1
|
Riber AB, Wurtz KE. Impact of Growth Rate on the Welfare of Broilers. Animals (Basel) 2024; 14:3330. [PMID: 39595382 PMCID: PMC11591019 DOI: 10.3390/ani14223330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Selection for the more efficient production of broilers has resulted in rapid growth rates. The aim was to review the existing knowledge on the effect of growth rate on broiler welfare. Genotypes with faster growth rates consistently demonstrate poorer gait scores and increased prevalence of disorders affecting their legs than slower-growing genotypes. Reduced mobility places faster-growing broilers at an increased risk of developing contact dermatitis, as they spend increased durations sitting in contact with litter. Poor walking ability, heavy body weights, and conformational differences such as proportionally larger breast muscle in genotypes with faster growth can impact a bird's ability to walk and navigate the environment, making it difficult to access resources and express natural behaviors. Faster growth has also been associated with poor cardiovascular health, increased susceptibility to heat stress, increased prevalence of mortality, ascites, as well as multiple breast muscle myopathies. Feed restriction, a practice associated with hunger and frustration, may be used to control the growth of broiler breeders, with birds having higher growth potential typically experiencing higher restriction levels. Overall, there is strong evidence that fast growth rates negatively impact welfare, and that slower-growing genotypes show significantly improved welfare. Furthermore, some evidence suggests that even minor reductions in growth rate can lead to welfare improvements.
Collapse
Affiliation(s)
- Anja B. Riber
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Kaitlin E. Wurtz
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
- Livestock Behavior Research Unit, USDA-ARS, 270 S. Russel St., West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Taylor J, Mercier Y, Olukosi OA, Kim WK, Selvaraj R, Applegate TJ, Shanmugasundaram R, Ball MEE, Kyriazakis I. Supplementing low protein diets with methionine or threonine during mixed Eimeria challenge. Poult Sci 2024; 103:103714. [PMID: 38636202 PMCID: PMC11031750 DOI: 10.1016/j.psj.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.
Collapse
Affiliation(s)
- James Taylor
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom; Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom.
| | | | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ramesh Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, USDA-ARS, US National Poultry Research Centre, Athens, GA 30605, USA
| | - M Elizabeth E Ball
- Agri-Food & Biosciences Institute (AFBI), Belfast, BT9 5PX, United Kingdom
| | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University, Belfast, BT9 5DL, United Kingdom
| |
Collapse
|
3
|
İpçak HH, Alçiçek A, Denli M. Dietary encapsulated fennel seed (Foeniculum vulgare Mill.) essential oil supplementation improves performance, modifies the intestinal microflora, morphology, and transcriptome profile of broiler chickens. J Anim Sci 2024; 102:skae035. [PMID: 38330242 PMCID: PMC10943331 DOI: 10.1093/jas/skae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
Global antimicrobial resistance has led to a ban on the use of antibiotics as growth promoters (AGPs) in poultry farming, encouraging the use of natural phytogenic feed additives that provide similar effects to AGPs without causing resistance. The aim of this study was to determine the effects of the addition of encapsulated fennel seed (Foeniculum vulgare Mill.) essential oil (FEO) into the diets on the performance, intestinal microflora, morphology, and transcriptomic profiling of broiler chickens. In the study, 400 one-d-old male chicks of the Ross-308 genotype were randomly distributed into five groups, each with 16 replicates of five birds. The experiment included a control group fed on basal diets without the addition of FEO and treatment groups supplemented with 50 (FEO50), 100 (FEO100), 200 (FEO200), or 400 (FEO400) mg of encapsulated FEO/kg. Body weight and the European Production Efficiency Factor values were higher in the FEO100, FEO200, and FEO400 groups (P < 0.05). The feed conversion ratio significantly improved at all FEO levels (P < 0.05). FEO supplementation improved duodenum, jejunum, and ileum morphologies. It enhanced mucosal layer thickness in the duodenum and jejunum, and muscular layer thickness in the jejunum and ileum (P < 0.05). It also increased the number of Lactobacillus spp. in the jejunum and ileum (P < 0.05). According to the transcriptome profile obtained from the microarray analysis of samples taken from small intestine tissues, the mRNA expression levels of 261 genes in the FEO50 group (206 upregulated and 55 downregulated), 302 genes in the FEO100 group (218 upregulated and 84 downregulated), 292 genes in the FEO200 group (231 upregulated and 61 downregulated), and 348 genes in the FEO400 group (268 upregulated and 80 downregulated) changed compared to the control group. Most upregulated genes were associated with catalytic activity, binding, transcription regulators and transcription factors, anatomical structure and cellular development, and protein binding activity modulators. The downregulated genes mostly belonged to the transporter, carrier, and protein-modifying enzyme classes. Besides, the anti-inflammatory IL-10 gene (4.41-fold) increased significantly in the FEO100 group compared to the control group (P < 0.05). In conclusion, FEO improved the performance of broiler chickens by regulating biological processes such as performance and intestinal health, with the 100 mg FEO/kg supplementation being the most prominent.
Collapse
Affiliation(s)
- Hasan Hüseyin İpçak
- Department of Animal Science, Faculty of Agriculture, Dicle University, Diyarbakır 21280, Turkey
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir 35100, Turkey
| | - Ahmet Alçiçek
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir 35100, Turkey
| | - Muzaffer Denli
- Department of Animal Science, Faculty of Agriculture, Dicle University, Diyarbakır 21280, Turkey
| |
Collapse
|
4
|
Phillips CJC, Hosseintabar-Ghasemabad B, Gorlov IF, Slozhenkina MI, Mosolov AA, Seidavi A. Immunomodulatory Effects of Natural Feed Additives for Meat Chickens. Life (Basel) 2023; 13:1287. [PMID: 37374069 DOI: 10.3390/life13061287] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Broiler chickens are increasingly kept in large numbers in intensive housing conditions that are stressful, potentially depleting the immune system. With the prohibition of the use of antibiotics in poultry feed spreading worldwide, it is necessary to consider the role of natural feed additives and antibiotic alternatives to stimulate the chickens' immune systems. We review the literature to describe phytogenic feed additives that have immunomodulatory benefits in broilers. We initially review the major active ingredients from plants, particularly flavonoids, resveratrol and humic acid, and then describe the major herbs, spices, and other plants and their byproducts that have immunomodulatory effects. The research reviewed demonstrates the effectiveness of many natural feed additives in improving the avian immune system and therefore broiler health. However, some, and perhaps all, additives have the potential to reduce immunocompetence if given in excessive amounts. Sometimes additives are more effective when given in combination. There is an urgent need to determine tolerance levels and optimum doses for additives deemed most suitable to replace antibiotics in the diet of broiler chickens. Effective replacement is most likely with readily available additives, such as olive oil byproducts, olive leaves and alfalfa. It is concluded that effective replacement of antibiotic function with plant-derived additives will be possible, but that further research is necessary to determine optimum doses.
Collapse
Affiliation(s)
- Clive J C Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Kent St., Bentley 6102, Australia
| | | | - Ivan F Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Marina I Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Aleksandr A Mosolov
- Volga Region Research Institute of Manufacture and Processing of Meat and Milk Production, 400131 Volgograd, Russia
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht 41335-3516, Iran
| |
Collapse
|
5
|
Al-Zghoul MB, Jaradat ZW, Ababneh MM, Okour MZ, Saleh KMM, Alkofahi A, Alboom MH. Effects of embryonic thermal manipulation on the immune response to post-hatch Escherichia coli challenge in broiler chicken. Vet World 2023; 16:918-928. [PMID: 37576780 PMCID: PMC10420701 DOI: 10.14202/vetworld.2023.918-928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Thermal manipulation (TM), exposure to mild heat shock during embryogenesis, which is a critical developmental period of broiler chickens, improves tissue stability, oxidative stress response, and immune response during heat stress. Thermal manipulation could be more cost-effective than other methods to boost the immune response. This study aimed to evaluate the impact of TM during embryogenesis, concomitant with an Escherichia coli challenge, on body weight (BW), body temperature (Tb), and splenic mRNA expression of cytokines (Interleukin [IL]-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and interferon [IFN]-γ) in poultry. Materials and Methods A total of 740 fertile eggs were procured from a certified Ross broiler breeder. The eggs were divided into two incubation groups: the control and TM groups. The eggs in the control group were kept at 37.8°C air temperature and 56% relative humidity (RH) during incubation; eggs of the TM group were incubated under standard conditions, except for embryonic days 10-18, during which they were incubated at 39°C and 65% RH for 18 h daily. On the 7th day of incubation, eggs with dead embryos were excluded. After hatching was complete, each group was further subdivided into saline-treated or E. coli-challenged groups. The E. coli (serotype 078 with the dose of 1.5 × 105 colony-forming unit/mL) challenge was performed when the birds were 20 days old. Body weight and Tb measurements were taken on post-hatch days 20, 21, 23, and 25. Splenic mRNA expression of cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-15, IL-16, IL-18, and IFN-γ) was analyzed by real-time quantitative polymerase chain reaction. Results Following the E. coli challenge, the TM-treated group's body performance parameters (BW and Tb) were significantly increased compared with the control group. Body weight was higher in the TM group than in the control group (p < 0.05); Tb was lower in the TM group than in the control group (p < 0.05). The mRNA levels of IL and IFN-γ were more stable and moderately induced in the TM group compared with the control group. Thermal manipulation altered the basal mRNA levels of ILs and IFN-γ and changed their expression dynamics after the E. coli challenge. Conclusion Thermal manipulation during embryogenesis could boost the immune system response to E. coli.
Collapse
Affiliation(s)
- Mohammad Borhan Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Waheed Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mustafa M. Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Ziad Okour
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Ayesha Alkofahi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Hussien Alboom
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Art, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Colombino E, Karimi M, Ton Nu MA, Tilatti AA, Bellezza Oddon S, Calini F, Bergamino C, Fiorilla E, Gariglio M, Gai F, Capucchio MT, Schiavone A, Gasco L, Biasato I. Effects of feeding a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal on growth performance, organ weights, leg health, and gut development of broiler chickens. Poult Sci 2023; 102:102578. [PMID: 36933528 PMCID: PMC10031541 DOI: 10.1016/j.psj.2023.102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The development of a healthy gut during prestarter and starter phases is crucial to drive chicken's productivity. This study aimed to evaluate the effects of a thermomechanical, enzyme-facilitated, coprocessed yeast and soybean meal (pYSM) on growth performance, organ weights, leg health, and gut development in broiler chickens. A total of 576 as-hatched broiler chicks were randomly allotted to 3 dietary treatments (8 replicates/treatment, 24 chickens/replicate): a control group (C) without the pYSM, a treatment group 1 (T1), in which the pSYM was included at 20, 10, 5, 0, and 0% levels in the prestarter, starter, grower, finisher I, and finisher II feeding phases, respectively, and a treatment group 2 (T2), in which the pSYM was included at 5, 5, 5, 0, and 0% levels in each feeding phase. On d 3 and 10, 16 broilers/treatment were euthanized. The T1 broilers tended to show higher live weight (d 3 and 7) and average daily gain (prestarter and starter phases) than the other groups (P ≤ 0.10). Differently, pYSM-based diets did not influence the growth performance of the other feeding phases and the whole experimental period (P > 0.05). Relative weights of pancreas and liver were also unaffected by pYSM utilization (P > 0.05). Litter quality tended to have higher average scores in C group (P = 0.079), but no differences were observed for leg health (P > 0.05). Histomorphometry of gut, liver, and bursa of Fabricius was not affected by diet (P > 0.05). Gut immunity was driven to an anti-inflammatory pattern, with the reduction of IL-2, INF-γ, and TNF-α in the duodenum of treated birds (d 3, P < 0.05). Also, MUC-2 was greater in the duodenum of C and T2 group when compared to T1 (d 3, P = 0.016). Finally, T1-fed chickens displayed greater aminopeptidase activity in the duodenum (d 3 and 10, P < 0.05) and jejunum (d 3, P < 0.05). Feeding high levels of pYSM (10-20%) to broilers in the first 10 d tended to improve growth performance in the prestarter and starter phases. It also positively downregulated proinflammatory cytokines during the first 3 d, as well as stimulated the aminopeptidase activity in the prestarter and starter periods.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | | | | | | | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Cinzia Bergamino
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Turin, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy; Institute of Science of Food Production, National Research Council, Turin, Italy.
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
7
|
Dietary Corn Silk ( Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals (Basel) 2023; 13:ani13030441. [PMID: 36766330 PMCID: PMC9913160 DOI: 10.3390/ani13030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Immunosuppression is a serious consequence of oxidative stress exposure that negatively affects the productivity and profitability of birds, as well as their well-being. Thus, the present investigation was designed to evaluate the potential of corn silk extract (CSE) supplementation to overcome the negative impacts of oxidative stress induced by corticosterone administration (CORT) in broiler chickens. A total of 280 one day old Cobb 500 male chicks were divided into four groups in 2 × 2 factorial arrangements. The experimental groups included CSE supplementation (0 or 500 mg/kg diet, from 20 to 35 days of age) and CORT administration (0 or 25 mg/kg diet, from 22 to 35 days of age) as independent factors. At the end of week five of age, production performance parameters were measured. The humoral and cell-mediated immune response parameters, redox status, and stress markers were determined. Data revealed deleterious effects of CORT administration on the broilers' body weight, body weight gain, and feed conversion ratio. Moreover, an exponential increase in stress marker levels, in addition to immunosuppression and redox imbalance, were associated with CORT administration. However, CSE supplementation, with its high total phenols content, partially alleviated the negative impacts of CORT administration, as shown by a significant improvement in immune response parameters and antioxidant activity, as well as a reduction in stress marker levels. Furthermore, CSE supplementation to non-stressed birds even significantly improved total antioxidant activity, total white blood cells (TWBCs) count, T-lymphocyte stimulating index, and wattle thickness. It can be concluded that, under stress conditions in commercial broiler farms, dietary CSE supplementation can strongly be recommended to modulate the negative impacts of stress. Therefore, CSE can be used as an effective immunomodulator and antioxidant agent to increase commercial broiler farm productivity and profitability.
Collapse
|
8
|
Dunislawska A, Pietrzak E, Bełdowska A, Siwek M. Health in poultry- immunity and microbiome with regard to a concept of one health. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
The overall concept of OneHealth focuses on health and infectious disease in the context of the relationship between humans, animals, and the environment. In poultry production, there are many opportunities to implement OneHealth by organizing work and introducing appropriate engineering solutions. It is recommended that future research directions include designing and testing solutions to improve air quality and the elimination of antibiotics in the poultry industry. For this to be possible, it is essential to understand the indigenous microbiota of poultry, which plays a crucial role in nutrients, but also restricts the growth of pathogenic organisms. In poultry production, the most important thing is disease control in the herd, high product quality, and product efficiency. Food safety is key for consumers, as some zoonoses are transmitted through the food chain. Moreover, antibiotic resistance of bacteria is becoming a growing threat. For this reason, it is essential to maintain the proper immune status in the herd. Virus disease control in poultry is based on vaccination programs and the maintenance of biosecurity. This chapter aims to present the current state of knowledge in the field of immunity and microbiome of poultry in the context of the OneHealth concept.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Elżbieta Pietrzak
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Bełdowska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
9
|
Kogut MH. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci 2022; 101:101673. [PMID: 35104729 PMCID: PMC8814386 DOI: 10.1016/j.psj.2021.101673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| |
Collapse
|
10
|
Kim E, Létourneau-Montminy MP, Lambert W, Chalvon-Demersay T, Kiarie EG. Centennial Review: A meta-analysis of the significance of Eimeria infection on apparent ileal amino acid digestibility in broiler chickens. Poult Sci 2022; 101:101625. [PMID: 34930533 PMCID: PMC8713024 DOI: 10.1016/j.psj.2021.101625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Eimeria infections impair digestive tract capacity and barrier function leading to poor growth and feed efficiency. A meta-analysis approach was used to evaluate and quantify impact of Eimeria infection on the apparent ileal digestibility (AID) of amino acids (AA) in broiler chickens. A database composed of 6 articles with a total of 21 experiments was built for the effect of challenge type (a mix of Eimeria spp. vs. E. acervulina) and subdatabase of 3 articles with a total of 15 experiments for the effect of E. acervulina dose response. Regression models were fitted with the mixed model procedure in Minitab 19 with fixed effects of challenge, species, and their interactions. For the sub database, the mixed model procedure was used to fit regression models and identify a linear or quadratic response to dose. Challenge decreased AID (P < 0.05) of both dispensable and indispensable AA except for Trp. Specifically, the largest depression was observed for Cys, Thr, Tyr, Ala, and Val with the magnitude of difference of 8.7, 5.4, 5.2, 5.1, and 4.9%, respectively for challenged vs. unchallenged birds. The type of challenge affected (P < 0.05) AID of AA with exception of Cys, Tyr, Ala, Ser, Leu, Asp, Gly, and Pro. E. acervulina challenge had larger negative effects on AID of Ile, Leu, and Val. Moreover, E. acervulina linearly decreased (P < 0.05) AID of all indispensable and dispensable AA except for Trp and quadratically (P < 0.05) decreased AID of all AA except Cys, Met, Arg, and Trp. The largest linear decrease due to E. acervulina dose was seen for AID of Cys, followed by Ala, Val, Thr, and Ile. Although, AID of Trp was not affected by E. acervulina challenge, mixed Eimeria species challenge decreased (P < 0.05) AID of Trp. Overall, the results confirmed that an Eimeria infection negatively impacted AA digestibility/utilization. The ranking of the most affected AA suggested ground for nutritional intervention during subclinical field Eimeria infections or vaccination programs.
Collapse
Affiliation(s)
- Emily Kim
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
11
|
Taylor J, Sakkas P, Kyriazakis I. Starving for nutrients: anorexia during infection with parasites in broilers is affected by diet composition. Poult Sci 2022; 101:101535. [PMID: 34794080 PMCID: PMC8605289 DOI: 10.1016/j.psj.2021.101535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
In 2 experiments, we investigated whether diet composition plays a role in pathogen-induced anorexia, the voluntary reduction in ADFI during infection in broilers. We hypothesized that either energy or CP dietary content could influence the extent of anorexia in Ross 308 broilers and infection outcomes with Eimeria maxima. From d 13 of age, half of the birds were infected, and half were uninfected. ADFI was measured daily, and BW every 3 d until d 29. Oocyst excretion was measured daily from d 17 to 23. The impact of parasitism on the small intestine was assessed on d 19 and 25. In Experiment 1, 336 birds were offered diets progressively diluted with lignocellulose, starting from a diet with 3,105 (kcal ME/kg) and 20% CP. There was a significant interaction between infection and diet on ADFI during the acute stage of infection (d 17 to 21): for control birds diet dilution decreased ADFI and consequently reduced energy and CP intake. For infected birds, diet dilution increased ADFI, leading to the same energy and CP intake across diets. Oocyst excretion and villi length to crypt depth ratio (VCR) were constant across infected treatments. In Experiment 2, 432 birds were offered diets with constant ME (3,105 kcal/kg), but different CP contents (24, 20, 26, and 12%). Infection significantly reduced ADFI. Although there was no interaction between infection and diet on ADFI, there was an interaction on CP intake during the acute stage of infection. Infected birds on the 20% CP diet achieved the same CP intake as uninfected birds. There were no differences in the VCR and ADG of the infected birds on 24, 20 and 16% CP treatments, but birds on 12% had the lowest ADG and excreted more oocysts. We suggest that during infection, birds target a nutrient resource intake, which appears to be beneficial for infection outcomes, while at the same time they avoid excess protein intake. We conclude that different mechanisms regulate ADFI in infected and uninfected birds.
Collapse
Affiliation(s)
- James Taylor
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle on Tyne NE1 7RU, United Kingdom.
| | | | - Ilias Kyriazakis
- Institute for Global Food Security, Queen's University, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
12
|
Kouame YAE, Voemesse K, Lin H, Onagbesan OM, Tona K. Effects of egg storage duration on egg quality, metabolic rate, hematological parameters during embryonic and post-hatch development of guinea fowl broilers. Poult Sci 2021; 100:101428. [PMID: 34601439 PMCID: PMC8531856 DOI: 10.1016/j.psj.2021.101428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Considering the value of guinea fowl keets, successful incubation of eggs is particularly desirable in this poultry species. This study evaluated the effect of egg storage duration on egg quality, heat production, hematological parameters during embryonic development and post hatch performance of guinea fowl broilers. A total of 800 hatching eggs of guinea fowl were used for this study. Before incubation, 12 eggs per treatment were used to analyse egg quality. Then, eggs were numbered, weighed, and assigned to 2 treatment groups of 400 eggs each according to storage duration of 5, and 10 d at a temperature of 18°C. The eggs were set for incubation at 37.7°C and 55% relative humidity for 28 d in a forced-draft incubator. To determine heat production as a measure of metabolism, 60 eggs in each replicate were transferred to respiratory cages post hatch two 12 wk old guinea fowl were also used to determine heat production. CO2 and O2 were recorded to calculate heat production at internal pipping, hatch and at 12 wk of age. The hatched keets were reared for 12 wk and data were collected on feed intake, body weight and feed conversion ratio. Blood samples were collected at hatch and at 12 wk of age from 24 guinea fowls per treatment to analyze haematological parameters. The results showed that embryos and guinea fowls at 12 wks of age from eggs stored for 5 d had higher (P ˂ 0.05) heat production and body weights. However, a significant higher (P ˂ 0.05) level of basophile, eosinophils, and lymphocytes was observed in guinea fowls from 10 d storage egg. It was concluded that extended duration of egg storage negatively influenced the metabolic rate of embryos. It also impacted hematological parameters which may suggest influence on immune response during embryonic and post-hatch growth.
Collapse
Affiliation(s)
- Y A E Kouame
- Excellence Régional center on Avian Science, University of Lomé, Lomé, BP 1515, Togo; Laboratory of Endocrinology and Biology of Animal Reproduction, Felix Houphouët Boigny University, 01BP V 34 Abidjan 01, Côte d'Ivoire.
| | - K Voemesse
- Excellence Régional center on Avian Science, University of Lomé, Lomé, BP 1515, Togo
| | - H Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province 271018, China
| | - O M Onagbesan
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - K Tona
- Excellence Régional center on Avian Science, University of Lomé, Lomé, BP 1515, Togo; Department of Animal and Veterinary Sciences, School of Agriculture, University of Lome, Lome, BP 1515 Togo
| |
Collapse
|
13
|
Lipiński K, Mazur-Kuśnirek M, Antoszkiewicz Z, Makowski Z, Śliżewska K, Siwicki A, Otrocka-Domagała I, Gesek M. The effect of synbiotics and probiotics on the growth performance, gastrointestinal function and health status of turkeys. Arch Anim Nutr 2021; 75:376-388. [PMID: 34459292 DOI: 10.1080/1745039x.2021.1958646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the growth performance, gastrointestinal function and health status of turkeys fed diets supplemented with synbiotic preparations, as compared with commercial probiotic feed additives. The experiment lasted for 15 weeks. The research material comprised 600 female BIG 6 turkeys (6 treatments, 5 replicates, 20 birds per replicate). The turkeys from the control group (I) received a diet without additives. Groups II and III received a basal diet with the addition of probiotic BioPlus 2B or Cylactin at 0.4 g/kg diet, respectively. In groups IV, V and VI turkeys were fed diets with synbiotic preparations S1 (L. reuteri, L. plantarum, L. pentosus, S. cerevisiae + inulin), S2 (L. reuteri, L. plantarum, L. pentosus, S. cerevisiae, L. rhamnosus + inulin) and S3 (L. reuteri, L. plantarum, L. pentosus, S. cerevisiae, L. rhamnosus, L. paracasei + inulin) at 0.5 g/kg diet, respectively. The following parameters were monitored: growth performance, carcass quality, the chemical composition of meat, the structure (length, weight, villus height, crypt depth) and functional parameters (pH, viscosity) of selected segments of the gastrointestinal tract, and the health status of birds (lysozyme, gamma-globulins, ceruloplasmin and total protein). Dietary supplementation with probiotics and synbiotics contributed to an increase in the final body weights of turkeys, a decrease in the feed conversion ratio and an increase in values of the European Production Efficiency Factor (p ≤ 0.05). Synbiotics improved the immune status of birds by increasing serum gamma-globulin levels and decreasing ceruloplasmin activity at 8th week of age (p ≤ 0.05). Synbiotics and probiotics also contributed to a decrease in crop and caecal pH (p ≤ 0.05). The analysed additives had no effect on carcass dressing percentage, carcass quality characteristics or the chemical composition of breast muscles. The tested synbiotics as well as commercial probiotics can be valuable feed additives, improving the growth performance and immune status of turkeys.
Collapse
Affiliation(s)
- Krzysztof Lipiński
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Magdalena Mazur-Kuśnirek
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zofia Antoszkiewicz
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zbigniew Makowski
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Andrzej Siwicki
- Department of Microbiology and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Gesek
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
14
|
Quercetin Dietary Supplementation Advances Growth Performance, Gut Microbiota, and Intestinal mRNA Expression Genes in Broiler Chickens. Animals (Basel) 2021; 11:ani11082302. [PMID: 34438756 PMCID: PMC8388376 DOI: 10.3390/ani11082302] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The biological activity of quercetin is diverse, particularly antioxidant, antimicrobial, and antibacterial. The impacts of quercetin nutritional supplementations on growth performance, humoral immunity, gut microbiota and mRNA in broiler chickens were recorded. Abstract Quercetin was fed to groups of broiler chickens at concentrations of 200, 400, and 800 ppm, and a control group was supplemented with a basal diet. Results revealed that quercetin dietary supplementation numerically improved the growth performance traits and significantly increased (p < 0.05) the European production efficiency factor (EPEF) in the 200 ppm group. The total coliforms and Clostridium perfringens were decreased (p < 0.05) in quercetin-supplemented groups. Conversely, Lactobacillus counts were increased (p < 0.05), due to improvement of the gut microbiota environment in quercetin-supplemented groups. Moreover, the mRNA expression of intestinal Cu/Zn-superoxide dismutase (SOD1), glutathione peroxidase (GSH-Px) and nutritional transporters, including glucose transporter 2 (GLUT2), peptide transporter 1 (PEPT1), and fatty acid synthase (FAS) genes, were significantly upregulated in quercetin-supplemented groups. Quercetin enhanced intestinal morphometry. We can suggest quercetin supplementation in broiler chickens by levels between 200 and 400 ppm to enhance their development and gut environment.
Collapse
|
15
|
Venardou B, O'Doherty JV, Vigors S, O'Shea CJ, Burton EJ, Ryan MT, Sweeney T. Effects of dietary supplementation with a laminarin-rich extract on the growth performance and gastrointestinal health in broilers. Poult Sci 2021; 100:101179. [PMID: 34098504 PMCID: PMC8187820 DOI: 10.1016/j.psj.2021.101179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
Restriction in antimicrobial use in broiler chicken production is driving the exploration of alternative feed additives that will support growth through the promotion of gastrointestinal health and development. The objective of this study was to determine the effects of dietary inclusion of laminarin on growth performance, the expression of nutrient transporters, markers of inflammation and intestinal integrity in the small intestine and composition of the caecal microbiota in broiler chickens. Two-hundred-and-forty day-old male Ross 308 broiler chicks (40.64 (3.43 SD) g) were randomly assigned to: (T1) basal diet (control); (T2) basal diet + 150 ppm laminarin; (T3) basal diet + 300 ppm laminarin (5 bird/pen; 16 pens/treatment). The basal diet was supplemented with a laminarin-rich Laminaria spp. extract (65% laminarin) to achieve the two laminarin inclusion levels (150 and 300 ppm). Chick weights and feed intake was recorded weekly. After 35 days of supplementation, one bird per pen from the control and best performing (300 ppm) laminarin groups were euthanized. Duodenal, jejunal and ileal tissues were collected for gene expression analysis. Caecal digesta was collected for microbiota analysis (high-throughput sequencing and QPCR). Dietary supplementation with 300 ppm laminarin increased both final body weight (2033 vs. 1906 ± 30.4, P < 0.05) and average daily gain (62.3 vs. 58.2 ± 0.95, P < 0.05) compared to the control group and average daily feed intake (114.1 vs. 106.0 and 104.5 ± 1.77, P < 0.05) compared to all other groups. Laminarin supplementation at 300 ppm increased the relative and absolute abundance of Bifidobacterium (P < 0.05) in the caecum. Laminarin supplementation increased the expression of interleukin 17A (IL17A) in the duodenum, claudin 1 (CLDN1) and toll-like receptor 2 (TLR2) in the jejunum and IL17A, CLDN1 and SLC15A1/peptide transporter 1 (SLC15A1/PepT1) in the ileum (P < 0.05). In conclusion, supplementation with laminarin is a promising dietary strategy to enhance growth performance and 300 ppm was the optimal inclusion level with which to promote a beneficial profile of the gastrointestinal microbiota in broiler chickens.
Collapse
Affiliation(s)
- B Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - S Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - C J O'Shea
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom
| | - E J Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, United Kingdom
| | - M T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - T Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
17
|
Abstract
Whilst the immune system often varies seasonally and exhibits differences between males and females, the general patterns in seasonality and sex differences across taxa have remained controversial. Birds are excellent model organisms to assess these patterns, because the immune system of many species is well characterised. We conducted a meta-analysis using 41 wild bird species from 24 avian families to investigate sex differences and seasonal (breeding/non-breeding) variations in immune status, including white blood cell counts, phytohaemagglutinin (PHA) test, bacteria-killing ability (BKA), haemolysis and haemagglutination assays. We found male-biased macrophage concentration, BKA and haemolysis titers, but only during the breeding season. Sex-specific heterophil concentrations, heterophil/lymphocyte ratios and PHA responses differed between breeding and non-breeding, suggesting larger changes in males than in females. Importantly, sex differences in immune status are stronger during the breeding period than during the non-breeding period. Taken together, our study suggests that both seasonal variation and sex differences in immune system are common in birds, although their associations are more complex than previously thought.
Collapse
|
18
|
Bryden WL, Li X, Ruhnke I, Zhang D, Shini S. Nutrition, feeding and laying hen welfare. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The relationship between nutrition and welfare is usually considered to be a direct result of supplying the hen with adequate quantities of feed and water. This simple notion of freedom from hunger and thirst belies the fact that nutrients play a pivotal role in the body’s response to challenges whether they relate to ambient temperature, gastrointestinal health, pathogen exposure, metabolic disorders, or social and mental stress. In all instances, maintaining homeostasis and allowing for physiologic response is dependent on an adequate and balanced nutrient supply. It is accepted that most laying hens are fed a complete diet, formulated commercially to provide the required nutrients for optimal health, egg production and welfare. In other words, the laying hen, irrespective of her housing, does not experience hunger or thirst. However, despite adequate nutrient and water supply, certain senarios can significantly affect and alter the nutrient requirements of the hen. Furthermore, the chemical composition and also the physical form of feed can significantly contribute to prevent or treat welfare and health conditions and is, therefore, a highly relevant tool to ensure and maintain an adequate welfare status. Therefore, this review takes a broader perspective of nutritional welfare and considers the nutrition of hens managed in different production systems in relation to nutritional physiology, gut microbiota, stress, metabolic disorders and feeding management.
Collapse
|
19
|
Zhang S, Kim IH. Effect of quercetin (flavonoid) supplementation on growth performance, meat stability, and immunological response in broiler chickens. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Eggleston KA, Schultz EM, Reichard DG. Assessment of Three Diet Types on Constitutive Immune Parameters in Captive Budgerigar ( Melopsittacus undulatus). J Avian Med Surg 2020; 33:398-405. [PMID: 31833308 DOI: 10.1647/2018-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proper diet and nutrition are essential for maintaining the health of captive birds, but specific nutritional requirements can vary by species. Our knowledge of avian nutrition is predominantly based on data collected from gallinaceous birds, which is the primary basis for the dietary recommendations for companion birds, such as budgerigars (Melopsittacus undulatus) and other psittacine birds, potentially leading to a higher risk of malnutrition. In the wild, budgerigars eat predominantly Australian grass seed of the Astrebla genus, which may not be similar to the commercially available food fed to captive budgerigars, both in nutrient content and in their physiologic effects. In this study, we examined the relationship between diet type and immune function by separating 36 budgerigars into 3 dietary treatments: 1) Roudybush formulated pellet diet (Roudybush BirdFood Inc, Woodland, CA, USA), 2) Kaytee Forti-Diet Pro Health seed mix (Kaytee Products Inc, Chilton, WI, USA), and 3) a natural seed diet containing fresh canary grass, flax, nyger, oat groats, and white millet seeds. We monitored body weight, measured the microbial killing ability of whole blood by Escherichia coli and Candida albicans, and collected blood smears to assess white blood cell counts during a period of 8 weeks. Overall, we observed no significant effects of the 3 different diets on bird microbial killing ability or on white blood cell counts, suggesting similar health outcomes for budgerigars that consume mixed seed and those that receive pellet-based diets during this relatively short-term study.
Collapse
Affiliation(s)
- Kayla A Eggleston
- Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015, USA
| | | | - Dustin G Reichard
- Department of Zoology, Ohio Wesleyan University, Delaware, OH 43015, USA
| |
Collapse
|
21
|
Effect of a Synbiotic Mix on Lymphoid Organs of Broilers Infected with Salmonella typhimurium and Clostridium perfringens. Animals (Basel) 2020; 10:ani10050886. [PMID: 32438731 PMCID: PMC7278420 DOI: 10.3390/ani10050886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The use of synbiotics in the poultry industry could be a tool to regulate immunological activity and generate beneficial effects against pathogens, like Salmonella typhimurium and Clostridium perfringens, particularly in those cases where the use of antibiotics during poultry production was excluded. Either through the generation of short-chain fatty acids (SCFA) that contribute to mucosa proliferation or promoting the growth of beneficial gut bacteria, synbiotics could favor a microenvironment that improves the activity of the immune system. However, the organization and response of lymphocytes in lymphoid tissues could be modified by the type of active compound of the synbiotic. Therefore, the present work investigated the effect of a synbiotic mix on lymphoid tissues of broilers infected with Salmonella typhimurium and Clostridium perfringens. The results showed that the mix of probiotics Lactobacillus rhamnosus HN001, Pediococcus acidilactici MA18/5Ma and a prebiotic can stimulate the bursa and the IgA production, increasing the size of its follicles and promoting the ability to resist infections caused by S.typhimurium in broilers. Abstract Synbiotic consumption can modulate immune response. This work involves studying the effect of a synbiotic on lymphoid organs and IgA of broilers infected with Salmonella typhimurium and Clostridium perfringens. A total of 258 one-day-old male broilers (Gallus gallus domesticus), line COBBAvian48 (free of growth-promoting antibiotics), were distributed into eight treatment groups. A symbiotic mix comprising Lactobacillus rhamnosus HN001 and Pediococcus acidilactici MA18/5 M as probiotics and 4.5% (0.045 g g−1) of Agave tequilana fructans as prebiotic per dose (one milliliter) was administered through drinking water the first day of life. Bursa, spleen and thymus were analyzed. Broilers treated with the synbiotic, whether or not infected with pathogens, had bigger bursa follicles than the non-treated (p < 0.05), and the ones from the synbiotic group had more lymphocytes than the control group (p < 0.05). Thymus follicles of the synbiotic group were bigger than the control group (p < 0.05). Lesions associated with Salmonella infection were found in the bursa, however, in the broilers treated with the synbiotic, the lesions were less intense and were not present after 32 days of life. The synbiotic mix can stimulate the bursa, increasing the size of their follicles and promoting the ability to resist infections caused by S.typhimurium in broilers.
Collapse
|
22
|
van der Klein SAS, More-Bayona JA, Barreda DR, Romero LF, Zuidhof MJ. Comparison of mathematical and comparative slaughter methodologies for determination of heat production and energy retention in broilers. Poult Sci 2020; 99:3237-3250. [PMID: 32475460 PMCID: PMC7597740 DOI: 10.1016/j.psj.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 11/15/2022] Open
Abstract
Understanding factors affecting ME availability for productive processes is an important step in optimal feed formulation. This study compared a modelling methodology with the comparative slaughter technique (CST) to estimate energy partitioning to heat production and energy retention (RE) and to investigate differences in heat dissipation. At hatch, 50 broilers were randomly allocated in one of 4 pens equipped with a precision feeding station. From day 14 to day 45, they were either fed with a low-ME (3,111 kcal/kg ME) or a high-ME (3,383 kcal/kg ME) diet. At day 19, birds were assigned to pair-feeding in groups of 6 with lead birds eating ad libitum (100%) and follow birds eating at either 50, 60, 70, 80, or 90% of the paired lead's cumulative feed intake. Heat production and RE were estimated by CST and with a nonlinear mixed model explaining daily ME intake (MEI) as a function of metabolic BW and average daily gain (ADG). The energy partitioning model predicted MEI = (145.10 + u) BW0.83 + 1.09 × BW−0.18 × ADG1.19 + ε. The model underestimated heat production by 13.4% and overestimated RE by 22.8% compared with the CST. The model was not able to distinguish between net energy for gain values of the diets (1,448 ± 18.5 kcal/kg vs. 1,493 ± 18.0 kcal/kg for the low-ME and high-ME diet, respectively), whereas the CST found a 148 kcal/kg difference between the low-ME and high-ME diets (1,101 ± 22.5 kcal/kg vs. 1,249 ± 22.0 kcal/kg, respectively). The estimates of the net energy for gain values of the 2 diets decreased with increasing feed restriction. The heat increment of feeding did not differ between birds fed with the low- or high-ME diet (26% of MEI). Additional measurements on heat dissipation, physical activity, and immune status indicated that the energetic content of the diet and feed restriction affect some parameters (shank temperature, feeding station visits) but not others (leukocyte counts, heterophil to lymphocyte ratio, and immune cell function).
Collapse
Affiliation(s)
- S A S van der Klein
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - J A More-Bayona
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2P5, Alberta, Canada
| | - L F Romero
- Research and Development, Danisco UK Ltd., Marlborough SN8 1XN, United Kingdom
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Alberta, Canada.
| |
Collapse
|
23
|
Ricke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poult Sci 2020; 99:670-677. [PMID: 32029153 PMCID: PMC7587714 DOI: 10.1016/j.psj.2019.12.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.
Collapse
Affiliation(s)
- Steven C Ricke
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701.
| | - Sang In Lee
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704; Cell and Molecular Biology Graduate Program, Department of Food Science, University of Arkansas, Fayetteville, AR 72701
| | - Sun Ae Kim
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Si Hong Park
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| | - Zhaohao Shi
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR 72704
| |
Collapse
|
24
|
|
25
|
|
26
|
|
27
|
Swaggerty CL, Callaway TR, Kogut MH, Piva A, Grilli E. Modulation of the Immune Response to Improve Health and Reduce Foodborne Pathogens in Poultry. Microorganisms 2019; 7:E65. [PMID: 30823445 PMCID: PMC6462950 DOI: 10.3390/microorganisms7030065] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Salmonella and Campylobacter are the two leading causes of bacterial-induced foodborne illness in the US. Food production animals including cattle, swine, and chickens are transmission sources for both pathogens. The number of Salmonella outbreaks attributed to poultry has decreased. However, the same cannot be said for Campylobacter where 50⁻70% of human cases result from poultry products. The poultry industry selects heavily on performance traits which adversely affects immune competence. Despite increasing demand for poultry, regulations and public outcry resulted in the ban of antibiotic growth promoters, pressuring the industry to find alternatives to manage flock health. One approach is to incorporate a program that naturally enhances/modulates the bird's immune response. Immunomodulation of the immune system can be achieved using a targeted dietary supplementation and/or feed additive to alter immune function. Science-based modulation of the immune system targets ways to reduce inflammation, boost a weakened response, manage gut health, and provide an alternative approach to prevent disease and control foodborne pathogens when conventional methods are not efficacious or not available. The role of immunomodulation is just one aspect of an integrated, coordinated approach to produce healthy birds that are also safe and wholesome products for consumers.
Collapse
Affiliation(s)
- Christina L Swaggerty
- United States Department of Agriculture/ARS, 2881 F and B Road, College Station, TX 77845, USA.
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA 30602, USA.
| | - Michael H Kogut
- United States Department of Agriculture/ARS, 2881 F and B Road, College Station, TX 77845, USA.
| | - Andrea Piva
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy.
| | - Ester Grilli
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy.
| |
Collapse
|
28
|
Di Santo LG, Braos LB, Kawanami AE, Oliveira JP, Cruz NRN, Mendonça FS, Peixoto MC, Carciofi AC. Feed processing effects on digestibility, palatability, excreta fermentation products and blood parameters in blue-fronted amazon parrots (Amazona aestiva) †. J Anim Physiol Anim Nutr (Berl) 2018; 103:339-353. [PMID: 30390355 DOI: 10.1111/jpn.13011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 11/27/2022]
Abstract
Captive parrots show a high incidence of obesity and other metabolic disorders due to the consumption of unbalanced diets. Therefore, this study evaluated the digestibility and metabolic effects of transitioning blue-fronted amazons from a high fat diet (sunflower seeds) to processed diets with three degrees of starch gelatinization (SG). The same feed formulation was processed to obtain pelletized feed (PEL) at 27.1% SG; low-cooked extruded feed (EXTL ) at 81.6% SG; and high-cooked extruded feed (EXTH ) at 98.5% SG. Thirty adult parrots were fed sunflower seeds for 90 days, then were distributed in a completely randomized design with 10 repetitions per treatment, and fed one of the three prepared diets for 160 days. Feed palatability, apparent digestibility, excreta concentrations of volatile fatty acids, lactate and ammonia, initial and final radiographic examinations, blood cell counts and glucose, triglycerides, cholesterol, total protein, albumin, aspartate aminotransferase (AST) and uric acid levels were evaluated. The data were analysed by an analysis of variance and compared by Tukey's test (p < 0.05). Sunflower seed was more digestible than processed feeds (p < 0.05). Diet processing interfered with fat and starch digestibility (p < 0.001), being higher in the PEL than in the EXTH and EXTL respectively. Transitioning from sunflower seeds to balanced diets reduced serum glucose, triglycerides, cholesterol and AST (p < 0.05) and increased red blood cell, haemoglobin, lymphocyte, monocyte and leucocyte counts (p < 0.01). Radiographs indicated a decreased hourglass (p = 0.015) and a reduced heart-liver ratio after ingesting the processed feeds (p < 0.05). Feed processing did not affect blood cell counts, serum biochemistry or radiographic examinations. In conclusion, parrots preferred the extruded diet and did not require an extensive SG to properly digest the feed. Consuming the processed diets improved the birds' metabolism and health.
Collapse
Affiliation(s)
- Ludmilla G Di Santo
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Lucas B Braos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Aline E Kawanami
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Juliana P Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Nathan R N Cruz
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Fernanda S Mendonça
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Mayara C Peixoto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Aulus C Carciofi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| |
Collapse
|
29
|
Kogut M. Issues and consequences of using nutrition to modulate the avian immune response. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfx028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Chou WK, Park J, Carey JB, McIntyre DR, Berghman LR. Immunomodulatory Effects of Saccharomyces cerevisiae Fermentation Product Supplementation on Immune Gene Expression and Lymphocyte Distribution in Immune Organs in Broilers. Front Vet Sci 2017; 4:37. [PMID: 28349053 PMCID: PMC5346889 DOI: 10.3389/fvets.2017.00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
A study was conducted to evaluate the molecular and cellular immunomodulatory effects of a Saccharomyces cerevisiae fermentation product (Original XPC, Diamond V) in broilers. Our lab has previously demonstrated that broilers fed XPC generate faster and stronger antigen-specific humoral immune responses to Newcastle disease virus (NDV) vaccination. This study aims at investigating the mechanism behind this increased immunocompetence. One-day-old broilers were randomly assigned to one of two treatments: 1.25 kg/ton S. cerevisiae fermentation product (XPC treatment group) or control diet. Birds were vaccinated against NDV on day 1 (B1 strain) and day 21 (LaSota strain) post-hatch. Innate and adaptive immune-related gene expression profiles in central (thymus and bursa of Fabricius) and peripheral (spleen) immune organs were investigated at 14 and 28 days of age by qPCR array. Fold changes larger than 1.2 (P < 0.05) between treated and control were considered significant. Lymphocyte subpopulations in central and peripheral immune organs and blood leukocytes were analyzed by flow cytometry at 14, 21, 28, and 42 days of age. In the spleen, Th1 immune responses and antiviral genes, such as IFN-γ, and its downstream genes signal transducer and activator of transcription (STAT4) and NFκB, were significantly upregulated in the treated group by 14 days of age. In the thymus, genes belonging to different functional groups were influenced at different time points. Cytokine genes associated with lymphocyte maturation, differentiation, and proliferation, such as IL-1R, IL-2, and IL-15 were significantly upregulated in the treated group by 28 days of age. Genes preferentially expressed in the medulla of the thymus and mature thymocytes, such as Myxovirus resistance gene 1, interferon regulatory factor-1, interferon regulatory factor-7, and STAT1, were upregulated in the birds supplemented with XPC. Birds supplemented with XPC had significantly higher percentages of CD3+, CD4+, and CD8+ T-cells in the thymus at day 28 of age, indicating production of more mature T-cells, which was consistent with gene expression results. Results suggest that XPC supplementation primes broilers to become more immunocompetent, without compromising growth performance.
Collapse
Affiliation(s)
- Wen K. Chou
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - Jungwoo Park
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | - John B. Carey
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | - Luc R. Berghman
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
32
|
Lieboldt MA, Halle I, Frahm J, Schrader L, Weigend S, Preisinger R, Breves G, Dänicke S. Effects of Graded Dietary L-arginine Supply on Organ Growth in Four Genetically Diverse Layer Lines during Rearing Period. J Poult Sci 2016; 53:136-148. [PMID: 32908376 PMCID: PMC7477283 DOI: 10.2141/jpsa.0150131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022] Open
Abstract
Little information has been available about the influence of genetic background and dietary L-arginine (Arg) supply on organ growth of chickens. Therefore, the present study examined the effects of a graded ad libitum Arg supply providing 70, 100 and 200% of recommended Arg concentration on organ growth of female chickens from hatch to 18 weeks of age. The chickens derived from four layer lines of different phylogeny (white vs. brown) and laying performance (high vs. low). Based on residual feed and absolute body and organ weights recorded in six-week-intervals, feed consumption, changes of relative organ weights and allometric organ growth were compared between experimental groups. Surplus Arg caused higher feed intake than insufficient Arg (p<0.01) that induced growth depression in turn (p <0.05). During the entire trial chicken's heart, gizzard and liver decreased relatively to their body growth (p<0.001) and showed strong positive correlations among each other. On the contrary, proportions of pancreas and lymphoid organs increased until week 12 (p<0.001) and correlated positively among each other. Due to their opposite growth behaviour (p<0.001), internal organs were assigned to two separate groups. Furthermore, insufficient Arg induced larger proportions of bursa, gizzard and liver compared with a higher Arg supply (p<0.05). In contrast to less Arg containing diets, surplus Arg decreased relative spleen weights (p<0.01). The overall allometric evaluation of data indicated a precocious development of heart, liver, gizzard, pancreas and bursa independent of chicken's genetic and nutritional background. However, insufficient Arg retarded the maturation of spleen and thymus compared with an adequate Arg supply. In conclusion, the present results emphasised the essential function of Arg in layer performance, and indicated different sensitivities of internal organs rather to chicken's dietary Arg supply than to their genetic background.
Collapse
Affiliation(s)
- Marc-Alexander Lieboldt
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Ingrid Halle
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| | - Lars Schrader
- Institute of Animal Welfare and Animal Husbandry, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Dörnbergstraße 25-27, Celle 29223, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Höltystraße 10, Neustadt-Mariensee 31535, Germany
| | | | - Gerhard Breves
- Institute of Physiology, University of Veterinary Medicine, Bischofsholer Damm 15, Hannover 30173, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Bundesallee 50, Braunschweig 38116, Germany
| |
Collapse
|
33
|
Lieboldt MA, Frahm J, Halle I, Schrader L, Weigend S, Preisinger R, Breves G, Dänicke S. Haematological and febrile response to Escherichia coli lipopolysaccharide in 12-week-old cockerels of genetically diverse layer lines fed diets with increasing L-arginine levels. J Anim Physiol Anim Nutr (Berl) 2016; 101:743-754. [PMID: 27080348 DOI: 10.1111/jpn.12466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
Due to its decisive function in the avian metabolic, endocrine and immune system L-arginine (Arg) is dietary indispensable for chickens. In 12-week-old cockerels of two high- and two low-performing purebred layer lines, the effects of increasing dietary Arg on the haematological and febrile response were studied over 48 h after single lipopolysaccharide (LPS) injection. The offered diets contained Arg equivalent to 70%, 100% and 200% of recommended supply. Pathophysiological alterations in weight gain, feed intake, body temperature and differential blood count were examined in comparison with their physiological initial values. Within the first 24 h after LPS injection, cockerels reduced feed intake and lost body weight subsequently. Thereby, low-performing genotypes lost body weight to a lesser extent than high-performing ones. The loss of body weight was further intensified by deficient dietary Arg. Within the following 24 h, cockerels recovered by improving feed intake and weight gain. Furthermore, LPS induced genotype-specific fever response: both brown genotypes showed initial hypothermia followed by longer lasting moderate hyperthermia, whereas the white genotypes exhibited biphasic hyperthermia. Fever response was accompanied by significant changes in differential blood counts. Characterized by lymphopenia and heterophilia, a severe leucopenia was observed from 4 to 8 h after LPS injection and replaced by a marked leucocytosis with longer lasting monocytosis up to 48 h after LPS injection. Under given pathophysiological conditions, deficiently Arg-supplied cockerels showed higher total leucocyte counts than adequately and excessively Arg-supplied cockerels. However, deficient and surplus dietary Arg tended to cause higher ratios between heterophils and lymphocytes. To conclude, present results confirmed that LPS induced numerous immunological changes in 12-week-old cockerels and emphasized that chicken's genotype is a source of variation to be considered for immunological studies. Deficient dietary Arg intensified acute changes in differential blood counts and weight gain during LPS-induced inflammation.
Collapse
Affiliation(s)
- M-A Lieboldt
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - J Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - I Halle
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| | - L Schrader
- Institute of Animal Welfare and Animal Husbandry, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Celle, Germany
| | - S Weigend
- Institute of Farm Animal Genetics, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | | | - G Breves
- Institute of Physiology, University of Veterinary Medicine, Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Braunschweig, Germany
| |
Collapse
|
34
|
Effects of feed access after hatch and inclusion of fish oil and medium chain fatty acids in a pre-starter diet on broiler chicken growth performance and humoral immunity. Animal 2016; 10:1409-16. [PMID: 26948094 DOI: 10.1017/s1751731116000288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN- γ ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g/kg) in the pre-starter diet appear to have limited (carryover) effects on growth and development, as well as on humoral immune function.
Collapse
|
35
|
Arsenault RJ, Kogut MH. Immunometabolism and the Kinome Peptide Array: A New Perspective and Tool for the Study of Gut Health. Front Vet Sci 2015; 2:44. [PMID: 26664971 PMCID: PMC4672240 DOI: 10.3389/fvets.2015.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Immunometabolism is a relatively new research perspective, focusing on both metabolism and immunology and the cross-talk between these biological processes. Immunometabolism can be considered from two perspectives; 1) the role that immune cells play in organ metabolism and metabolic disease, and 2) the metabolic processes that occur within immune cells and how they affect overall immunity. The gut may be the prototypical organ of immunometabolism. The gut is the site of nutrient absorption and is a major, if not the major, immune organ. We also describe the integration of kinomics and the species-specific peptide array to the study of the gut. This unique immunometabolic tool combined with the unique immunometabolic nature of the gut provides significant research potential to many animal health applications.
Collapse
Affiliation(s)
- Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware , Newark, DE , USA
| | - Michael H Kogut
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center , College Station, TX , USA
| |
Collapse
|
36
|
Swiatkiewicz S, Arczewska-Wlosek A, Jozefiak D. The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Goliomytis M, Tsipouzian T, Hager-Theodorides AL. Effects of egg storage on hatchability, chick quality, performance and immunocompetence parameters of broiler chickens. Poult Sci 2015. [DOI: 10.3382/ps/pev200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Amerah AM, Ravindran V. Effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. Poult Sci 2015; 94:673-80. [PMID: 25691757 PMCID: PMC4990982 DOI: 10.3382/ps/pev022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of the present experiment was to examine the effect of coccidia challenge and natural betaine supplementation on performance, nutrient utilization, and intestinal lesion scores of broiler chickens fed suboptimal level of dietary methionine. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two levels of betaine supplementation (0 and 960 g betaine/t of feed) without or with coccidia challenge. Each treatment was fed to 8 cages of 8 male broilers (Ross 308) for 1 to 21d. On d 14, birds in the 2 challenged groups received mixed inocula of Eimeria species from a recent field isolate, containing approximately 180,000 E. acervulina, 6,000 E. maxima, and 18,000 E. tenella oocysts. At 21d, digesta from the terminal ileum was collected for the determination of dry matter, energy, nitrogen, amino acids, starch, fat, and ash digestibilities. Lesion scores in the different segments of the small intestine were also measured on d 21. Performance and nutrient digestibility data were analyzed by two-way ANOVA. Lesion score data were analyzed using Pearson chi-square test to identify significant differences between treatments. Orthogonal polynomial contrasts were used to assess the significance of linear or quadratic models to describe the response in the dependent variable to total lesion scores. Coccidia challenge reduced (P < 0.0001) the weight gain and feed intake, and increased (P < 0.0001) the feed conversion ratio. Betaine supplementation had no effect (P > 0.05) on the weight gain or feed intake, but lowered (P < 0.05) the feed conversion ratio. No interaction (P > 0.05) between coccidia challenge and betaine supplementation was observed for performance parameters. Betaine supplementation increased (P < 0.05) the digestibility of dry matter, nitrogen, energy, fat, and amino acids only in birds challenged with coccidia as indicated by the significant interaction (P < 0.0001) between betaine supplementation and coccidia challenge. The main effect of coccidia challenge reduced (P < 0.05) starch digestibility. Betaine supplementation improved (P < 0.05) starch digestibility regardless of the coccidia challenge. For each unit increase in the total lesion score, there was a linear (P < 0.001) decrease in digestibility of mean amino acids, starch, and fat by 3.8, 3.4 and 16%, respectively. Increasing total lesion scores resulted in a quadratic (P < 0.05) decrease in dry matter digestibility and ileal digestible energy. No lesions were found in the intestine or ceca of the unchallenged treatments. In the challenged treatments, betaine supplementation reduced (P < 0.01) the lesion scores at the duodenum, lower jejunum, and total lesion scores compared to the treatment without supplements. In conclusion, coccidia challenge lowered the digestibility of energy and nutrients and increased the feed conversion ratio of broilers. However, betaine supplementation reduced the impact of coccidia challenge and positively affected nutrient digestibility and the feed conversion ratio.
Collapse
Affiliation(s)
- A M Amerah
- Danisco Animal Nutrition, DuPont Industrial Bioscience, Marlborough, SN8 1XN, UK
| | - V Ravindran
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
39
|
Hager-Theodorides A, Goliomytis M, Delis S, Deligeorgis S. Effects of dietary supplementation with quercetin on broiler immunological characteristics. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Simon K, de Vries Reilingh G, Kemp B, Lammers A. Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers. Poult Sci 2014; 93:3017-27. [PMID: 25306458 DOI: 10.3382/ps.2014-04225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Provision of feed in the immediate posthatch period may influence interaction between intestinal microbiota and immune system, and consequently immunological development of the chick. This study addressed ileal immune development in response to early feeding in 2 chicken breeds selected for different production traits: broilers and layers. Chicks of both breeds either received feed and water immediately posthatch or were subjected to a 72-h feed and water delay. Ileal cytokine and immunoglobulin mRNA expression levels were determined at different time points. Effects of early feeding were limited, but breeds differed strikingly regarding cytokine and immunoglobulin expression levels. Cytokine expression levels in broilers were low compared with layers and showed a transient drop in the second to third week of life. In contrast, broilers showed considerably higher expression levels of IgA, IgM, and IgY. These findings indicate that the 2 breeds use different immune strategies, at least on the ileal level.
Collapse
Affiliation(s)
- K Simon
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - A Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
41
|
Kogut MH. The gut microbiota and host innate immunity: Regulators of host metabolism and metabolic diseases in poultry? J APPL POULTRY RES 2013. [DOI: 10.3382/japr.2013-00741] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|