1
|
Hafeez A, Shahid Ali S, Akhtar J, Naz S, Alrefaei AF, Albeshr MF, Israr M, Ullah Khan R. Impact of coriander ( Coriandrum sativum), garlic ( Allium sativum), fenugreek ( Trigonella foenum-graecum) on zootechnical performance, carcass quality, blood metabolites and nutrient digestibility in broilers chickens. Vet Q 2024; 44:1-7. [PMID: 38423073 PMCID: PMC10906120 DOI: 10.1080/01652176.2023.2300948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The study investigated the impact of incorporating a specific herbal blend comprising coriander, garlic, and fenugreek (CGF) at various levels on the zootechnical performance, blood metabolites and nutrient digestibility in broiler chickens. The 42-day experiment involved 360 broilers (Cobb 500), organized into four distinct treatment groups. The dietary interventions included a control group consisting of a basal diet and the same diet was supplemented with CGF at rates of 1, 2, and 3%. Broilers receiving a 1% phytogenic mixture exhibited significantly increased live weight and carcass weight. Moreover, the digestibility of crude protein and crude fat significantly improved in broilers supplemented with a 1% phytogenic mixture. On the other hand, the digestibility of calcium and phosphorus showed a notable increase in broilers fed with a 3% phytogenic mixture. Regarding serum metabolites, the 1% phytogenic mixture group displayed significantly higher levels of high density lipoprotein and triglycerides. The supplementation of the broiler diet with a herbal mixture of coriander, fenugreek, and garlic at a 1% rate resulted in improved growth performance, carcass quality, nutrient digestion, and lipid profile.
Collapse
Affiliation(s)
- Abdul Hafeez
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Said Shahid Ali
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Junaid Akhtar
- Department of Poultry Science, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Shabana Naz
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | | | - Muhammad Israr
- Project Management, University of Portsmouth, Portsmouth, UK
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
2
|
Chalana G, Sihag S, Kumar A, Magotra A. Expression profiling of immune genes associated with black pepper ( Piper nigrum) powder supplementation in the diets of broiler chickens. Anim Biotechnol 2023; 34:2336-2342. [PMID: 35732035 DOI: 10.1080/10495398.2022.2088551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The present study was conducted on three hundred commercial broiler chicks with the aim to evaluate the effect of black pepper supplementation on expression of TLR gene where the negative control (T1) group was given basal diet without antibiotic and in the control group (T2) basal diet with antibiotic was fed, third (T3), fourth (T4), fifth (T5) and sixth (T6) groups were supplemented with black pepper powder (BPP) at levels 0.25, 0.5, 0.75 and 1%, respectively in diet. After 42 days, a significant reduction (p < 0.05) in ileal E. coli count and a higher value of Lactobacilli was recorded in the various black pepper powder supplemented groups, and they differed significantly (p < 0.05) from negative control. The mRNA expression levels of Toll-like receptors (TLR 2 and TLR 4) had shown significant (p < 0.05) changes in experimental groups. The TLR 2 and TLR 4 genes revealed differential expression in all black pepper supplemented groups in comparison to negative control and control group, while TLR 7 did not show any significant change. Thus, supplementation of black pepper powder can be exploited as an immunomodulator to enhance adaptive immune response of broiler chicks after validation on large number of samples.
Collapse
Affiliation(s)
- Gunjan Chalana
- Department of Animal Nutrition, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Sajjan Sihag
- Department of Animal Nutrition, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
3
|
Zhang L, Wang X, Huang S, Huang Y, Shi H, Bai X. Effects of dietary essential oil supplementation on growth performance, carcass yield, meat quality, and intestinal tight junctions of broilers with or without Eimeria challenge. Poult Sci 2023; 102:102874. [PMID: 37406442 PMCID: PMC10339057 DOI: 10.1016/j.psj.2023.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The effects of dietary supplementation of essential oil on growth performance, carcass yield, meat quality, serum antioxidant capacity, and intestinal tight junctions of broilers with or without Eimeria challenge were investigated. A total of 576 one-day-old male broilers were randomly separated into 8 treatments (6 replication floor-pens per treatment, 12 broilers per pen) in a 4 × 2 factorial design. The 4 diets consisted of 1) a corn and soybean meal basal diet, 2) an anticoccidial diet (60 g nicarbazin and 60 g narasin per ton of feed), 3) an oregano oil diet (500 ppm oregano oil), and 4) a clove oil diet (500 ppm clove oil). On d 10, half chicks were challenged with 1 × 104 sporulated oocysts of E. tenella, E. acervulina, and E. maxima per chick, whereas the others were inoculated with an equal amount of dilution (0.5 mL). The Eimeria challenge induced a higher fecal oocyst output on d 18, a lower duodenum Occludin expression level on d 28, a lower serum catalase level, and a higher cook loss and protein loss in thigh muscle on d 42. The anticoccidial diet lowered fecal Eimeria output and increased d 1 to 42 BW gain as compared to the control diet. The clove oil treatment enhanced duodenum ZO-1 expression level in nonchallenged birds, increased BW gain from d 1 to 14 and breast yield on d 42. The oregano oil treatment enhanced ZO-1 expression of challenged birds, reduced feed intake from 15 to 28 d, and helped broilers gain more tender meat. For those Eimeria-challenged broilers, both clove and oregano oil treatments recovered drip loss in breast muscle. Our results suggested that Eimeria challenge in broiler early age could interrupt later serum antioxidant capacity and damage meat quality. The dietary supplementation of clove or oregano essential oils could improve broiler growth performance and partially relieve the coccidial damage in gut integrity and meat quality.
Collapse
Affiliation(s)
- L Zhang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - X Wang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| | - S Huang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - Y Huang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - H Shi
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| | - X Bai
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Chengdu 610041, PR China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China
| |
Collapse
|
4
|
Bajagai YS, Petranyi F, J Yu S, Lobo E, Batacan R, Kayal A, Horyanto D, Ren X, M Whitton M, Stanley D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci Rep 2022; 12:11033. [PMID: 35773309 PMCID: PMC9246849 DOI: 10.1038/s41598-022-14925-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Consumer push towards open and free-range production systems makes biosecurity on farms challenging, leading to increased disease and animal welfare issues. Phytogenic products are increasingly becoming a viable alternative for the use of antibiotics in livestock production. Here we present a study of the effects of commercial phytogenic supplement containing menthol, carvacrol and carvone on intestinal microbiota of layer hens, microbial functional capacity, and intestinal morphology. A total of 40,000 pullets were randomly assigned to two sides of the experimental shed. Growth performance, mortality, egg production and egg quality parameters were recorded throughout the trial period (18–30 weeks of age). Microbial community was investigated using 16S amplicon sequencing and functional difference using metagenomic sequencing. Phytogen supplemented birds had lower mortality and number of dirty eggs, and their microbial communities showed reduced richness. Although phytogen showed the ability to control the range of poultry pathogens, its action was not restricted to pathogenic taxa, and it involved functional remodelling the intestinal community towards increased cofactor production, heterolactic fermentation and salvage and recycling of metabolites. The phytogen did not alter the antimicrobial resistance profile or the number of antibiotic resistance genes. The study indicates that phytogenic supplementation can mimic the action of antibiotics in altering the gut microbiota and be used as their alternative in industry-scale layer production.
Collapse
Affiliation(s)
- Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Sung J Yu
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Romeo Batacan
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Xipeng Ren
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia.
| |
Collapse
|
5
|
Ahsan U, Adabi S, Sayın Özdemir Ö, Sevim Ö, Tatlı O, Kuter E, Cengiz Ö. Growth performance, carcass yield and characteristics, meat quality, serum biochemistry, jejunal histomorphometry, oxidative stability of liver and breast muscle, and immune response of broiler chickens fed natural antioxidant alone or in combination with <i>Bacillus licheniformis</i>. Arch Anim Breed 2022; 65:183-197. [PMID: 35572010 PMCID: PMC9097257 DOI: 10.5194/aab-65-183-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract. In this study, oxidative stability of liver and breast
meat, and immune response were evaluated in broiler chickens fed
supplemental phytogenic feed additive (PFA) alone or in combination with
Bacillus licheniformis. Three experimental groups – control, PFA (60 mg kg−1), and PFA (60 mg kg−1) + 0.5 mg kg−1 B. licheniformis (1.6 × 1012 cfu g−1),
each consisting of 5 replicates – were established with 20 one-day-old chickens
per replicate (300 birds in total). Growth performance, carcass yield and
characteristics, and meat quality remained unaffected. However, supplemental
PFA and PFA + B. licheniformis improved the serum biochemistry and jejunal
histomorphometry of broiler chickens (P<0.05). PFA and PFA + B. licheniformis
groups had lower thiobarbituric acid reacting substances (TBARS) in liver, and freeze–thaw breast meat after 30, 60,
and 90 d of storage (P<0.05). PFA and PFA + B. licheniformis supplementation
lowered the carbonyl group in fresh and stored breast meat (P<0.05). Antibody titer against infectious bursal disease virus was higher in
the PFA + B. licheniformis group than the control group (P<0.05). It can be concluded
that PFA or PFA + B. licheniformis in broiler diets improves the health, oxidative
stability of liver and breast meat, and immune response of broiler chickens.
Collapse
Affiliation(s)
- Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food,
Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal
Campus, Burdur 15030, Turkey
- Centre for Agriculture, Livestock and Food Research, Burdur Mehmet
Akif Ersoy University, İstiklal Campus, Burdur 15030, Turkey
| | | | - Özge Sayın Özdemir
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Ömer Sevim
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Onur Tatlı
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Eren Kuter
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal
Campus, Burdur 15030,
Turkey
| | - Özcan Cengiz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| |
Collapse
|
6
|
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, Al Syaad KM, Swelum AA. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci 2022; 101:101696. [PMID: 35150942 PMCID: PMC8844281 DOI: 10.1016/j.psj.2022.101696] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
The poultry industry contributes significantly to bridging the nutritional gap in many countries because of its meat and eggs products rich in protein and valuable nutrients at a cost less than other animal meat sources. The natural antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, enzymes, immunostimulants, and phytogenic (phytobiotic) including herbs, botanicals, essential oils, and oleoresins are the most common feed additives that acquire popularity in poultry industry following the ban of antibiotic growth promoters (AGPs). They are commonly used worldwide because of their unique properties and positive impact on poultry production. They can be easily mixed with other feed ingredients, have no tissue residues, improve feed intake, feed gain, feed conversion rate, improve bird immunity, improve digestion, increase nutrients availability as well as absorbability, have antimicrobial effects, do not affect carcass characters, decrease the usage of antibiotics, acts as antioxidants, anti-inflammatory, compete for stress factors and provide healthy organic products for human consumption. Therefore, the current review focuses on a comprehensive description of different natural antibiotic growth promoters' alternatives, the mode of their action, and their impacts on poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, 21995, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed 22758, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Director of the Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
7
|
Dang DX, Yun KS, Kim IH. Achyranthes Japonica Nakai root extract supplementation improves apparent nutrient digestibility, caecum microbiota, and excreta gas emission in broiler chicks. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of supplementing Achyranthes Japonica Nakai (AJN) root extract to the diet of broiler chicks on growth performance, nutrient digestibility, caecum microbiota, excreta gas emission, and relative weight of organs. A total of 270 1-day-old Ross 308 broiler chicks (42.11 ± 0.18 g) were randomly allotted into 3 dietary treatments according to the initial body weight. Each treatment had 5 replicate cages with 18 birds per cage. The experimental period was 35 days (starter, days 1-7; grower, days 8-21; finisher, days 22-35). Dietary treatments were corn-soybean meal-based basal diet supplemented with 0.000, 0.015, or 0.030 % AJN root extract. The apparent total tract digestibility of nitrogen (P = 0.025) increased linearly with the increase of the dosage of AJN root extract, while the counts of E. coli in caecum (P = 0.038) and excreta ammonia emission (P = 0.003) decreased linearly. However, the growth performance (P > 0.05) and the relative weight of organs (P > 0.05) did not differ among the dietary groups. In conclusion, AJN root extract could increase the nutrient digestibility and reduce the noxious gas emission by reducing the caecum harmful microbiota in a dose-dependent manner.
Collapse
Affiliation(s)
- De Xin Dang
- Dankook University - Cheonan Campus, 65383, Cheonan, Chungnam, Korea (the Republic of)
| | - Kwan Sik Yun
- Weve The State Apt, Synergen Inc, Bucheon-si, Gyeonggi-do, Korea (the Republic of)
| | - In Ho Kim
- Dankook University Department of Animal Resources Science, 477893, Department of Animal Resource, and Science, Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam, 31116, South Korea, Cheonan, Korea (the Republic of), 31116
| |
Collapse
|
8
|
Phytogenic Feed Additives in Poultry: Achievements, Prospective and Challenges. Animals (Basel) 2021; 11:ani11123471. [PMID: 34944248 PMCID: PMC8698016 DOI: 10.3390/ani11123471] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Plant secondary metabolites and essential oils also known as phytogenics are biologically active compounds that have recently attracted increased interest as feed additives in poultry production, due to their ability to promote feed efficiency by enhancing the production of digestive secretions and nutrient absorption, reduce pathogenic load in the gut, exert antioxidant properties and decrease the microbial burden on the animal’s immune status. However, the mechanisms are far from being fully elucidated. Better understanding the interaction of phytogenics with gastrointestinal function and health as well as other feed ingredients/additives is crucial to design potentially cost-effective blends. Abstract Phytogenic feed additives have been largely tested in poultry production with the aim to identify their effects on the gastrointestinal function and health, and their implications on the birds’ systemic health and welfare, the production efficiency of flocks, food safety, and environmental impact. These feed additives originating from plants, and consisting of herbs, spices, fruit, and other plant parts, include many different bioactive ingredients. Reviewing published documents about the supplementation of phytogenic feed additives reveals contradictory results regarding their effectiveness in poultry production. This indicates that more effort is still needed to determine the appropriate inclusion levels and fully elucidate their mode of actions. In this frame, this review aimed to sum up the current trends in the use of phytogenic feed additives in poultry with a special focus on their interaction with gut ecosystem, gut function, in vivo oxidative status and immune system as well as other feed additives, especially organic acids.
Collapse
|
9
|
Adeyemi KD, Audu S, Oloke JA, Oladiji OE, Salawu KF, Ahmed RA, Sulaimon RO. Influence of Crescentia cujete and Launaea taraxacifolia leaves on growth, immune indices, gut microbiota, blood chemistry, carcass, and meat quality in broiler chickens. Trop Anim Health Prod 2021; 53:365. [PMID: 34156587 DOI: 10.1007/s11250-021-02812-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
The rising concerns pertaining to the safety of synthetic supplements in livestock production have encouraged the exploration of potential alternatives. This study investigated the growth, gut microbiota, blood chemistry, immune indices, meat quality, and antioxidant status in broiler chickens supplemented with Crescentia cujete leaf (CCL), Launaea taraxacifolia leaf (LTL), and a combination of antibiotic (70% oxytetracycline + 30% neomycin) and tert-Butylhydroxyanisole. One-day-old Ross 308 chicks (n = 420) were randomly assigned to either T-1, basal diet (BD) only; T-2, BD + 0.4 g/kg antibiotic + 0.13 g/kg tert-butylhydroxyanisole; T-3, BD + 2.5 g/kg LTL; T-4, BD + 5 g/kg LTL; T-5, BD + 2.5 g/kg CCL; or T-6, BD + 5 g/kg CCL for 42 days. Each dietary group had seven replicates with ten chicks per replicate. Body weight gain and carcass weight were higher (P < 0.05) in the T-2, T-4, T-5, and T-6 birds compared with those of other birds. At 1-21 days, the T-2 and T-4 birds consumed more feed than the T-1 and T-3 birds. At 22-42 days, the T-4 birds consumed more (P < 0.05) feed than the T-1 and T-3 birds. During 1-42 days, the T-1 and T-3 birds consumed less (P < 0.05) feed than other birds. At 22-42 days and 1-42 days, the T-1 had lower feed efficiency (P < 0.05) than other birds except for the T-3 birds. The CCL and LTL birds had lower (P < 0.05) serum LDL cholesterol and higher HDL cholesterol compared with other birds. Hematology, splenic interleukin-1β, immunoglobulin M, ileal and caecal total aerobic bacteria counts, caecal Lactobacillus spp., and meat physicochemical properties were unaffected by diets. The T-1 birds had higher (P < 0.05) ileal and caecal Clostridium spp., E. coli, and Salmonella spp. compared with birds fed other diets. The CCL and LTL birds had higher ileal Lactobacillus counts. Splenic IL-10 was higher (P < 0.05) in the T-2, T-4, and T-6 birds compared with that in other birds. Dietary supplementation with CCL, LTL, and a combination of antibiotic and tert-butylhydroxyanisole repressed (P < 0.05) splenic tumor necrosis-α and immunoglobulin G. The T-1 breast meat had lower glutathione peroxidase and catalase. The T-4 meat had higher (P < 0.05) superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity compared with other meats. On day 3 postmortem, meats obtained from birds supplemented with CCL, LTL, and a combination of antibiotic and tert-butylhydroxyanisole had lower (P < 0.05) carbonyl and malondialdehyde contents than the meat from the non-supplemented birds. The 5 g/kg CCL and 5 g/kg LTL could be used as antimicrobial and antioxidant in broiler diets.
Collapse
Affiliation(s)
- Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria.
| | - Suleman Audu
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| | - Jerry A Oloke
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| | - Olufe E Oladiji
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| | - Kehinde F Salawu
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| | - Raheemat A Ahmed
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| | - Rasheed O Sulaimon
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, PMB 1515, Nigeria
| |
Collapse
|
10
|
Evaluation of functional feed additive administration in broiler chickens to 21 d. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Sureshkumar S, Park JH, Kim IH. Effects of the Inclusion of Dietary Organic Acid Supplementation with Anti-Coccidium Vaccine on Growth Performance, Digestibility, Fecal Microbial, and Chicken Fecal Noxious Gas Emissions. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - JH Park
- Dankook University, Republic of Korea
| | - IH Kim
- Dankook University, Republic of Korea
| |
Collapse
|
12
|
Irawan A, Hidayat C, Jayanegara A, Ratriyanto A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis. Anim Biosci 2020; 34:1499-1513. [PMID: 33332937 PMCID: PMC8495342 DOI: 10.5713/ab.20.0668] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. METHODS Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. RESULTS Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p< 0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. CONCLUSION This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.
Collapse
Affiliation(s)
- Agung Irawan
- Vocational Program in Animal Husbandry, Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia.,Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cecep Hidayat
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Indonesian Research Institute for Animal Production, Ciawi Bogor 16720, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group (AFENUE), Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Adi Ratriyanto
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| |
Collapse
|
13
|
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals (Basel) 2020; 10:ani10112150. [PMID: 33227911 PMCID: PMC7699210 DOI: 10.3390/ani10112150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Antimicrobial growth promoters (AGPs) are banned in Europe but still used in many countries including Asia. However, their indiscriminate use resulted in antibiotic-resistant bacterial strains that possibly transfer the resistant genes to the microorganisms pertinent to human health. Hence, it is essential to find alternatives that can improve the production performance in broiler chickens. In this scenario, phytobiotics or phytogenic feed additives (PFAs) are widely investigated to evaluate their influence on improving gut health, increasing digestibility, and thereby the growth performance. The present study is a continuity of our experiments on dietary inclusion of Piper betle and Persicaria odorata leaf meal and the first of its kind to evaluate the comparative efficacy of phytobiotics (Piper betle and Persicaria odorata leaf meal), with halquinol and tetracycline in broiler chickens. The current experiment findings indicated that, in comparison with the control group, either of the dietary treatments positively modulated the gut morphology, improved ileal digestibility, maintained the intestinal population of Lactobacillus and reduced the pathogenic bacteria such as Staphylococcus aureus, Salmonella, Escherichia coli, and Clostridium spp., thus improved the growth performance in broiler chickens. Abstract The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Punjab, Pakistan
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Arifah Abdul Kadir
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Skoto 2346, Nigeria
| |
Collapse
|
14
|
Greene ES, Emami NK, Dridi S. Research Note: Phytobiotics modulate the expression profile of circulating inflammasome and cyto(chemo)kine in whole blood of broilers exposed to cyclic heat stress. Poult Sci 2020; 100:100801. [PMID: 33518325 PMCID: PMC7936152 DOI: 10.1016/j.psj.2020.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022] Open
Abstract
Heat stress (HS) is a critical concern to the poultry industry as it affects both productivity and well-being. Various managerial and nutritional strategies have been proposed to mitigate the negative effects of HS in chickens, with plant-based additives showing promise. Recently, we reported the positive effect of a phytogenic feed additive (PFA) on growth performance in HS birds. Owing to the antioxidant nature of these compounds, we sought to further explore the effect of PFA on whole blood circulating chemokines, cytokines, and inflammasomes in HS broilers. Broilers (600 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to 2 environmental conditions (12 h cyclic heat stress, HS, 35°C vs. thermoneutral condition [TN], 24°C) and fed 3 diets (control, PFA-C 250 ppm, PFA-C 400 ppm) in a 2 × 3 factorial design. After 21 d of cyclic HS, blood samples were collected for target gene expression analysis. HS upregulated the expression of superoxide dismutase 1 (SOD1) and downregulated glutathione peroxidase-3 (GPX-3), and there was diet × temperature interaction for SOD2, GPX-1, and GPX-3, where gene expression was increased by PFA-C250 during HS but was unchanged for PFA-C400. Plasma total antioxidant capacity (TAC) and malondialdehyde (MDA) content were increased by HS. Gene expression of interleukin-18 (IL-18) was decreased by HS, without further effect of PFA. HS increased tumor necrosis factor α (TNFα), but this effect was mitigated by PFA-C400. C-C motif chemokine ligands 4 and 20 (CCL4 and CCL20) showed a similar pattern to TNFα, with PFA-C400 ameliorating the negative effect of HS. The nucleotide-binding, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome was decreased by HS and further lowered by PFA-C400, but the nucleotide-binding oligomerization domain, leucine-rich repeat, and CARD domain containing 3 (NLRC3) and nucleotide-binding, leucine-rich repeat containing X1 (NLRX1) inflammasomes were increased by PFA under TN conditions, with no effects of HS. Heat shock proteins (HSP) and heat shock factors (HSF) were unaffected by PFA or HS. Together these data indicate that gene expression of circulating inflammatory factors are dysregulated during HS, and supplemental dietary PFA may be protective.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Nima K Emami
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| |
Collapse
|
15
|
Abdel-Wareth A, Lohakare J. Productive performance, egg quality, nutrients digestibility, and physiological response of bovans brown hens fed various dietary inclusion levels of peppermint oil. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Sidiropoulou E, Skoufos I, Marugan-Hernandez V, Giannenas I, Bonos E, Aguiar-Martins K, Lazari D, Blake DP, Tzora A. In vitro Anticoccidial Study of Oregano and Garlic Essential Oils and Effects on Growth Performance, Fecal Oocyst Output, and Intestinal Microbiota in vivo. Front Vet Sci 2020; 7:420. [PMID: 32851011 PMCID: PMC7411182 DOI: 10.3389/fvets.2020.00420] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
This study investigated the in vitro effects of Greek oregano and garlic essential oils on inhibition of Eimeria parasites and their in vivo effects on production performance, intestinal bacteria counts, and oocyst output. An inhibition assay was performed in vitro using Eimeria tenella Wisconsin strain sporozoites and Madin-Darby bovine kidney (MDBK) cells. Intracellular sporozoite invasion was quantified by detection of E. tenella DNA using qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the oregano essential oil at the concentration of 100 μg/ml by 83 or 93% after 2 or 24 h, respectively. Garlic essential oil reached a maximum inhibition of 70% after 24 h with the 50 μg/ml concentration. Normal morphology was observed in MDBK cells exposed to concentrations of 100 μl/ml of garlic or oregano for over 24 h. In the in vivo trial, 180 male broiler chicks (45.3 ± 0.7 g) were allocated into two treatments (6 pens of 15 chicks per treatment). Control treatment was fed commercial diets without antibiotics or anticoccidials. The ORE-GAR treatment was fed the same control diets, further supplemented with a premix (1 g/kg feed) containing the oregano (50 g/kg premix) and garlic (5 g/kg premix) essential oils. At day 37, all birds were slaughtered under commercial conditions, and intestinal samples were collected. ORE-GAR treatment had improved final body weight (1833.9 vs. 1.685.9 g; p < 0.01), improved feed conversion ratio (1.489 vs. 1.569; p < 0.01), and reduced fecal oocyst excretion (day 28: 3.672 vs. 3.989 log oocysts/g, p < 0.01; day 37: 3.475 vs. 4.007 log oocysts/g, p < 0.001). In the caecal digesta, ORE-GAR treatment had lower total anaerobe counts (8.216 vs. 8.824 CFU/g; p < 0.01), whereas in the jejunum digesta the ORE-GAR treatment had higher counts of E. coli (5.030 vs. 3.530 CFU/g; p = 0.01) and Enterobacteriaceae (5.341 vs. 3.829 CFU/g; p < 0.01), and lower counts of Clostridium perfringens (2.555 vs. 2.882 CFU/g; p < 0.01). In conclusion, the combined supplementation of oregano and garlic essential oils had a potent anticoccidial effect in vitro and a growth-promoting effect in broilers reared in the absence of anticoccidial drugs.
Collapse
Affiliation(s)
- Erasmia Sidiropoulou
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| | - Kelsilandia Aguiar-Martins
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
| | - Athina Tzora
- Laboratory of Animal Production, Nutrition and Biotechnology, Department of Agriculture, School of Agriculture, University of Ioannina, Arta, Greece
| |
Collapse
|
17
|
Effects of Inclusion of Different Doses of Persicaria odorata Leaf Meal (POLM) in Broiler Chicken Feed on Biochemical and Haematological Blood Indicators and Liver Histomorphological Changes. Animals (Basel) 2020; 10:ani10071209. [PMID: 32708616 PMCID: PMC7401556 DOI: 10.3390/ani10071209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The frequent use of antimicrobial growth promoters (AGPs) in poultry feed leads to antimicrobial resistance, resulting in a ban on their subtherapeutic use in food-producing animals. In this context, there is a dire need to find safe and potential alternatives. Recently, phytobiotics, especially herbs, have gained attention and have been studied extensively for their possible use as alternative poultry feed additives. Persicaria odorata is a herb (phytobiotic) that is reported to possess antioxidant, antimicrobial, immunomodulatory, and hepatoprotective properties. This study is the first of its kind to assess the effects of different doses of supplementation of Persicaria odorata leaf meal (POLM) on haematological blood indicators, serum biochemistry, organ parameters, and histomorphology of the liver in broiler chickens. The results revealed that the dietary supplementation of POLM enhanced the growth performance, positively improved the haematological indices and serum biochemistry profile with no deleterious effects on internal organs, and ameliorated the histomorphology of the liver, even at dietary supplementation of 8 g/kg. Thus, POLM would be safe at an inclusion rate of 8 g/kg as an alternative phytogenic feed additive in broiler chickens. Abstract This research was conducted to estimate the effects of Persicaria odorata leaf meal (POLM) on haematological indices, serum biochemical attributes, and internal organs parameters, including histomorphological features of the liver, in broiler chickens. A total of 120 one-day-old male broiler chicks (Cobb-500) were randomly allocated into four experimental groups. The dietary treatments were basal diet (BD), which served as the control (C), along with BD + 2 g/kg POLM (Po2), BD + 4 g/kg POLM (Po4), BD + 8 g/kg POLM (Po8), which were the supplemented groups. The body weight gain (BWG) showed a linear increase and feed conversion ratio (FCR) showed a linear decrease with increasing POLM dosage at day 42 (p ˂ 0.05) and for the overall growth performance period (p ˂ 0.01). On day 21 and day 42, the values of red blood cells (RBCs), white blood cells (WBCs), haemoglobin (Hb), and packed cell volume (PCV) showed linear increases (p ˂0.05) as the dosage of POLM increased in the diet. On day 21, dietary supplementation of POLM linearly decreased (p ˂ 0.05) the serum activity of alkaline phosphatase (ALP), aspartate aminotransaminase (AST), alanine aminotransaminase (ALT), and serum levels of urea and creatinine. On the other hand, serum levels of total protein (TP), albumin, and globulin showed a linear increase (p ˂ 0.05) as the POLM dosage increased. On day 42, the serum activity of AST and ALT and serum levels of glucose, cholesterol, triglycerides, urea, and creatinine showed linear decreases (p ˂ 0.05) with increased levels of POLM in the diet. However, POLM supplementation linearly increased (p ˂ 0.05) the serum levels of TP and globulin. Dietary inclusion of POLM did not influence the organ parameters and showed no adverse effects on the liver histomorphology. In conclusion, supplementation of POLM increased the growth performance, improving haematological indices and serum biochemistry profiles of broiler chickens without any deleterious effects on the liver histomorphology. The results of the present study provide evidence that POLM can be safely used at a dose rate of 8 g/kg of feed as an alternative to conventional antimicrobial growth promoters (AGPs).
Collapse
|
18
|
Mountzouris KC, Paraskeuas VV, Fegeros K. Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers. ACTA ACUST UNITED AC 2020; 6:305-312. [PMID: 33005764 PMCID: PMC7503066 DOI: 10.1016/j.aninu.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The potential of a phytogenic premix (PP) based on ginger, lemon balm, oregano and thyme to stimulate the expression of cytoprotective genes at the broiler gut level was evaluated in this study. In particular, the effects of PP inclusion levels on a selection of genes related to host protection against oxidation (catalase [CAT], superoxide dismutase 1 [SOD1], glutathione peroxidase 2 [GPX2], heme oxygenase 1 [HMOX1], NAD(P)H quinone dehydrogenase 1 [NQO1], nuclear factor (erythroid-derived 2)-like 2 [Nrf2] and kelch like ECH associated protein 1 [Keap1]), stress (heat shock 70 kDa protein 2 [HSP70] and heat shock protein 90 alpha family class A member 1 [HSP90]) and inflammation (nuclear factor kappa B subunit 1 [NF-κB1], Toll-like receptor 2 family member B (TLR2B) and Toll-like receptor 4 [TLR4]) were profiled along the broiler intestine. In addition, broiler intestinal segments were assayed for their total antioxidant capacity (TAC). Depending on PP inclusion level (i.e. 0, 750, 1,000 and 2,000 mg/kg diet) in the basal diets, 1-d-old Cobb broiler chickens (n = 500) were assigned into the following 4 treatments: CON, PP-750, PP-1000 and PP-2000. Each treatment had 5 replicates of 25 chickens with ad libitum access to feed and water. Data were analyzed by ANOVA and means compared using Tukey's honest significant difference (HSD) test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Inclusion of PP increased (P ≤ 0.05) the expression of cytoprotective genes against oxidation, except CAT. In particular, the cytoprotective against oxidation genes were up-regulated primarily in the duodenum and the ceca and secondarily in the jejunum. Most of the genes were up-regulated in a quadratic manner with increasing PP inclusion level with the highest expression levels noted in treatments PP-750 and PP-1000 compared to CON. Similarly, intestinal TAC was higher in PP-1000 in the duodenum (P = 0.011) and the ceca (P = 0.050) compared to CON. Finally, increasing PP inclusion level resulted in linearly reduced (P ≤ 0.05) expression of NF-κB1, TLR4 and HSP70, the former in the duodenum and the latter 2 in the ceca. Overall, PP inclusion consistently up-regulated cytoprotective genes and down-regulated stress and inflammation related ones. The effect is dependent on PP inclusion level and the intestinal site. The potential of PP to beneficially prime bird cytoprotective responses merit further investigation under stress-challenge conditions.
Collapse
Affiliation(s)
| | - Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| |
Collapse
|
19
|
Basit MA, Arifah AK, Loh TC, Saleha AA, Salleh A, Kaka U, Idris SB. Effects of graded dose dietary supplementation of Piper betle leaf meal and Persicaria odorata leaf meal on growth performance, apparent ileal digestibility, and gut morphology in broilers. Saudi J Biol Sci 2020; 27:1503-1513. [PMID: 32489287 PMCID: PMC7254159 DOI: 10.1016/j.sjbs.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023] Open
Abstract
Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P < 0.05) the body weight gain (BWG), positively modulated the gut architecture and enhanced nutrient digestibility in both stater and finisher growth phases of broiler chickens. Birds fed on PBLM 4 g/kg (T3), and POLM 8 g/kg (T7) had significantly higher (P < 0.05) BWG with superior (P < 0.05) feed efficiency in the overall growth period. Chickens fed on diets T3 and T7 had longer (P < 0.05) villi for duodenum as well as for jejunum. Furthermore, the birds fed on supplementations T3 and T7 showed improved (P < 0.05) digestibility of ether extract (EE), and dry matter (DM) compared to the control group. However, least (P < 0.05) crude protein (CP) digestibility was recorded for T4. In conclusion, dietary supplementations of PBLM 4 g/kg and POLM 8 g/kg were positively modulated the intestinal microarchitecture with enhanced nutrient digestibility, resulted in maximum body weight gain, thus improved the growth performance of broiler chickens.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Kadir Arifah
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdul Aziz Saleha
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Nigeria
| |
Collapse
|
20
|
Mountzouris KC, Paraskeuas V, Griela E, Papadomichelakis G, Fegeros K. Effects of phytogenic inclusion level on broiler carcass yield, meat antioxidant capacity, availability of dietary energy, and expression of intestinal genes relevant for nutrient absorptive and cell growth–protein synthesis metabolic functions. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Phytogenic applications in animal nutrition currently attract worldwide scientific attention for their potential to contribute positively to sustainable and high-quality animal production. However, further understanding and substantiation of dietary phytogenic functions is required.
Aims
The inclusion level of a phytogenic premix (PP) comprising functional flavouring substances from ginger, lemon balm, oregano and thyme was studied for its effects on broiler growth performance, carcass traits, nutrient digestibility, liver and meat total antioxidant capacity (TAC), and lipid oxidation. The expression of genes for nutrient transporter proteins (SGLT1, GLUT2, PEPT1, BOAT and LAT1), for FABP2 involved in cellular fatty acid uptake and metabolism, and for the mTORC1 complex relevant for protein synthesis were profiled along the intestine.
Methods
One-day-old Cobb broiler chickens (n = 500) were assigned to four treatments with five replicates of 25 chickens each. Starter (1–10 days), grower (11–22 days) and finisher (23–42 days) basal diets were supplemented with four levels of PP inclusion as treatments: 0, 750, 1000 and 2000 mg/kg diet, termed control, PP750, PP1000 and PP2000. Feed and water were available ad libitum. Data were analysed by ANOVA, taking the treatment as fixed effect. Statistically significant (P ≤ 0.05) effects were further analysed and means were compared using Tukey’s HSD test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels.
Key results
Growth performance responses were not improved significantly (P > 0.05) by PP inclusion level. However, carcass (P = 0.030) and breast meat yield (P = 0.023) were higher in PP1000 than in the control. In addition, PP1000 had higher (P = 0.049) apparent metabolisable energy than PP2000 and the control. Increasing PP inclusion level increased breast (P = 0.005), thigh (P = 0.002) and liver (P = 0.040) TAC. Breast and thigh meat TAC reached a plateau at PP1000, whereas liver TAC continued to increase linearly. Lipid oxidation in breast meat and liver was delayed linearly (P ≤ 0.05) with increasing PP inclusion level. Expression of genes SGLT1, GLUT2, PEPT1, BOAT and FABP2 were not affected by PP inclusion. However, PP inclusion affected the expression of LAT1 (P < 0.001) in jejunum and of mTORC1 in duodenum (P = 0.010) and ceca (P = 0.025). In particular, expression increased with increasing PP inclusion level in a linear and quadratic pattern depending on the intestinal segment.
Conclusions
Overall, PP inclusion at 1000 mg/kg diet improved carcass and breast yield, dietary available energy, and overall meat and liver TAC. Preliminary evidence was highlighted for effects of PP in promoting expression of genes relevant for muscle protein synthesis.
Implications
This study has contributed new information on effects of a phytogenic premix on broiler meat yield and antioxidant capacity, digestibility, absorption and metabolic functions, further supporting phytogenic benefits for broiler production.
Collapse
|
21
|
Upadhaya SD, Cho SH, Chung TK, Kim IH. Anti-coccidial effect of essential oil blends and vitamin D on broiler chickens vaccinated with purified mixture of coccidian oocyst from Eimeria tenella and Eimeria maxima. Poult Sci 2019; 98:2919-2926. [DOI: 10.3382/ps/pez040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/26/2019] [Indexed: 11/20/2022] Open
|
22
|
Al-Zghoul MB, Sukker H, Ababneh MM. Effect of thermal manipulation of broilers embryos on the response to heat-induced oxidative stress. Poult Sci 2019; 98:991-1001. [PMID: 30137537 DOI: 10.3382/ps/pey379] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Effects of embryonic thermal manipulation (TM) on mRNA expressional levels and total antioxidant capacity of genes associated with heat-induced oxidative stress (NOX4, GpX2, SOD2, catalase, and AvUCP) in 2 breeds of broiler chicken were investigated. Fertile Cobb and Hubbard eggs (n = 1,200) were divided into 4 treatment groups: Cobb control, Cobb TM, Hubbard control, and Hubbard TM. Control groups were maintained under standard conditions (37.8°C; 56% relative humidity), whereas TM groups were incubated at 39°C and 65% relative humidity for 18 h a day from embryonic days (ED) 10 to 18. On post-hatch day 28, the broilers were subject to acute heat stress (AHS) at 40°C for 7 h. At certain intervals (0, 1, 3, 5, and 7 h), 12 chickens from each of the 4 groups were humanely euthanized, and liver samples were immediately isolated. During AHS, in both breeds, the mRNA expression levels of NOX4, GPx2, SOD2, and catalase in TM chickens were significantly lower than in controls, but AvUCP mRNA expression in the TM group was higher. The total antioxidant capacity and activity of superoxidase dismutase and catalase were significantly lower in the TM than in the control group in both breeds. The results of this study suggest that TM has a long-lasting effect on the acquisition of thermotolerance in 2 broiler chicken breeds as indicated by the reduction of system genes associated with heat-induced oxidative stress.
Collapse
Affiliation(s)
- M B Al-Zghoul
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - H Sukker
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - M M Ababneh
- Department of Basic Medical Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
23
|
Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion. ACTA ACUST UNITED AC 2018; 5:22-31. [PMID: 30899806 PMCID: PMC6407073 DOI: 10.1016/j.aninu.2018.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
The present study assessed the effects of cereal type and the inclusion level of a phytogenic feed additive (PFA) on broiler ileal and cecal gut microbiota composition, volatile fatty acids (VFA) and gene expression of toll like receptors (TLR), tight junction proteins, mucin 2 (MUC2) and secretory immunoglobulin A (sIgA). Depending on cereal type (i.e. maize or wheat) and PFA inclusion level (i.e. 0, 100 and 150 mg/kg diet), 450 one-day-old male broilers were allocated in 6 treatments according to a 2 × 3 factorial arrangement with 5 replicates of 15 broilers each, for 42 d. Significant interactions (P ≤ 0.05) between cereal type and PFA were shown for cecal digesta Bacteroides and Clostridium cluster XIVa, ileal digesta propionic and branched VFA, ileal sIgA gene expression, as well as cecal digesta branched and other VFA molar ratios. Cereal type affected the cecal microbiota composition. In particular, wheat-fed broilers had higher levels of mucosa-associated Lactobacillus (P CT = 0.007) and digesta Bifidobacterium (P CT < 0.001), as well as lower levels of total bacteria (P CT = 0.004) and Clostridia clusters I, IV and XIVa (P CT ≤ 0.05), compared with maize-fed ones. In addition, cereal type gave differences in fermentation intensity (P CT = 0.021) and in certain individual VFA molar ratios. Wheat-fed broilers had higher (P ≤ 0.05) ileal zonula occluden 2 (ZO-2) and lower ileal and cecal TLR2 and sIgA levels, compared with maize-fed broilers. On the other hand, PFA inclusion at 150 mg/kg had a stimulating effect on microbial fermentation at ileum and a retarding effect in ceca with additional variable VFA molar patterns. In addition, PFA inclusion at 100 mg/kg increased the ileal mucosa expression of claudin 5 (CLDN5) (P PFA = 0.023) and MUC2 (P PFA = 0.001) genes, and at 150 mg/kg decreased cecal TLR2 (P PFA = 0.022) gene expression compared with the un-supplemented controls. In conclusion, cereal type and PFA affected in combination and independently broiler gut microbiota composition and metabolic activity as well as the expression of critical gut barrier genes including TLR2. Further exploitation of these properties in cases of stressor challenges is warranted.
Collapse
|
24
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
25
|
NM J, Joseph A, Maliakel B, IM K. Dietary addition of a standardized extract of turmeric (TurmaFEED TM) improves growth performance and carcass quality of broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:8. [PMID: 29854411 PMCID: PMC5971416 DOI: 10.1186/s40781-018-0167-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Indiscriminate use of antibiotics in livestock and poultry farming has caused emergence of new pathogenic strains. The situation has warrented the development of safe and alternative growth promoters and immunity enhancers in livestock. Herbal additives in animal and bird feed is a centuries-old practice. Thus, the present study investigated the efficacy of a standardized formulation of lipophilic turmeric extract containing curcumin and turmerones, (TF-36), as a natural growth promoter poultry feed additive. METHODS The study was designed on 180 one-day old chicks, assigned into three groups. Control group (T0) kept on basal diet and supplemented groups T0.5 and T1 fed with 0.5% and 1% TF-36 fortified basal diet for 42 days. Each dietary group consisted of six replicates of ten birds. Body weight, food intake, food conversion ratio, skin colour, blood biochemical analysis and antioxidant status of serum were investigated. RESULTS Body weight improved significantly in T1 with a 10% decrease in FCR as compared to the control. TF-36 supplementation in T1 enhanced the antioxidant enzyme activity significantly (p < 0.05) with a decrease (p < 0.05) in lipid peroxidation. It also caused a slight yellow skin pigmentation without any change in meat color, indicating the bioavailability of curcumin from TF-36. However, no significant change in the concentration of serum creatinine, total protein and liver enzyme activities were observed, indicating the safety. CONCLUSION In summary, we concluded that TF-36 can be a natural feed additive to improve growth performance in poultry, probably due to the better antioxidant activity and antimicrobial effects contributed by the better bioavailability of curcuminoids and turmerones. Besides, curcuminoids and turmerones were also known to be gastroprotective and anti-inflammatory agents.
Collapse
Affiliation(s)
- Johannah NM
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Ashil Joseph
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Balu Maliakel
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| | - Krishnakumar IM
- R&D Centre, AKAY Flavours & Aromatics Pvt. Ltd, Malayidamthuruthu P.O., Cochin, Kerala 683561 India
| |
Collapse
|