1
|
Wang Z, Li T, Sun M, Liu N, Zhang H, Feng Z, Lei N. Metabolomics- and Proteomics-Based Disease Diagnostic Classifier Model for the Prediction and Diagnosis of Colorectal Carcinoma. J Proteome Res 2025; 24:2096-2111. [PMID: 40108892 PMCID: PMC11977543 DOI: 10.1021/acs.jproteome.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is a leading cause of cancer-related deaths globally. Diagnostic biomarkers are essential for risk stratification and early detection, potentially enhancing patient survival. Our study aimed to explore the potential biomarkers of CRC at the protein and metabolic levels. METHODS Blood serum from CRC patients and healthy controls was analyzed using metabolomic and proteomic techniques. A conjoint analysis was conducted, and samples were split into training and validation sets (7:3 ratio) to develop and evaluate a disease diagnosis classifier model. Immunohistochemistry (IHC) analyses were conducted to validate the results. RESULTS We identified 631 differential metabolites and 61 differentially expressed proteins (DEPs) in CRC, involved in pathways such as arginine and proline metabolism, central carbon metabolism in cancer, and signaling pathways including TGF-β, mTOR, PI3K-Akt, and others. Key proteins (CILP2, SLC3A2, EXTL2, hydroxypyruvate isomerase (HYI), ENPEP, LRG1, CTSS, thyrotropin-releasing hormone-degrading ectoenzyme (TRHDE), SELE, and HSPA1A) showed significant expression differences between CRC patients and controls. IHC results showed that compared with the paracancerous tissues, the expression of CILP2, EXTL2, and HYI was significantly downregulated in the CRC tissues (P < 0.05). The classifier model, comprising l-arginine, Harden-Young ester, l-aspartic acid, oxoglutaric acid, l-proline, octopine, l-valine, and progesterone, achieved AUC values of 0.998 and 0.914 in training and validation data sets, respectively. CONCLUSIONS The identified metabolites and DEPs are promising CRC biomarkers. The developed classifier model based on eight metabolites demonstrates high accuracy for CRC assessment and diagnosis.
Collapse
Affiliation(s)
- Zhaorui Wang
- Translational
Medicine Research Center, The Fifth Clinical
Medical College of Henan University of Chinese Medicine (Zhengzhou
People’s Hospital), Zhengzhou, Henan 450000, China
| | - Tianyuan Li
- Department
of Gastroenterology, The Fifth Clinical
Medical College of Henan University of Chinese Medicine (Zhengzhou
People’s Hospital), Zhengzhou, Henan 450000, China
| | - Mengyao Sun
- Department
of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Na Liu
- Translational
Medicine Research Center, The Fifth Clinical
Medical College of Henan University of Chinese Medicine (Zhengzhou
People’s Hospital), Zhengzhou, Henan 450000, China
| | - Haozhe Zhang
- Translational
Medicine Research Center, The Fifth Clinical
Medical College of Henan University of Chinese Medicine (Zhengzhou
People’s Hospital), Zhengzhou, Henan 450000, China
| | - Zhikun Feng
- Department
of Pathology, The Fifth Clinical Medical
College of Henan University of Chinese Medicine (Zhengzhou People’s
Hospital), Zhengzhou, Henan 450000, China
| | - Ningjing Lei
- Department
of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2025; 25:266-284. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
3
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
4
|
Chen J, Levy A, Tian AL, Huang X, Cai G, Fidelle M, Rauber C, Ly P, Pizzato E, Sitterle L, Piccinno G, Liu P, Durand S, Mao M, Zhao L, Iebba V, Felchle H, Mallard de La Varende AL, Fischer JC, Thomas S, Greten TF, Jones JC, Monge C, Demaria S, Formenti S, Belluomini L, Dionisi V, Massard C, Blanchard P, Robert C, Quevrin C, Lopes E, Clémenson C, Mondini M, Meziani L, Zhan Y, Zeng C, Cai Q, Morel D, Sun R, Laurent PA, Mangoni M, Di Cataldo V, Arilli C, Trommer M, Wegen S, Neppl S, Riechelmann RP, Camandaroba MP, Neto ES, Fournier PE, Segata N, Holicek P, Galluzzi L, Buqué A, Alves Costa Silva C, Derosa L, Kroemer G, Chen C, Zitvogel L, Deutsch E. Low-dose irradiation of the gut improves the efficacy of PD-L1 blockade in metastatic cancer patients. Cancer Cell 2025; 43:361-379.e10. [PMID: 40068595 PMCID: PMC11907695 DOI: 10.1016/j.ccell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/03/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
The mechanisms governing the abscopal effects of local radiotherapy in cancer patients remain an open conundrum. Here, we show that off-target intestinal low-dose irradiation (ILDR) increases the clinical benefits of immune checkpoint inhibitors or chemotherapy in eight retrospective cohorts of cancer patients and in tumor-bearing mice. The abscopal effects of ILDR depend on dosimetry (≥1 and ≤3 Gy) and on the metabolic and immune host-microbiota interaction at baseline allowing CD8+ T cell activation without exhaustion. Various strains of Christensenella minuta selectively boost the anti-cancer efficacy of ILDR and PD-L1 blockade, allowing emigration of intestinal PD-L1-expressing dendritic cells to tumor-draining lymph nodes. An interventional phase 2 study provides the proof-of-concept that ILDR can circumvent resistance to first- or second-line immunotherapy in cancer patients. Prospective clinical trials are warranted to define optimal dosimetry and indications for ILDR to maximize its therapeutic potential.
Collapse
Affiliation(s)
- Jianzhou Chen
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France; Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Antonin Levy
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Ai-Ling Tian
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Xuehan Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Guoxin Cai
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France; CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Conrad Rauber
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France; Department of Gastroenterology and Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Ly
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Eugénie Pizzato
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Lisa Sitterle
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Misha Mao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France; General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Valerio Iebba
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France
| | - Hannah Felchle
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Technical University of Munich (TUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Department of Radiation Oncology, 81675 Munich, Germany
| | - Anne-Laure Mallard de La Varende
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Julius Clemens Fischer
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Technical University of Munich (TUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Department of Radiation Oncology, 81675 Munich, Germany
| | - Simon Thomas
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer C Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cecilia Monge
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy
| | - Valeria Dionisi
- Department of Radiation Oncology, University of Verona Hospital Trust, 37126 Verona, Italy
| | - Christophe Massard
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; Drug Development Department (DITEP), Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Pierre Blanchard
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Charlotte Robert
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Clément Quevrin
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Eloise Lopes
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Céline Clémenson
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Michele Mondini
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Lydia Meziani
- INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Yizhou Zhan
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Chengbing Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Qingxin Cai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Daphne Morel
- Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Roger Sun
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Pierre-Antoine Laurent
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences"Mario Serio" University of Florence, 50134 Florence, Italy
| | - Vanessa Di Cataldo
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
| | - Chiara Arilli
- Medical Physics Unit, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Maike Trommer
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Department of Radiation Oncology, Heidelberg VIC 3084, Melbourne, Australia
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sebastian Neppl
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Rachel P Riechelmann
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Marcos P Camandaroba
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Elson Santos Neto
- Department of Radiation Oncology, AC Camargo Cancer Center, São Paulo 01509-001, Brazil
| | | | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, 38123 Trento, Italy; IEO, Istituto Europeo di Oncologia IRCCS, 20139 Milan, Italy
| | - Peter Holicek
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Sotio Biotech, 19000 Prague, Czech Republic
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France; CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Cancer Campus, 94805 Villejuif, France; Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, 75006 Paris, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Chuangzhen Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, 94805 Villejuif Cedex, France; Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, Equipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France; CICBT1428, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France.
| | - Eric Deutsch
- Faculté de Médecine, Université Paris-Saclay, 94270 Kremlin-Bicêtre, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovations Thérapeutiques, Gustave Roussy Cancer Campus (GRCC), 94805 Villejuif, France
| |
Collapse
|
5
|
Zhao Y, Ferri JT, White JR, Schollenberger MD, Peloza K, Sears CL, Lipson EJ, Shaikh FY. Gut microbiome features associate with immune checkpoint inhibitor response in individuals with non-melanoma skin cancers: an exploratory study. Microbiol Spectr 2025; 13:e0255924. [PMID: 39898646 DOI: 10.1128/spectrum.02559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has yielded revolutionary outcomes among some individuals with skin cancer, but a large percentage of individuals do not benefit from these treatments. The gut microbiota is hypothesized to impact ICI therapy outcomes. However, data on ICI therapy, gut microbiota, and non-melanoma skin cancers are limited. To examine the association of gut microbiota structure and function with non-melanoma skin cancer ICI outcomes, we performed 16S rRNA V1-V2 gene amplicon sequencing of 68 fecal samples collected longitudinally from individuals with basal cell carcinoma (n = 5), Merkel cell carcinoma (n = 5), or cutaneous squamous cell carcinoma (CSCC, n = 11), followed by tumor-dependent differential analyses of bacterial composition and fecal sample analysis by untargeted metabolomics. Across all tumor types, we identified 10 differential bacterial genera between responders (R) or non-responders (NR) to ICI therapy. Among individuals with CSCC, we identified 10 genera and 20 species that differentiated between R and NR and yielded 8 pathways enriched in NR and 12 pathways enriched in R by predicted functional pathway analyses. Untargeted fecal metabolomics to examine putative gut microbiota metabolites associated with CSCC ICI R/NR identified nine KEGG pathways associated with ICI efficacy. In summary, this exploratory study suggests gut microbiota features that are associated with ICI efficacy in individuals with non-melanoma skin cancers and highlights the need for larger studies to validate the results.IMPORTANCEPrior studies examining associations between ICI efficacy and the gut microbiome have focused primarily on individuals with melanoma, for whom ICI therapy was first approved. Meanwhile, data regarding microbiome features associated with ICI responses in individuals with non-melanoma skin cancers (NMSCs) have remained limited. This initial fecal microbiota examination of individuals with NMSCs suggests that larger-scale studies to extend and validate our findings may yield predictive or prognostic biomarkers for individuals with NMSC receiving ICI with potential to provide insight to complementary, effective therapeutic interventions through microbiota modification.
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/drug effects
- Skin Neoplasms/microbiology
- Skin Neoplasms/drug therapy
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Feces/microbiology
- Male
- Female
- Middle Aged
- Aged
- RNA, Ribosomal, 16S/genetics
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/drug effects
- Carcinoma, Basal Cell/microbiology
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Squamous Cell/microbiology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Aged, 80 and over
- Carcinoma, Merkel Cell/microbiology
- Carcinoma, Merkel Cell/drug therapy
- Adult
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jacqueline T Ferri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Megan D Schollenberger
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kim Peloza
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| | - Fyza Y Shaikh
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Jin K, Chu X, Qian J. Arginine and colorectal cancer: Exploring arginine-related therapeutic strategies and novel insights into cancer immunotherapies. Int Immunopharmacol 2025; 148:114146. [PMID: 39879835 DOI: 10.1016/j.intimp.2025.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Concerning the progression of societies and the evolution of lifestyle and dietary habits, the potential for the development of human malignancies, particularly colorectal cancer (CRC), has markedly escalated, positioning it as one of the most prevalent and lethal forms of cancer globally. Empirical evidence indicates that the metabolic processes of cancerous and healthy cells can significantly impact immune responses and the fate of tumors. Arginine, a multifaceted amino acid, assumes a crucial and paradoxical role in various metabolic pathways, as certain tumors exhibit arginine auxotrophy while others do not. Notably, CRC is classified as arginine non-auxotrophic, possessing the ability to synthesize arginine from citrulline. Systemic arginine deprivation and the inhibition of arginine uptake represent two prevalent therapeutic strategies in oncological treatment. However, given the divergent behaviors of tumors concerning the metabolism and synthesis of arginine, one of these therapeutic approaches-namely systemic arginine deprivation-does not apply to CRC. This review elucidates the characteristics of arginine uptake inhibition and systemic arginine deprivation alongside their respective benefits and limitations in CRC. Furthermore, the involvement of arginine in immunotherapeutic strategies is examined in light of the most recent discoveries on various human malignancies.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| | - Xiufeng Chu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
7
|
Qin L, Li Y, Liu J, An X. Advancements in cellular immunotherapy: overcoming resistance in lung and colorectal cancer. Front Immunol 2025; 16:1554256. [PMID: 39975543 PMCID: PMC11835964 DOI: 10.3389/fimmu.2025.1554256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, offering hope for patients with otherwise treatment-resistant tumors. Among the most promising approaches are cellular therapies, particularly chimeric antigen receptor T-cell (CAR-T) therapy, which has shown remarkable success in hematologic malignancies. However, the application of these therapies to solid tumors, such as lung and colorectal cancers, has faced significant challenges. Tumor resistance mechanisms-ranging from immune evasion, antigen loss, and immune checkpoint upregulation, to tumor microenvironment immunosuppression-remain major obstacles. This mini-review highlights the latest advancements in tumor immunotherapy, with a focus on cellular therapies, and addresses the resistance mechanisms that hinder their effectiveness in lung and colorectal cancers. We examine the evolution of CAR-T cell therapy, as well as the potential of engineered natural killer (NK) cells and macrophages in solid tumor treatment. The review also explores cutting-edge strategies aimed at overcoming resistance, including combination therapies, gene editing technologies, and nanotechnology for targeted drug delivery. By discussing the molecular, cellular, and microenvironmental factors contributing to resistance, we aim to provide a comprehensive overview of how these challenges can be overcome, paving the way for more effective, personalized immunotherapies in lung and colorectal cancer treatment.
Collapse
Affiliation(s)
- Lijuan Qin
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan Li
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Liu
- Department of Special needs Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqin An
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Härm J, Fan YT, Brenner D. Navigating the metabolic landscape of regulatory T cells: from autoimmune diseases to tumor microenvironments. Curr Opin Immunol 2025; 92:102511. [PMID: 39674060 DOI: 10.1016/j.coi.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, playing crucial roles in modulating autoimmune conditions and contributing to the suppressive tumor microenvironment. Their cellular metabolism governs their generation, stability, proliferation, and suppressive function. Enhancing Treg metabolism to boost their suppressive function offers promising therapeutic potential for alleviating inflammatory symptoms in autoimmune diseases. Conversely, inhibiting Treg metabolism to reduce their suppressive function can enhance the efficacy of traditional immunotherapy in cancer patients. This review explores recent advances in targeting Treg metabolism in autoimmune diseases and the metabolic adaptations of Tregs within the tumor microenvironment that increase their immunosuppressive function.
Collapse
Affiliation(s)
- Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Xiang H, Kasajima R, Azuma K, Tagami T, Hagiwara A, Nakahara Y, Saito H, Igarashi Y, Wei F, Ban T, Yoshihara M, Nakamura Y, Sato S, Koizume S, Tamura T, Sasada T, Miyagi Y. Multi-omics analysis-based clinical and functional significance of a novel prognostic and immunotherapeutic gene signature derived from amino acid metabolism pathways in lung adenocarcinoma. Front Immunol 2024; 15:1361992. [PMID: 39735553 PMCID: PMC11671776 DOI: 10.3389/fimmu.2024.1361992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/30/2024] [Indexed: 12/31/2024] Open
Abstract
Background Studies have shown that tumor cell amino acid metabolism is closely associated with lung adenocarcinoma (LUAD) development and progression. However, the comprehensive multi-omics features and clinical impact of the expression of genes associated with amino acid metabolism in the LUAD tumor microenvironment (TME) are yet to be fully understood. Methods LUAD patients from The Cancer Genome Atlas (TCGA) database were enrolled in the training cohort. Using least absolute shrinkage and selection operator Cox regression analysis, we developed PTAAMG-Sig, a signature based on the expression of tumor-specific amino acid metabolism genes associated with overall survival (OS) prognosis. We evaluated its predictive performance for OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the TME. The risk score was validated in two Gene Expression Omnibus (GEO) cohorts and further investigated against an original cohort of chemotherapy combined with immune checkpoint inhibitors (ICIs). Somatic mutation, chemotherapy response, immunotherapy response, gene set variation, gene set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile analyses were performed to identify the underlying multi-omics features. Results TCGA datasets based PTAAMG-Sig model consisting of nine genes, KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could effectively stratify the OS in LUAD patients. The two other GEO-independent datasets validated the robust predictive power of PTAAMG-Sig. Our differential analysis of somatic mutations in the high- and low-risk groups in TCGA cohort showed that the TP53 mutation rate was significantly higher in the high-risk group and negatively correlated with OS. Prediction from transcriptome data raised the possibility that PTAAMG-Sig could predict the response to chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which correlated with the infiltration of immune cells (e.g., T lymphocytes and nature killer cells). Corresponding to the concentrations of PFAAs, we discovered that the high PTAAMG-Sig risk score patients showed a significantly lower concentration of plasma-free α-aminobutyric acid. Conclusion In patients with LUAD, the PTAAMG-Sig effectively predicted OS, drug sensitivity, and immunotherapy outcomes. These findings are expected to provide new targets and strategies for personalized treatment of LUAD patients.
Collapse
Affiliation(s)
- Huihui Xiang
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Rika Kasajima
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Center for Cancer Genome Medicine, Kanagawa Cancer Center, Yokohama, Japan
| | - Koichi Azuma
- Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoyuki Tagami
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Asami Hagiwara
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, Japan
| | - Yoshiro Nakahara
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruhiro Saito
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yuka Igarashi
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Feifei Wei
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Tatsuma Ban
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
- Morphological Analysis Laboratory, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shiro Koizume
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology & Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
10
|
Ma LX, Titmuss E, Loree JM, Jonker DJ, Kennecke HF, Berry S, Couture F, Ahmad CE, Goffin JR, Kavan P, Harb M, Colwell B, Samimi S, Samson B, Abbas T, Aucoin N, Aubin F, Koski S, Tu D, O’Callaghan C, Chen EX. Plasma arginine as a predictive biomarker for outcomes with immune checkpoint inhibition in metastatic colorectal cancer: a correlative analysis of the CCTG CO.26 trial. J Immunother Cancer 2024; 12:e010094. [PMID: 39631846 PMCID: PMC11624738 DOI: 10.1136/jitc-2024-010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Nutritional stress is a mechanism that allows tumor cells to evade the immune system. Arginine (ARG), an amino acid involved in immunomodulation, aids in regulating T-lymphocyte cell activity and the antitumor response. ARG deficiency in the tumor microenvironment can impair T-cell response while ARG supplementation may promote antitumor immune activity. In this exploratory post hoc analysis of the randomized phase II CO.26 trial, we investigated the role of plasma ARG in predicting response to immune checkpoint inhibitors (ICI) in patients with microsatellite stable refractory metastatic colorectal cancer (mCRC). METHODS CO.26 randomized patients with refractory mCRC to durvalumab plus tremelimumab (D+T) versus best supportive care (BSC). Plasma ARG concentrations were determined from pretreatment blood samples using high-performance liquid chromatography-tandem mass spectrometry. The median plasma ARG value was used as a cut-off stratifying patients into ARG-high (≥10 700 ng/mL) versus ARG-low (<10 700 ng/mL) groups. Overall survival (OS) was estimated using the Kaplan-Meier method and compared using the log-rank test. Cox proportional hazard models were used to analyze the prognostic and predictive impacts of ARG on OS. RESULTS Of 180 patients enrolled in CO.26, 161 (N=114 treated with D+T and 47 BSC) had pretreatment blood samples for ARG analysis. There were no significant differences in baseline characteristics between patients included in this analysis and the total study patients, or between ARG-high and ARG-low patients. In the BSC arm, the median OS was 3.09 months for ARG-high versus 4.27 months for ARG-low patients (univariable HR 0.89 (0.49-1.65), p=0.72). In the D+T arm, the median OS was 7.62 months for ARG-high versus 5.27 months for ARG-low patients (univariable HR 0.68, (0.48-1.0], p=0.048). In ARG-high patients, D+T significantly improved OS (median OS 7.62 months with D+T vs 3.09 months BSC; HR 0.61 (0.37-0.99), p=0.047; adjusted p=0.042 for interaction). In ARG-low patients there was no OS benefit with D+T (median OS 5.27 months D+T vs 4.27 months BSC; HR 0.87 (0.52-1.46), p=0.61). CONCLUSION High baseline plasma ARG was predictive of improved OS in patients with mCRC treated with D+T. Further investigations are needed to validate ARG as a biomarker. Therapeutic approaches targeting the ARG pathway may augment ICI activity. TRIAL REGISTRATION NUMBER NCT02870920.
Collapse
Affiliation(s)
- Lucy X Ma
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Emma Titmuss
- BC Cancer - Vancouver, Vancouver, British Columbia, Canada
| | | | - Derek J Jonker
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Scott Berry
- Trillium Health Partners, Mississauga, Ontario, Canada
| | - Felix Couture
- Centre de recherche de l'Hotel-Dieu de Quebec, Quebec, Canada, Canada
| | | | | | - Petr Kavan
- Segal Cancer Centre, Montreal, Quebec, Canada
| | | | - Bruce Colwell
- Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Setareh Samimi
- Hopital du Sacre-Coeur de Montreal, Montreal, Quebec, Canada
| | - Benoit Samson
- Hopital Charles-Lemoyne, Greenfield Park, Quebec, Canada
| | - Tahir Abbas
- Saskatoon Cancer Centre, Saskatoon, Saskatchewan, Canada
| | | | - Francine Aubin
- Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada
| | - Sheryl Koski
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Kingston, Ontario, Canada
| | - Christopher O’Callaghan
- Canadian Cancer Trials Group, Kingston, Ontario, Canada
- Public Health Sciences, Queen’s University, Kingston, New York, Canada
| | - Eric X Chen
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Gantner BN, Palma FR, Pandkar MR, Sakiyama MJ, Arango D, DeNicola GM, Gomes AP, Bonini MG. Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes. Trends Cancer 2024; 10:992-1008. [PMID: 39277448 DOI: 10.1016/j.trecan.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Flavio R Palma
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Madhura R Pandkar
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Marcelo G Bonini
- Department of Medicine, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
13
|
Belaid A, Roméo B, Rignol G, Benzaquen J, Audoin T, Vouret-Craviari V, Brest P, Varraso R, von Bergen M, Hugo Marquette C, Leroy S, Mograbi B, Hofman P. Impact of the Lung Microbiota on Development and Progression of Lung Cancer. Cancers (Basel) 2024; 16:3342. [PMID: 39409962 PMCID: PMC11605235 DOI: 10.3390/cancers16193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 12/01/2024] Open
Abstract
The past several years have provided a more profound understanding of the role of microbial species in the lung. The respiratory tract is a delicate ecosystem of bacteria, fungi, parasites, and viruses. Detecting microbial DNA, pathogen-associated molecular patterns (PAMPs), and metabolites in sputum is poised to revolutionize the early diagnosis of lung cancer. The longitudinal monitoring of the lung microbiome holds the potential to predict treatment response and side effects, enabling more personalized and effective treatment options. However, most studies into the lung microbiota have been observational and have not adequately considered the impact of dietary intake and air pollutants. This gap makes it challenging to establish a direct causal relationship between environmental exposure, changes in the composition of the microbiota, lung carcinogenesis, and tumor progression. A holistic understanding of the lung microbiota that considers both diet and air pollutants may pave the way to improved prevention and management strategies for lung cancer.
Collapse
Affiliation(s)
- Amine Belaid
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Barnabé Roméo
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Guylène Rignol
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Jonathan Benzaquen
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Tanguy Audoin
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Valérie Vouret-Craviari
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Patrick Brest
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Raphaëlle Varraso
- Université Paris-Saclay, Équipe d’Épidémiologie Respiratoire Intégrative, CESP, INSERM, 94800 Villejuif, France;
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Molecular Systems Biology, Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04109 Leipzig, Germany;
| | - Charles Hugo Marquette
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Sylvie Leroy
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Centre Hospitalier Universitaire (CHU) de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| | - Baharia Mograbi
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
| | - Paul Hofman
- Université Côte d’Azur, Institute for Research on Ageing and Cancer, Nice (IRCAN), Institut Hospitalo Universitaire (IHU) RespirERA, Fédérations Hospitalo-Universitaires (FHU) OncoAge, Centre Antoine Lacassagne, Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), 06107 Nice, France; (A.B.); (B.R.); (G.R.); (J.B.); (T.A.); (V.V.-C.); (P.B.); (C.H.M.); (S.L.); (P.H.)
- Laboratory of Clinical and Experimental Pathology (LPCE), Biobank (BB-0033-00025), Centre Hospitalier Universitaire (CHU) de Nice, FHU OncoAge, IHU RespirERA, 06000 Nice, France
| |
Collapse
|
14
|
Zhang H, Li S, Wang D, Liu S, Xiao T, Gu W, Yang H, Wang H, Yang M, Chen P. Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment. Biomark Res 2024; 12:96. [PMID: 39227970 PMCID: PMC11373140 DOI: 10.1186/s40364-024-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024] Open
Abstract
Tumor cells possess complex immune evasion mechanisms to evade immune system attacks, primarily through metabolic reprogramming, which significantly alters the tumor microenvironment (TME) to modulate immune cell functions. When a tumor is sufficiently immunogenic, it can activate cytotoxic T-cells to target and destroy it. However, tumors adapt by manipulating their metabolic pathways, particularly glucose, amino acid, and lipid metabolism, to create an immunosuppressive TME that promotes immune escape. These metabolic alterations impact the function and differentiation of non-tumor cells within the TME, such as inhibiting effector T-cell activity while expanding regulatory T-cells and myeloid-derived suppressor cells. Additionally, these changes lead to an imbalance in cytokine and chemokine secretion, further enhancing the immunosuppressive landscape. Emerging research is increasingly focusing on the regulatory roles of non-tumor cells within the TME, evaluating how their reprogrammed glucose, amino acid, and lipid metabolism influence their functional changes and ultimately aid in tumor immune evasion. Despite our incomplete understanding of the intricate metabolic interactions between tumor and non-tumor cells, the connection between these elements presents significant challenges for cancer immunotherapy. This review highlights the impact of altered glucose, amino acid, and lipid metabolism in the TME on the metabolism and function of non-tumor cells, providing new insights that could facilitate the development of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Haixia Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shizhen Li
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
15
|
Yu H, Liu Q, Wu K, Tang S. Biomarkers to predict efficacy of immune checkpoint inhibitors in colorectal cancer patients: a systematic review and meta-analysis. Clin Exp Med 2024; 24:143. [PMID: 38960935 PMCID: PMC11222262 DOI: 10.1007/s10238-024-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are approved to treat colorectal cancer (CRC) with mismatch-repair gene deficiency, but the response rate remains low. Value of current biomarkers to predict CRC patients' response to ICIs is unclear due to heterogeneous study designs and small sample sizes. Here, we aim to assess and quantify the magnitude of multiple biomarkers for predicting the efficacy of ICIs in CRC patients. We systematically searched MEDLINE, Embase, the Cochrane Library, and Web of Science databases (to June 2023) for clinical studies examining biomarkers for efficacy of ICIs in CRC patients. Random-effect models were performed for meta-analysis. We pooled odds ratio (OR) and hazard ratio (HR) with 95% confidence interval (CI) for biomarkers predicting response rate and survival. 36 studies with 1867 patients were included in systematic review. We found that a lower pre-treatment blood neutrophil-to-lymphocyte ratio (n=4, HR 0.37, 95%CI 0.21-0.67) predicts good prognosis, higher tumor mutation burden (n=10, OR 4.83, 95%CI 2.16-10.78) predicts response to ICIs, and liver metastasis (n=16, OR 0.32, 95%CI 0.16-0.63) indicates resistance to ICIs, especially when combined with VEGFR inhibitors. But the predictive value of tumor PD-L1 expression (n=9, OR 1.01, 95%CI 0.48-2.14) was insignificant in CRC. Blood neutrophil-to-lymphocyte ratio, tumor mutation burden, and liver metastasis, but not tumor PD-L1 expression, function as significant biomarkers to predict efficacy of ICIs in CRC patients. These findings help stratify CRC patients suitable for ICI treatments, improving efficacy of immunotherapy through precise patient management. (PROSPERO, CRD42022346716).
Collapse
Affiliation(s)
- Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Qingquan Liu
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Keting Wu
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Derosa L, Iebba V, Silva CAC, Piccinno G, Wu G, Lordello L, Routy B, Zhao N, Thelemaque C, Birebent R, Marmorino F, Fidelle M, Messaoudene M, Thomas AM, Zalcman G, Friard S, Mazieres J, Audigier-Valette C, Sibilot DM, Goldwasser F, Scherpereel A, Pegliasco H, Ghiringhelli F, Bouchard N, Sow C, Darik I, Zoppi S, Ly P, Reni A, Daillère R, Deutsch E, Lee KA, Bolte LA, Björk JR, Weersma RK, Barlesi F, Padilha L, Finzel A, Isaksen ML, Escudier B, Albiges L, Planchard D, André F, Cremolini C, Martinez S, Besse B, Zhao L, Segata N, Wojcik J, Kroemer G, Zitvogel L. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 2024; 187:3373-3389.e16. [PMID: 38906102 DOI: 10.1016/j.cell.2024.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.
Collapse
Affiliation(s)
- Lisa Derosa
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France.
| | - Valerio Iebba
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | | | - Guojun Wu
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA
| | - Leonardo Lordello
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Bertrand Routy
- Centre Hospitalier de l'Université de Montréal (CHUM), Hematology-Oncology Division, Department of Medicine, Montréal, QC, Canada; Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Naisi Zhao
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Cassandra Thelemaque
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Roxanne Birebent
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | | | | | - Gerard Zalcman
- Université Paris Cité, Thoracic Oncology Department-CIC1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Sylvie Friard
- Pneumology Department, Foch Hospital, Suresnes, France
| | - Julien Mazieres
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Denis Moro- Sibilot
- Department of Thoracic Oncology, Centre Hospitalier Universitaire, Grenoble, France
| | - François Goldwasser
- INSERM U1016-CNRS UMR8104, Paris Cité University, Paris, France; Department of Medical Oncology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), Paris, France
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, University of Lille, University Hospital (CHU), Lille, France
| | | | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | | | - Cissé Sow
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Ines Darik
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Silvia Zoppi
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pierre Ly
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Anna Reni
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | | | - Eric Deutsch
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France; INSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France
| | - Karla A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Fabrice Barlesi
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Lucas Padilha
- Bio-Me AS, Oslo Science Park, Gaustadalléen 21, Oslo, Norway
| | - Ana Finzel
- Bio-Me AS, Oslo Science Park, Gaustadalléen 21, Oslo, Norway
| | | | - Bernard Escudier
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Laurence Albiges
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - David Planchard
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Fabrice André
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Chiara Cremolini
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Stéphanie Martinez
- Service des Maladies Respiratoires, Centre Hospitalier d'Aix-en-Provence, Aix-en-Provence, France
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Liping Zhao
- Center for Nutrition, Microbiome and Health, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; Rutgers-Jiaotong Joint Laboratory for Microbiome and Human Health, New Brunswick, NJ, USA; State Key Laboratory of Microbial Metabolism, Ministry of Education Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Guido Kroemer
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée-Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
| |
Collapse
|
17
|
Bajinka O, Ouedraogo SY, Golubnitschaja O, Li N, Zhan X. Energy metabolism as the hub of advanced non-small cell lung cancer management: a comprehensive view in the framework of predictive, preventive, and personalized medicine. EPMA J 2024; 15:289-319. [PMID: 38841622 PMCID: PMC11147999 DOI: 10.1007/s13167-024-00357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 06/07/2024]
Abstract
Energy metabolism is a hub of governing all processes at cellular and organismal levels such as, on one hand, reparable vs. irreparable cell damage, cell fate (proliferation, survival, apoptosis, malignant transformation etc.), and, on the other hand, carcinogenesis, tumor development, progression and metastazing versus anti-cancer protection and cure. The orchestrator is the mitochondria who produce, store and invest energy, conduct intracellular and systemically relevant signals decisive for internal and environmental stress adaptation, and coordinate corresponding processes at cellular and organismal levels. Consequently, the quality of mitochondrial health and homeostasis is a reliable target for health risk assessment at the stage of reversible damage to the health followed by cost-effective personalized protection against health-to-disease transition as well as for targeted protection against the disease progression (secondary care of cancer patients against growing primary tumors and metastatic disease). The energy reprogramming of non-small cell lung cancer (NSCLC) attracts particular attention as clinically relevant and instrumental for the paradigm change from reactive medical services to predictive, preventive and personalized medicine (3PM). This article provides a detailed overview towards mechanisms and biological pathways involving metabolic reprogramming (MR) with respect to inhibiting the synthesis of biomolecules and blocking common NSCLC metabolic pathways as anti-NSCLC therapeutic strategies. For instance, mitophagy recycles macromolecules to yield mitochondrial substrates for energy homeostasis and nucleotide synthesis. Histone modification and DNA methylation can predict the onset of diseases, and plasma C7 analysis is an efficient medical service potentially resulting in an optimized healthcare economy in corresponding areas. The MEMP scoring provides the guidance for immunotherapy, prognostic assessment, and anti-cancer drug development. Metabolite sensing mechanisms of nutrients and their derivatives are potential MR-related therapy in NSCLC. Moreover, miR-495-3p reprogramming of sphingolipid rheostat by targeting Sphk1, 22/FOXM1 axis regulation, and A2 receptor antagonist are highly promising therapy strategies. TFEB as a biomarker in predicting immune checkpoint blockade and redox-related lncRNA prognostic signature (redox-LPS) are considered reliable predictive approaches. Finally, exemplified in this article metabolic phenotyping is instrumental for innovative population screening, health risk assessment, predictive multi-level diagnostics, targeted prevention, and treatment algorithms tailored to personalized patient profiles-all are essential pillars in the paradigm change from reactive medical services to 3PM approach in overall management of lung cancers. This article highlights the 3PM relevant innovation focused on energy metabolism as the hub to advance NSCLC management benefiting vulnerable subpopulations, affected patients, and healthcare at large. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00357-5.
Collapse
Affiliation(s)
- Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, 53127 Bonn, Germany
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
18
|
Chen H, Zhu Y, Zhang C, Hu L, Yang K. Engineered bacteria in tumor immunotherapy. Cancer Lett 2024; 589:216817. [PMID: 38492769 DOI: 10.1016/j.canlet.2024.216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
As the limitations of cancer immunotherapy become increasingly apparent, there is considerable anticipation regarding the utilization of biological tools to enhance treatment efficacy, particularly bacteria and their derivatives. Leveraging advances in genetic and synthetic biology technologies, engineered bacteria now play important roles far beyond those of conventional immunoregulatory agents, and they could function as tumor-targeting vehicles and in situ pharmaceutical factories. In recent years, these engineered bacteria play a role in almost every aspect of immunotherapy. It is nothing short of impressive to keep seeing different strain of bacteria modified in diverse ways for unique immunological enhancement. In this review, we have scrutinized the intricate interplay between the immune system and these engineered bacteria. These interactions generate strategies that can directly or indirectly optimize immunotherapy and even modulate the effects of combination therapies. Collectively, these engineered bacteria present a promising novel therapeutic strategy that promises to change the current landscape of immunotherapy.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chonghai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| |
Collapse
|
19
|
Zou Z, Cheng Q, Zhou J, Guo C, Hadjinicolaou AV, Salio M, Liang X, Yang C, Du Y, Yao W, Wang D, Cerundolo V, Wang Q, Xia M. ATF4-SLC7A11-GSH axis mediates the acquisition of immunosuppressive properties by activated CD4 + T cells in low arginine condition. Cell Rep 2024; 43:113995. [PMID: 38527061 DOI: 10.1016/j.celrep.2024.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/21/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The tumor microenvironment (TME) is restricted in metabolic nutrients including the semi-essential amino acid arginine. While complete arginine deprivation causes T cell dysfunction, it remains unclear how arginine levels fluctuate in the TME to shape T cell fates. Here, we find that the 20-μM low arginine condition, representing the levels found in the plasma of patients with cancers, confers Treg-like immunosuppressive capacities upon activated T cells. In vivo mouse tumor models and human single-cell RNA-sequencing datasets reveal positive correlations between low arginine condition and intratumoral Treg accumulation. Mechanistically, low arginine-activated T cells engage in metabolic and transcriptional reprogramming, using the ATF4-SLC7A11-GSH axis, to preserve their suppressive function. These findings improve our understanding of the role of arginine in human T cell biology with potential applications for immunotherapy strategies.
Collapse
Affiliation(s)
- Ziqi Zou
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Cheng
- MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jiajie Zhou
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenyao Guo
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Andreas V Hadjinicolaou
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK; Early Cancer Institute, Department of Oncology, Hutchison Research Centre, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Mariolina Salio
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Xinghua Liang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yue Du
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiran Yao
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongrui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Qingqing Wang
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.
| | - Meng Xia
- Institute of Immunology, and Department of Dermatology and Venereology of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
20
|
Tsai YT, Schlom J, Donahue RN. Blood-based biomarkers in patients with non-small cell lung cancer treated with immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:82. [PMID: 38493133 PMCID: PMC10944611 DOI: 10.1186/s13046-024-02969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024] Open
Abstract
The paradigm of non-small cell lung cancer (NSCLC) treatment has been profoundly influenced by the development of immune checkpoint inhibitors (ICI), but the range of clinical responses observed among patients poses significant challenges. To date, analyses of tumor biopsies are the only parameter used to guide prognosis to ICI therapy. Tumor biopsies, however, are often difficult to obtain and tissue-based biomarkers are limited by intratumoral heterogeneity and temporal variability. In response, there has been a growing emphasis on the development of "liquid biopsy"‒ derived biomarkers, which offer a minimally invasive means to dynamically monitor the immune status of NSCLC patients either before and/or during the course of treatment. Here we review studies in which multiple blood-based biomarkers encompassing circulating soluble analytes, immune cell subsets, circulating tumor DNA, blood-based tumor mutational burden, and circulating tumor cells have shown promising associations with the clinical response of NSCLC patients to ICI therapy. These investigations have unveiled compelling correlations between the peripheral immune status of patients both before and during ICI therapy and patient outcomes, which include response rates, progression-free survival, and overall survival. There is need for rigorous validation and standardization of these blood-based assays for broader clinical application. Integration of multiple blood-based biomarkers into comprehensive panels or algorithms also has the potential to enhance predictive accuracy. Further research aimed at longitudinal monitoring of circulating biomarkers is also crucial to comprehend immune dynamics and resistance mechanisms and should be used alongside tissue-based methods that interrogate the tumor microenvironment to guide treatment decisions and may inform on the development of novel therapeutic strategies. The data reviewed here reinforce the opportunity to refine patient stratification, optimize treatments, and improve outcomes not only in NSCLC but also in the wider spectrum of solid tumors undergoing immunotherapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Wang YX, Zhou CP, Wang DT, Ma J, Sun XH, Wang Y, Zhang YM. Unraveling the causal role of immune cells in gastrointestinal tract cancers: insights from a Mendelian randomization study. Front Immunol 2024; 15:1343512. [PMID: 38533503 PMCID: PMC10963466 DOI: 10.3389/fimmu.2024.1343512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Background Despite early attempts, the relationship between immune characteristics and gastrointestinal tract cancers remains incompletely elucidated. Hence, rigorous and further investigations in this domain hold significant clinical relevance for the development of novel potential immunotherapeutic targets. Methods We conducted a two-sample Mendelian randomization (MR) analysis using the tools available in the "TwoSampleMR" R package. The GWAS data for these 731 immune traits were sourced from the GWAS Catalog database. Concurrently, data on gastrointestinal tract cancers, encompassing malignant tumors in the esophagus, stomach, small intestine, colon, and rectum, were extracted from the FinnGen database. The immune traits subjected to MR analysis predominantly fall into four categories: median fluorescence intensities (MFI), relative cell (RC), absolute cell (AC), and morphological parameters (MP). To ensure the reliability of our findings, sensitivity analyses were implemented to address robustness, account for heterogeneity, and alleviate the impact of horizontal pleiotropy. Results A total of 78 immune traits causally linked to gastrointestinal tract cancers were identified, encompassing esophageal cancer (12 traits), gastric cancer (13 traits), small intestine cancer (22 traits), colon cancer (12 traits), and rectal cancer (19 traits). Additionally, 60 immune traits were recognized as protective factors associated with gastrointestinal tract cancers, distributed across esophageal cancer (14 traits), gastric cancer (16 traits), small intestine cancer (7 traits), colon cancer (14 traits), and rectal cancer (9 traits). Furthermore, it was observed that seven immune traits are causally related to gastrointestinal tract cancers in at least two locations. These traits include "CCR2 on CD14- CD16+ monocyte," "CD19 on IgD+ CD38-," "CD19 on IgD+ CD38- naive," "CD25hi CD45RA+ CD4 not Treg AC," "CD27 on unsw mem," "CD28 on CD39+ activated Treg," and "CD45 on CD4+." Conclusion This study elucidates a causal link between immune cells and gastrointestinal tract cancers at various sites through genetic investigation. The findings of this research open up new perspectives and resources for exploring tumor prevention strategies and immunotherapeutic targets.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Chao-ping Zhou
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Da-tian Wang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Jun Ma
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Xue-hu Sun
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Wang
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-ming Zhang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| |
Collapse
|
22
|
Daniel SK, Sullivan KM, Dickerson LK, van den Bijgaart RJE, Utria AF, Labadie KP, Kenerson HL, Jiang X, Smythe KS, Campbell JS, Pierce RH, Kim TS, Riehle KJ, Yeung RS, Carter JA, Barry KC, Pillarisetty VG. Reversing immunosuppression in the tumor microenvironment of fibrolamellar carcinoma via PD-1 and IL-10 blockade. Sci Rep 2024; 14:5109. [PMID: 38429349 PMCID: PMC10907637 DOI: 10.1038/s41598-024-55593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare liver tumor driven by the DNAJ-PKAc fusion protein that affects healthy young patients. Little is known about the immune response to FLC, limiting rational design of immunotherapy. Multiplex immunohistochemistry and gene expression profiling were performed to characterize the FLC tumor immune microenvironment and adjacent non-tumor liver (NTL). Flow cytometry and T cell receptor (TCR) sequencing were performed to determine the phenotype of tumor-infiltrating immune cells and the extent of T cell clonal expansion. Fresh human FLC tumor slice cultures (TSCs) were treated with antibodies blocking programmed cell death protein-1 (PD-1) and interleukin-10 (IL-10), with results measured by cleaved caspase-3 immunohistochemistry. Immune cells were concentrated in fibrous stromal bands, rather than in the carcinoma cell compartment. In FLC, T cells demonstrated decreased activation and regulatory T cells in FLC had more frequent expression of PD-1 and CTLA-4 than in NTL. Furthermore, T cells had relatively low levels of clonal expansion despite high TCR conservation across individuals. Combination PD-1 and IL-10 blockade signficantly increased cell death in human FLC TSCs. Immunosuppresion in the FLC tumor microenvironment is characterized by T cell exclusion and exhaustion, which may be reversible with combination immunotherapy.
Collapse
Affiliation(s)
- S K Daniel
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K M Sullivan
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - L K Dickerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R J E van den Bijgaart
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A F Utria
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K P Labadie
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - H L Kenerson
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - X Jiang
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K S Smythe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J S Campbell
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R H Pierce
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T S Kim
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K J Riehle
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - R S Yeung
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - J A Carter
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA
| | - K C Barry
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - V G Pillarisetty
- Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356410, Seattle, WA, 98195, USA.
| |
Collapse
|
23
|
Huang Q, Liu Z, Yu Y, Rong Z, Wang P, Wang S, Wu H, Yan X, Cho WC, Mu T, Li J, Zhao J, Qiu M, Hou Y, Li X. Prediction of response to neoadjuvant chemo-immunotherapy in patients with esophageal squamous cell carcinoma by a rapid breath test. Br J Cancer 2024; 130:694-700. [PMID: 38177659 PMCID: PMC10876947 DOI: 10.1038/s41416-023-02547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Neoadjuvant chemo-immunotherapy combination has shown remarkable advances in the management of esophageal squamous cell carcinoma (ESCC). However, the identification of a reliable biomarker for predicting the response to this chemo-immunotherapy regimen remains elusive. While computed tomography (CT) is widely utilized for response evaluation, its inherent limitations in terms of accuracy are well recognized. Therefore, in this study, we present a novel technique to predict the response of ESCC patients before receiving chemo-immunotherapy by testing volatile organic compounds (VOCs) in exhaled breath. METHODS This study employed a prospective-specimen-collection, retrospective-blinded-evaluation design. Patients' baseline breath samples were collected and analyzed using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). Subsequently, patients were categorized as responders or non-responders based on the evaluation of therapeutic response using pathology (for patients who underwent surgery) or CT images (for patients who did not receive surgery). RESULTS A total of 133 patients were included in this study, with 91 responders who achieved either a complete response (CR) or a partial response (PR), and 42 non-responders who had stable disease (SD) or progressive disease (PD). Among 83 participants who underwent both evaluations with CT and pathology, the paired t-test revealed significant differences between the two methods (p < 0.05). For the breath test prediction model using breath test data from all participants, the validation set demonstrated mean area under the curve (AUC) of 0.86 ± 0.06. For 83 patients with pathological reports, the breath test achieved mean AUC of 0.845 ± 0.123. CONCLUSIONS Since CT has inherent weakness in hollow organ assessment and no other ideal biomarker has been found, our study provided a noninvasive, feasible, and inexpensive tool that could precisely predict ESCC patients' response to neoadjuvant chemo-immunotherapy combination using breath test based on HPPI-TOFMS.
Collapse
Affiliation(s)
- Qi Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Yipei Yu
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhiwei Rong
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiang Yan
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Teng Mu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jilun Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jia Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, 100044, China.
- Breax Laboratory, PCAB Research Center of Breath and Metabolism, Beijing, 100074, China.
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
24
|
Jayakrishnan T, Mariam A, Farha N, Rotroff DM, Aucejo F, Barot SV, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Khorana AA, Kamath SD. Plasma metabolomic differences in early-onset compared to average-onset colorectal cancer. Sci Rep 2024; 14:4294. [PMID: 38383634 PMCID: PMC10881959 DOI: 10.1038/s41598-024-54560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Deleterious effects of environmental exposures may contribute to the rising incidence of early-onset colorectal cancer (eoCRC). We assessed the metabolomic differences between patients with eoCRC, average-onset CRC (aoCRC), and non-CRC controls, to understand pathogenic mechanisms. Patients with stage I-IV CRC and non-CRC controls were categorized based on age ≤ 50 years (eoCRC or young non-CRC controls) or ≥ 60 years (aoCRC or older non-CRC controls). Differential metabolite abundance and metabolic pathway analyses were performed on plasma samples. Multivariate Cox proportional hazards modeling was used for survival analyses. All P values were adjusted for multiple testing (false discovery rate, FDR P < 0.15 considered significant). The study population comprised 170 patients with CRC (66 eoCRC and 104 aoCRC) and 49 non-CRC controls (34 young and 15 older). Citrate was differentially abundant in aoCRC vs. eoCRC in adjusted analysis (Odds Ratio = 21.8, FDR P = 0.04). Metabolic pathways altered in patients with aoCRC versus eoCRC included arginine biosynthesis, FDR P = 0.02; glyoxylate and dicarboxylate metabolism, FDR P = 0.005; citrate cycle, FDR P = 0.04; alanine, aspartate, and glutamate metabolism, FDR P = 0.01; glycine, serine, and threonine metabolism, FDR P = 0.14; and amino-acid t-RNA biosynthesis, FDR P = 0.01. 4-hydroxyhippuric acid was significantly associated with overall survival in all patients with CRC (Hazards ratio, HR = 0.4, 95% CI 0.3-0.7, FDR P = 0.05). We identified several unique metabolic alterations, particularly the significant differential abundance of citrate in aoCRC versus eoCRC. Arginine biosynthesis was the most enriched by the differentially altered metabolites. The findings hold promise in developing strategies for early detection and novel therapies.
Collapse
Affiliation(s)
- Thejus Jayakrishnan
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, USA
| | - Nicole Farha
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, USA
| | - Federico Aucejo
- Department of Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, USA
| | - Shimoli V Barot
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
- Case Comprehensive Cancer Center, Cleveland, USA
| | - Madison Conces
- Case Comprehensive Cancer Center, Cleveland, USA
- Department of Hematology-Oncology, University Hospital Seidman Cancer Center, Cleveland, USA
| | - Kanika G Nair
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
- Case Comprehensive Cancer Center, Cleveland, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA
| | - Smitha S Krishnamurthi
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
- Case Comprehensive Cancer Center, Cleveland, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA
- Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, USA
| | - Alok A Khorana
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
- Case Comprehensive Cancer Center, Cleveland, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA
| | - Suneel D Kamath
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA.
- Case Comprehensive Cancer Center, Cleveland, USA.
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Coleman M, Mascialino SJ, Panjwani A, Edwards E, Sukhatme VV, Gavegnano C, Sukhatme VP. Readily available drugs and other interventions to potentially improve the efficacy of immune checkpoint blockade in cancer. Front Immunol 2024; 14:1281744. [PMID: 38299150 PMCID: PMC10827885 DOI: 10.3389/fimmu.2023.1281744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
To improve the efficacy of immune checkpoint inhibitors (ICIs) for cancer treatment, various strategies, including combination therapies with repurposed drugs, are being explored. Several readily available interventions with potential to enhance programmed death 1 (PD-1) blockade have been identified. However, these interventions often remain overlooked due to the lack of financial incentives for their development, making them financial orphans. This review summarizes current knowledge regarding off-label drugs, supplements, and other readily available interventions that could improve the efficacy of PD-1 blockade. The summary of each intervention includes the proposed mechanism of action for combination with checkpoint inhibitors and data from animal and human studies. Additionally, we include summaries of common interventions to be avoided by patients on PD-1 blockade. Finally, we present approaches for conducting further studies in patients, with the aim of expediting the clinical development of these interventions. We strive to increase awareness of readily available combination therapies that may advance cancer immunotherapy and help patients today.
Collapse
Affiliation(s)
- Merissa Coleman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Sophia J. Mascialino
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Anusha Panjwani
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Emily Edwards
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Vidula V. Sukhatme
- Morningside Center for Innovative & Affordable Medicine, Emory University, Atlanta, GA, United States
- GlobalCures, Inc, Newton, MA, United States
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Vikas P. Sukhatme
- Morningside Center for Innovative & Affordable Medicine, Emory University, Atlanta, GA, United States
- GlobalCures, Inc, Newton, MA, United States
- Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
26
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
27
|
His M, Gunter MJ, Keski-Rahkonen P, Rinaldi S. Application of Metabolomics to Epidemiologic Studies of Breast Cancer: New Perspectives for Etiology and Prevention. J Clin Oncol 2024; 42:103-115. [PMID: 37944067 DOI: 10.1200/jco.22.02754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE To provide an overview on how the application of metabolomics (high-throughput characterization of metabolites from cells, organs, tissues, or biofluids) to population-based studies may inform our understanding of breast cancer etiology. METHODS We evaluated studies that applied metabolomic analyses to prediagnostic blood samples from prospective epidemiologic studies to identify circulating metabolites associated with breast cancer risk, overall and by breast cancer subtype and menopausal status. We provide some important considerations for the application and interpretation of metabolomics approaches in this context. RESULTS Overall, specific lipids and amino acids were indicated as the most common metabolite classes associated with breast cancer development. However, comparison of results across studies is challenging because of heterogeneity in laboratory techniques, analytical methods, sample size, and applied statistical methods. CONCLUSION Metabolomics is being increasingly applied to population-based studies for the identification of new etiologic hypotheses and/or mechanisms related to breast cancer development. Despite its success in applications to epidemiology, studies of larger sample size with detailed information on menopausal status, breast cancer subtypes, and repeated biologic samples collected over time are needed to improve comparison of results between studies and enhance validation of results, allowing potential clinical translation of findings.
Collapse
Affiliation(s)
- Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Prevention Cancer Environment Department, Centre Léon Bérard, Lyon, France
- Inserm, U1296 Unit, "Radiation: Defense, Health and Environment", Centre Léon Bérard, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
28
|
Chen JT, Zhou YW, Han TR, Wei JL, Qiu M. Perioperative immune checkpoint inhibition for colorectal cancer: recent advances and future directions. Front Immunol 2023; 14:1269341. [PMID: 38022667 PMCID: PMC10679411 DOI: 10.3389/fimmu.2023.1269341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
For colorectal cancer (CRC), surgical resection remains essential for achieving good prognoses. Unfortunately, numerous patients with locally advanced CRC and metastatic CRC failed to meet surgical indications or achieve pathological complete response after surgery. Perioperative therapy has been proven to effectively lower tumor staging and reduce recurrence and metastasis. Immune checkpoint inhibitors (ICIs) have shown unprecedented prolongation of survival time and satisfactory safety in patients with high microsatellite instability/deficient mismatch repair (MSI-H/dMMR), while the therapeutic effect obtained by patients with mismatch repair-proficient or microsatellite stable (pMMR/MSS) was considered minimal. However, recent studies found that certain CRC patients with dMMR/MSI-H presented intrinsic or acquired immune resistance, and pMMR/MSS CRC patients can also achieve better efficacy. Therefore, more predictors are required for screening patients with potential clinical benefits. Since the discovery of synergistic effects between immunotherapy, chemotherapy, and radiotherapy, different immunotherapy-based therapies have been applied to the perioperative therapy of CRC in an increasing number of research. This review comprehensively summarized the past and current progress of different combinations of immunotherapy in perioperative clinical trials for CRC, focusing on the efficacy and safety, and points out the direction for future development.
Collapse
Affiliation(s)
- Jiao-Ting Chen
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Rui Han
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun-Lun Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Wang Z, Zhang J, Shi S, Ma H, Wang D, Zuo C, Zhang Q, Lian C. Predicting lung adenocarcinoma prognosis, immune escape, and pharmacomic profile from arginine and proline-related genes. Sci Rep 2023; 13:15198. [PMID: 37709932 PMCID: PMC10502151 DOI: 10.1038/s41598-023-42541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly heterogeneous disease that ranks first in morbidity and mortality. Abnormal arginine metabolism is associated with inflammatory lung disease and may influence alterations in the tumor immune microenvironment. However, the potential role of arginine and proline metabolic patterns and immune molecular markers in LUAD is unclear. Gene expression, somatic mutations, and clinicopathological information of LUAD were downloaded from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression analysis was performed to identify metabolic genes associated with overall survival (OS). Unsupervised clustering divided the sample into two subtypes with different metabolic and immunological profiles. Gene set enrichment analysis (GESA) and gene set variation analysis (GSVA) were used to analyze the underlying biological processes of the two subtypes. Drug sensitivity between subtypes was also predicted; then prognostic features were developed by multivariate Cox regression analysis. In addition, validation was obtained in the GSE68465, and GSE50081 dataset. Then, gene expression, and clinical characterization of hub genes CPS1 and SMS were performed; finally, in vitro validation experiments for knockdown of SMS were performed in LUAD cell lines. In this study, we first identified 12 arginine and proline-related genes (APRGs) significantly associated with OS and characterized the clinicopathological features and tumor microenvironmental landscape of two different subtypes. Then, we established an arginine and proline metabolism-related scoring system and identified two hub genes highly associated with prognosis, namely CPS1, and SMS. In addition, we performed CCK8, transwell, and other functional experiments on SMS to obtain consistent results. Our comprehensive analysis revealed the potential molecular features and clinical applications of APRGs in LUAD. A model based on 2 APRGs can accurately predict survival outcomes in LUAD, improve our understanding of APRGs in LUAD, and pave a new pathway to guide risk stratification and treatment strategy development for LUAD patients.
Collapse
Affiliation(s)
- Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Shuhua Shi
- Department of Genetics, School of Life Sciences, Bengbu Medical College, Bengbu, 233030, China
| | - Hongyu Ma
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, 233030, China
| | - Dongqin Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China
| | - Chao Zuo
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| | - Chaoqun Lian
- Research Center of Clinical Laboratory Science, Bengbu Medical College, Bengbu, 233030, China.
| |
Collapse
|
30
|
Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 2023; 20:583-603. [PMID: 37365438 PMCID: PMC11258874 DOI: 10.1038/s41571-023-00785-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.
Collapse
Affiliation(s)
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée - Ligue Nationale contre le cancer, Université de Paris, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
- Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
31
|
Tian BW, Han CL, Wang HC, Yan LJ, Ding ZN, Liu H, Mao XC, Tian JC, Xue JS, Yang LS, Tan SY, Dong ZR, Yan YC, Wang DX, Li T. Effect of liver metastasis on the efficacy of immune checkpoint inhibitors in cancer patients: a systemic review and meta-analysis. Clin Exp Metastasis 2023; 40:255-287. [PMID: 37308706 DOI: 10.1007/s10585-023-10217-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2024]
Abstract
Liver metastasis is a frequent phenomenon in advanced tumor disease. Immune checkpoint inhibitors (ICIs) are a new class of therapeutics that can improve the prognosis of cancer patients. The purpose of this study is to elucidate the relationship between liver metastasis and survival outcomes of patients receiving ICIs treatment. We searched four main databases, including PubMed, EMBASE, Cochrane Library, and Web of Science. Overall survival (OS) and progression-free survival (PFS) were the survival outcomes of our concern. Hazard ratio (HR) with 95% confidence interval (CI) were used to evaluate the relationship between liver metastasis and OS/ PFS. Finally, 163 articles were included in the study. The pooled results showed that patients with liver metastasis receiving ICIs treatment had worse OS (HR=1.82, 95%CI:1.59-2.08) and PFS (HR=1.68, 95%CI:1.49-1.89) than patients without liver metastasis. The effect of liver metastasis on ICIs efficacy differed in different tumor types, and patients with urinary system tumors (renal cell carcinoma OS: HR=2.47, 95%CI:1.76-3.45; urothelial carcinoma OS: HR=2.37, 95%CI:2.03-2.76) had the worst prognosis, followed by patients with melanoma (OS: HR=2.04, 95%CI:1.68-2.49) or non-small cell lung cancer (OS: HR=1.81, 95%CI:1.72-1.91). ICIs efficacy in digestive system tumors (colorectal cancer OS: HR=1.35, 95%CI:1.07-1.71; gastric cancer/ esophagogastric cancer OS: HR=1.17, 95%CI:0.90-1.52) was less affected, and peritoneal metastasis and the number of metastases have a greater clinical significance than liver metastasis based on univariate data. For cancer patients receiving ICIs treatment, the occurrence of liver metastasis is associated with poor prognosis. Different cancer types and metastatic sites may hold a different prognostic effect on the efficacy of ICIs treatment in cancer patients.
Collapse
Affiliation(s)
- Bao-Wen Tian
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Cheng-Long Han
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong Univeristy, Jinan, 250100, People's Republic of China
| | - Lun-Jie Yan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zi-Niu Ding
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Hui Liu
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Xin-Cheng Mao
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Jin-Cheng Tian
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Jun-Shuai Xue
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Long-Shan Yang
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Si-Yu Tan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zhao-Ru Dong
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Yu-Chuan Yan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Dong-Xu Wang
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Tao Li
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
32
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
33
|
Yu M, Zhang S. Influenced tumor microenvironment and tumor immunity by amino acids. Front Immunol 2023; 14:1118448. [PMID: 36798123 PMCID: PMC9927402 DOI: 10.3389/fimmu.2023.1118448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
It is widely accepted that tumors are a complex tissue composed of cancer cells, extracellular matrix, inflammatory cells, immune cells, and other cells. Deregulation of tumor microenvironment promotes tumor aggressiveness by sustaining cell growth, invasion, and survival from immune surveillance. The concepts that some dietary nutrients could change tumor microenvironment are extremely attractive. Many studies demonstrated that high-fat diet-induced obesity shaped metabolism to suppress anti-tumor immunity, but how amino acids changed the tumor microenvironment and impacted tumor immunity was still not totally understood. In fact, amino acid metabolism in different signaling pathways and their cross-talk shaped tumor immunity and therapy efficacy in cancer patients. Our review focused on mechanisms by which amino acid influenced tumor microenvironment, and found potential drug targets for immunotherapy in cancer.
Collapse
Affiliation(s)
- Min Yu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Sichuan, Chengdu, China,*Correspondence: Shuang Zhang,
| |
Collapse
|
34
|
Carpentier J, Pavlyk I, Mukherjee U, Hall PE, Szlosarek PW. Arginine Deprivation in SCLC: Mechanisms and Perspectives for Therapy. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:53-66. [PMID: 36091646 PMCID: PMC9462517 DOI: 10.2147/lctt.s335117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Arginine deprivation has gained increasing traction as a novel and safe antimetabolite strategy for the treatment of several hard-to-treat cancers characterised by a critical dependency on arginine. Small cell lung cancer (SCLC) displays marked arginine auxotrophy due to inactivation of the rate-limiting enzyme argininosuccinate synthetase 1 (ASS1), and as a consequence may be targeted with pegylated arginine deiminase or ADI-PEG20 (pegargiminase) and human recombinant pegylated arginases (rhArgPEG, BCT-100 and pegzilarginase). Although preclinical studies reveal that ASS1-deficient SCLC cell lines are highly sensitive to arginine-degrading enzymes, there is a clear disconnect with the clinic with minimal activity seen to date that may be due in part to patient selection. Recent studies have explored resistance mechanisms to arginine depletion focusing on tumor adaptation, such as ASS1 re-expression and autophagy, stromal cell inputs including macrophage infiltration, and tumor heterogeneity. Here, we explore how arginine deprivation may be combined strategically with novel agents to improve SCLC management by modulating resistance and increasing the efficacy of existing agents. Moreover, recent work has identified an intriguing role for targeting arginine in combination with PD-1/PD-L1 immune checkpoint inhibitors and clinical trials are in progress. Thus, future studies of arginine-depleting agents with chemoimmunotherapy, the current standard of care for SCLC, may lead to enhanced disease control and much needed improvements in long-term survival for patients.
Collapse
Affiliation(s)
- Joséphine Carpentier
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Iuliia Pavlyk
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Uma Mukherjee
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter E Hall
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| | - Peter W Szlosarek
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Medical Oncology, Barts Health NHS Trust, St. Bartholomew’s Hospital, London, EC1A 7BE, UK
| |
Collapse
|