-022-12937-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence indicates the role of endocrine disruptor bisphenol A (BPA) in many pathological conditions. Histone deacetylase (HDAC) inhibition has potential for the treatment of many diseases/abnormalities. Using a mouse BPA exposure model, this study investigated the hepatoprotective effects of the Food and Drug Administration–approved HDAC2 inhibitor valproic acid (VPA) against BPA-induced liver pathology. We randomly divided 30 adult male Swiss albino mice (8 weeks old; N = 6) into five groups: group 1, no treatment (sham control (SC)); group 2, only oral sterile corn oil (vehicle control (VC)); group 3, 4 mg/kg/day of oral BPA (single dose (BPA group)); group 4, 0.4% oral VPA (VPA group); and group 5, oral BPA + VPA (BPA + VPA group). At the age of 10 weeks, the mice were euthanized for biochemical and histological examinations. BPA promoted a significant decrease in the body weight (BW), an increase in the liver weight, and a significant increase in the levels of liver damage markers aspartate aminotransferase and alanine aminotransferase in the BPA group compared to SC, as well as pathological changes in liver tissue. We also found an increase in the rate of apoptosis among hepatocytes. In addition, BPA significantly increased the levels of oxidative stress indices, malondialdehyde, and protein carbonylation but decreased the levels of reduced glutathione (GSH) in the BPA group compared to SC. In contrast, treatment with the HDAC2 inhibitor VPA significantly attenuated liver pathology, oxidative stress, and apoptosis and also enhanced GSH levels in VPA group and BPA + VPA group. The HDAC2 inhibitor VPA protects mice against BPA-induced liver pathology, likely by inhibiting oxidative stress and enhancing the levels of antioxidant-reduced GSH.
Collapse
|
40
|
Aja PM, Awoke JN, Agu PC, Adegboyega AE, Ezeh EM, Igwenyi IO, Orji OU, Ani OG, Ale BA, Ibiam UA. Hesperidin abrogates bisphenol A endocrine disruption through binding with fibroblast growth factor 21 (FGF-21), α-amylase and α-glucosidase: an in silico molecular study. J Genet Eng Biotechnol 2022; 20:84. [PMID: 35648239 PMCID: PMC9160168 DOI: 10.1186/s43141-022-00370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/20/2022] [Indexed: 12/03/2022]
Abstract
Background Fibroblast growth factor 21 (FGF-21), alpha-amylase, and alpha-glucosidase are key proteins implicated in metabolic dysregulations. Bisphenol A (BPA) is an environmental toxicant known to cause endocrine dysregulations. Hesperidin from citrus is an emerging flavonoid for metabolic diseases management. Through computational approach, we investigated the potentials of hesperidin in abrogating BPA interference in metabolism. The 3D crystal structure of the proteins (FGF-21, α-amylase, and α-glucosidase) and the ligands (BPA and hesperidin) were retrieved from the PDB and PubChem database respectively. Using Autodock plugin Pyrx, molecular docking of the ligands and individual proteins were performed to ascertain their binding affinities and their potentials to compete for the same binding site. Validation of the docking study was considered as the ability of the ligands to bind at the same site of each proteins. The docking poses were visualized using UCSF Chimera and Discovery Studio 2020, respectively to reveal each of the protein-ligands interactions within the binding pockets. Using SwissAdme and AdmeSar servers, we further investigated hesperidin’s ADMET profile. Hesperidin used was purchased commercially. Results Hesperidin and BPA competitively bound to the same site on each protein. Interestingly, hesperidin had greater binding affinities (Kcal/mol) − 5.80, − 9.60, and − 9.60 than BPA (Kcal/mol) − 4.40, − 7.20, − 7.10 for FGF-21, α-amylase, and α-glucosidase respectively. Visualizations of the binding poses showed that hesperidin interacted with stronger bonds than BPA within the proteins’ pockets. Although hesperidin violated Lipinski rule of five, this however can be optimized through structural modifications. Conclusions Hesperidin may be an emerging natural product with promising therapeutic potentials against metabolic and endocrine derangement.
Collapse
Affiliation(s)
- P M Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - J N Awoke
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria. .,Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - P C Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - A E Adegboyega
- Department of Biochemistry, Faculty of Medical Sciences, University of Jos/Jaris Computational Biology Centre, Jos, Nigeria
| | - E M Ezeh
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I O Igwenyi
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - O U Orji
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - O G Ani
- Nutrition and Exercise Physiology, University of Missouri, Columbia, United States of America
| | - B A Ale
- Department of Biochemistry, University of Nigeria Nsukka, Nsukka, Nigeria
| | - U A Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
41
|
Efficient charge separation and improved photocatalytic activity in Type-II & Type-III heterojunction based multiple interfaces in BiOCl 0.5Br 0.5-Q: DFT and Experimental Insight. CHEMOSPHERE 2022; 297:134122. [PMID: 35257701 DOI: 10.1016/j.chemosphere.2022.134122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
The nanostructured, inner-coupled Bismuth oxyhalides (BiOX0.5X'0.5; X, X' = Cl, Br, I; X≠X') heterostructures were prepared using Quercetin (Q) as a sensitizer. The present study revealed the tuning of the band properties of as-prepared catalysts. The catalysts were characterized using various characterization techniques for evaluating the superior photocatalytic efficiency and a better understanding of elemental interactions at interfaces formed in the heterojunction. The material (BiOCl0.5Br0.5-Q) reflected higher degradation of MO (about 99.85%) and BPA (98.34%) under visible light irradiation than BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q. A total of 90.45 percent of total organic carbon in BPA was removed after visible light irradiation on BiOCl0.5Br0.5-Q. The many-fold increase in activity is attributed to the formation of multiple interfaces between halides, conjugated π-electrons and multiple -OH groups of quercetin (Q). The boost in degradation efficiency can be attributed to the higher surface area, 2-D nanostructure, inhibited electron-hole recombination, and appropriate band-gap of the heterostructure. Photo-response of BiOCl0.5Br0.5-Q is higher compared to BiOCl0.5I0.5-Q and BiOBr0.5I0.5-Q, indicating better light absorption properties and charge separation efficiency in BiOCl0.5Br0.5-Q due to band edge position. First-principles Density Functional Theory (DFT) based calculations have also provided an insightful understanding of the interface formation, physical mechanism, and superior photocatalytic performance of BiOCl0.5Br0.5-Q heterostructure over other samples.
Collapse
|
42
|
Lucherelli MA, Duval A, Avérous L. Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Oral exposure to bisphenol A exacerbates allergic inflammation in a mouse model of food allergy. Toxicology 2022; 472:153188. [DOI: 10.1016/j.tox.2022.153188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
44
|
Loizou G, McNally K, Paini A, Hogg A. Derivation of a Human In Vivo Benchmark Dose for Bisphenol A from ToxCast In Vitro Concentration Response Data Using a Computational Workflow for Probabilistic Quantitative In Vitro to In Vivo Extrapolation. Front Pharmacol 2022; 12:754408. [PMID: 35222005 PMCID: PMC8874249 DOI: 10.3389/fphar.2021.754408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
A computational workflow which integrates physiologically based kinetic (PBK) modelling; global sensitivity analysis (GSA), Approximate Bayesian Computation (ABC), Markov Chain Monte Carlo (MCMC) simulation and the Virtual Cell Based Assay (VCBA) for the estimation of the active, free in vitro concentration of chemical in the reaction medium was developed to facilitate quantitative in vitro to in vivo extrapolation (QIVIVE). The workflow was designed to estimate parameter and model uncertainty within a computationally efficient framework. The workflow was tested using a human PBK model for bisphenol A (BPA) and high throughput screening (HTS) in vitro concentration-response data, for estrogen and pregnane X receptor activation determined in human liver and kidney cell lines, from the ToxCast/Tox21 database. In vivo benchmark dose 10% lower confidence limits (BMDL10) for oral uptake of BPA (ng/kg BW/day) were calculated from the in vivo dose-responses and compared to the human equivalent dose (HED) BMDL10 for relative kidney weight change in the mouse derived by European Food Safety Authority (EFSA). Three from four in vivo BMDL10 values calculated in this study were similar to the EFSA values whereas the fourth was much smaller. The derivation of an uncertainty factor (UF) to accommodate the uncertainties associated with measurements using human cell lines in vitro, extrapolated to in vivo, could be useful for the derivation of Health Based Guidance Values (HBGV).
Collapse
Affiliation(s)
- George Loizou
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| | - Kevin McNally
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | - Alex Hogg
- Health and Safety Executive, Harpur Hill, Buxton, United Kingdom
| |
Collapse
|
45
|
Analysis of Indirect Biomarkers of Effect after Exposure to Low Doses of Bisphenol A in a Study of Successive Generations of Mice. Animals (Basel) 2022; 12:ani12030300. [PMID: 35158624 PMCID: PMC8833323 DOI: 10.3390/ani12030300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Living beings are constantly and inadvertently exposed to a series of environmental and food pollutants, triggering effects on health that are transmitted over generations. Bisphenol A is a compound produced in large amounts world-wide and used in the manufacture of plastic containers and other utensils for daily use. It is an environmental and food pollutant with a demonstrated capacity to produce effects on the health of organisms exposed to it. The objective of our study was to identify possible indirect biomarkers of effect by means of the analysis of the blood biochemistry, and of certain reproductive parameters of animals exposed to Bisphenol A in doses considered to be safe over different generations. Our results did not show any modifications in the reproduction parameters evaluated, such as the duration of the estrous cycle, the size of the litters, or the percentage of the young alive at weaning time. However, they showed that there were alterations in biochemical parameters like glucose, total proteins, and albumin, which could therefore, be regarded as indirect indicators of an early effect of alterations in health caused by this compound. Abstract Bisphenol A (BPA) is considered as being an emerging pollutant, to which both animal and human populations are continuously and inadvertently exposed. The identification of indirect biomarkers of effect could be a key factor in determining early adverse outcomes from exposure to low doses of BPA. Thus, this study on mice aims to evaluate and identify indirect biomarkers of effect through the analysis of their blood biochemistry, and of certain reproduction parameters after exposure to different BPA concentrations (0.5, 2, 4, 50, and 100 µg/kg BW/day) in drinking water over generations. Our results showed that there were no modifications in the reproductive parameters evaluated, like estrous cycle duration, litter size, or the percentage of the young alive at reaching the weaning stage, at the exposure levels evaluated. However, there were modifications in the biochemical parameters, e.g., alterations in the glucose levels, that increased significantly (p < 0.05) in the breeders at the higher exposure doses (50 and 100 µg/kg BW/day in F1; 50 µg/kg BW/day in F2 and 100 µg/kg BW/day in F3), that would suggest that the BPA could induce hyperglycemia and its complications in adult animals, probably due to some damage in the pancreas cells; albumin, that increased in the breeders exposed to the highest dose in F1 and F3, inferring possible hepatic alterations. Further, total proteins showed a diminution in their values in F1 and F2, except the group exposed to 100 µg/kg BW/day, whereas in F3 the values of this parameter increased with respect to the control group, this aspect likely being related to a possible hepatic and renal alteration. Based on these results, glucose, albumin, and total proteins could initially be considered as early indicators of indirect effect after prolonged exposure to low BPA doses over generations.
Collapse
|
46
|
Makwana K, Ichake AB, Valodkar V, Padmanaban G, Badiger MV, Wadgaonkar PP. Cardol: Cashew Nut Shell Liquid (CNSL) - Derived Starting Material for the Preparation of Partially Bio-Based Epoxy Resins. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Sharma P, Mandal MB, Katiyar R, Singh SP, Birla H. A Comparative Study of Effects of 28-Day Exposure of Bisphenol A and Bisphenol S on Body Weight Changes, Organ Histology, and Relative Organ Weight. Int J Appl Basic Med Res 2021; 11:214-220. [PMID: 34912683 PMCID: PMC8633692 DOI: 10.4103/ijabmr.ijabmr_663_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/18/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022] Open
Abstract
Context Bisphenol A (BPA), a known endocrine disrupting chemical, is of widespread use in manufacturing of plastic products. Documenting ill health effects of BPA has led the plastic industrialists to replace BPA by its alleged safer alternative, bisphenol S (BPS). BPS belongs to the same chemical family and shares endocrine disrupting properties with BPA. Aims We compared the effects of 28-day exposure of BPA and BPS on body weight changes, organ histology, and relative organ weight in rats. In addition, we detected BPA and BPS in the rat's blood serum. Settings and Design Adult male albino rats were administered BPA (50 mg/kg/day) or BPS (50 mg/kg/day) or equivolume vehicle in different groups by oral gavage for 28 days. Subjects and Methods The weight of each rat was noted at the commencement of the study and weekly afterward. On 29th day, the animals were sampled for whole blood and then sacrificed. The dissected out wet viscera were weighed and subjected to the standard protocol for histological examination. Serum samples were prepared and analyzed for the detection of BPA and BPS by high-pressure liquid chromatography. Statistical Analysis Used Paired and unpaired Student's t-test, one-way ANOVA test, and Bonferroni test for multiple comparisons were used, as required for statistical analysis, and P < 0.05 was considered statistically significant. Results Both BPA and BPS produced similar detrimental changes in body weight, histology of stomach, small intestine, lung, and kidney, and relative organ weight of lung and kidney. BPA and BPS detected in the serum of rats were nearly 45 times of the control. Conclusions Present data suggest caution about the application of BPS as a substitute of BPA.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Maloy B Mandal
- Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Richa Katiyar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
48
|
Jun JH, Oh JE, Shim JK, Kwak YL, Cho JS. Effects of bisphenol A on the proliferation, migration, and tumor growth of colon cancer cells: In vitro and in vivo evaluation with mechanistic insights related to ERK and 5-HT3. Food Chem Toxicol 2021; 158:112662. [PMID: 34743013 DOI: 10.1016/j.fct.2021.112662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical related to the carcinogenesis of estrogen-responsive organs. Although human exposure to BPA mainly occurs via the oral route, its association with colon cancer has not been fully elucidated. We investigated the effects of BPA on the proliferation, migration, and tumor growth of colon cancer cells. BPA significantly promoted the proliferation of HT-29 human colon adenocarcinoma cells in a time- and dose-dependent manner. BPA also increased HT-29 cells migration. BPA increased the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibition of the ERK pathway attenuated BPA-induced proliferation and migration. In addition, BPA reduced E-cadherin expression, a key factor impeding epithelial-to-mesenchymal transition, and increased 5-HT3 receptors expression, a major mitogenic factor. In xenograft models, tumor volume of the BPA-treated nude mice was 4.6 times that of the saline-treated group. Our findings provide primary evidence regarding the link between BPA and human colon cancer by demonstrating that BPA promotes the proliferation, migration, and tumor growth of colon cancer cells in both in vitro and in vivo models. In addition, we provided the mechanism of action of BPA, involved in the activation of the ERK pathway, the decrease in E-cadherin, and the increase in 5-HT3 receptors.
Collapse
Affiliation(s)
- Ji Hae Jun
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Eun Oh
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Lan Kwak
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Turgut Y, Yurdakok-Dikmen B, Uyar R, Birer M, Filazi A, Acarturk F. Effects of electrospun fiber curcumin on bisphenol A exposed Caco-2 cells. Drug Chem Toxicol 2021; 45:2613-2625. [PMID: 34696662 DOI: 10.1080/01480545.2021.1979031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin; the major polyphenolic compound, isolated from Curcuma longa L.; loaded polyvinylpyrrolidone K90 fibers were prepared using electrospinning method. Effectiveness was tested on human colorectal adenocarcinoma cells with the presence of the endocrine disrupter Bisphenol A. Curcumin-loaded fibers were shown to have good physicochemical properties where excellent morphology of the electrospin fibers were formed. With the presence of 8 nM Bisphenol A, 17.37 mM fibers were found to inhibit proliferation in the cells in a dose-dependent manner. Fibers induced a significant increase in malondialdehyde by Thiobarbituric Acid Reactive Substances Assay compared to the control and this effect was supported by the presence of Bisphenol A. Western blot results indicate Super Oxide Dismutase-1 levels were increased by fiber, while Bisphenol A coincubated group resulted in a decrease. Fibers increased the expression of Estrogen Receptor 2, while Estrogen Receptor 1 expression did not change. Estrogen Receptor 2 expression was increased by coincubation with Bisphenol A; indicating a possible role of Estrogen Receptor 2 in the protective effects of fiber. This study presents that fiber had enhanced bioavailability and solubility with increased anticancer effect in human colon adenocarcinoma cells in presence of Bisphenol A; where involved mechanisms are antioxidant system and estrogen receptor expression.
Collapse
Affiliation(s)
- Yağmur Turgut
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Recep Uyar
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Birer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Fusun Acarturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
50
|
Long-term elution of bisphenol A from dental composites. Dent Mater 2021; 37:1561-1568. [PMID: 34482962 DOI: 10.1016/j.dental.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVES BPA release from composites on the short term has been reported in several in-vitro and in-vivo studies. However, it remains unclear whether these materials also leach BPA on the long term. Even though composites may release various (BPA-based) methacrylate monomers up to one year, quantitative data about BPA have not been reported due to the lack of a sensitive method to accurately quantify low levels of BPA. In this context, the aim of the study was to quantify the one-year release of BPA with an optimized analytical method. METHODS Composite disks (n = 6, 6 mm diameter and 2 mm height) from four commercial materials (G-ӕnial Posterior, Venus, Ceram.x mono and Filtek Supreme XTE) were immersed in 1 mL of water or ethanol as extraction solvent and stored in the dark at 37 °C. The extraction solvent was renewed weekly for a period of 52 weeks. Samples were derivatized with pyridine-3-sulfonyl chloride before analysis with ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS Derivatizing BPA increased the sensitivity of the analytical method and allowed accurate quantification of very low levels of BPA (i.e. 0.78 pmol BPA). BPA eluted continuously in ethanol from all four tested composites over a period of one year. BPA elution was clearly higher when ethanol was used as extraction solution. In water, BPA eluted could be detected up to one year, but levels could not be accurately quantified anymore after several weeks. SIGNIFICANCE Composites can be considered as a potential long-term source of BPA, and thus should not be neglected when assessing the overall exposure to endocrine disrupting chemicals.
Collapse
|