1
|
Pociupany M, Snoeck R, Dierickx D, Andrei G. Treatment of Epstein-Barr Virus infection in immunocompromised patients. Biochem Pharmacol 2024; 225:116270. [PMID: 38734316 DOI: 10.1016/j.bcp.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Epstein-Barr Virus (EBV), is a ubiquitous γ-Herpesvirus that infects over 95% of the human population and can establish a life-long infection without causing any clinical symptoms in healthy individuals by residing in memory B-cells. Primary infection occurs in childhood and is mostly asymptomatic, however in some young adults it can result in infectious mononucleosis (IM). In immunocompromised individuals however, EBV infection has been associated with many different malignancies. Since EBV can infect both epithelial and B-cells and very rarely NK cells and T-cells, it is associated with both epithelial cancers like nasopharyngeal carcinoma (NPC) and gastric carcinoma (GC), with lymphomas including Burkitt Lymphoma (BL) or Post-transplant Lymphoproliferative Disorder (PTLD) and rarely with NK/T-cell lymphomas. Currently there are no approved antivirals active in PTLD nor in any other malignancy. Moreover, lytic phase disease almost never requires antiviral treatment. Although many novel therapies against EBV have been described, the management and/or prevention of EBV primary infections or reactivations remains difficult. In this review, we discuss EBV infection, therapies targeting EBV in both lytic and latent state with novel therapeutics developed that show anti-EBV activity as well as EBV-associated malignancies both, epithelial and lymphoproliferative malignancies and emerging therapies targeting the EBV-infected cells.
Collapse
Affiliation(s)
- Martyna Pociupany
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory of Experimental Hematology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Pennisi R, Trischitta P, Costa M, Venuti A, Tamburello MP, Sciortino MT. Update of Natural Products and Their Derivatives Targeting Epstein-Barr Infection. Viruses 2024; 16:124. [PMID: 38257824 PMCID: PMC10818872 DOI: 10.3390/v16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Epstein-Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated to divide upon infection. The reactivation from the latent state is associated with a productive gene expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is a highly transforming virus that contributes to the development of human lymphomas. Though viral vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-associated cancers. Natural products and bioactive compounds are widely studied for their antiviral potential and capability to modulate intracellular signaling pathways. This review was intended to collect information on plant-derived products showing their antiviral activity against EBV and evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated oncogenesis in humans.
Collapse
Affiliation(s)
- Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| | - Paola Trischitta
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Marianna Costa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, 69366 Lyon, CEDEX 07, France;
| | - Maria Pia Tamburello
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (P.T.); (M.C.); (M.P.T.)
| |
Collapse
|
3
|
Arumugam M, Shanmugavel B, Sellppan M, Pavadai P. In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 - inhibitors using molecular dynamic approach. J Biomol Struct Dyn 2024; 42:1072-1078. [PMID: 37139540 DOI: 10.1080/07391102.2023.2201848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Coronavirus, an extremely contagious infections disease had a harmful effect on the world's population. It is a family of enveloped, single-stranded, positive-strand RNA viruses of Nidovirales order belongs to coroviridae family. At present, worldwide several lakhs of deaths and several billions of infections have been reported. Hence, the focus of the present study was to assess the SARS-CoV-2 enzyme inhibitory potential of certain commercially available terpenoids using Lamarckian genetic algorithm as a working principle and molecular dynamic studies was also performed. AutoDock 4.2 software was used to perform the computational docking calculations of terpenoids against SARS-CoV-2 enzyme. The terpenoids such as, Andrographolide, Betulonic acid, Erythrodiol, Friedelin, Mimuscopic acid, Moronic acid, and Retinol were selected based on the drug likeness properties. Remdesivir a well-known anti-viral drug was selected as the standard drug. Molecular dynamic simulation studies were carried using Desmond module of Schrodinger Suite. In the current study we observed that, Friedelin was exhibited excellent SARS-CoV-2 enzyme inhibitory potential than the standard drug and other selected terpenoids. Friedelin and the standard Remdesivir was undergone the molecular dynamic studies and Friedelin showed a good number of hydrogen bonds over the simulation time of 100 ns. Based on the in silico computational evaluation, it can be concluded that Friedelin could be worthwhile terpenoid against SARS-CoV-2 spike protein. A further study on Friedelin is required to develop a potential chemical entity against the management of COVID disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madeswaran Arumugam
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Brahmasundari Shanmugavel
- Department of Pharmacology, Sri Ramakrishna Institute of Paramedical Sciences, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Mohan Sellppan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Heawchaiyaphum C, Malat P, Pientong C, Roytrakul S, Yingchutrakul Y, Aromseree S, Suebsasana S, Mahalapbutr P, Ekalaksananan T. The Dual Functions of Andrographolide in the Epstein-Barr Virus-Positive Head-and-Neck Cancer Cells: The Inhibition of Lytic Reactivation of the Epstein-Barr Virus and the Induction of Cell Death. Int J Mol Sci 2023; 24:15867. [PMID: 37958849 PMCID: PMC10648111 DOI: 10.3390/ijms242115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Andrographolide, a medicinal compound, exhibits several pharmacological activities, including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits Epstein-Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncogenesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells and the molecular modeling and docking simulation of protein. Based on the results, the expression of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andrographolide treatment also significantly induced the expression of DNA Methyltransferase (DNMT) 1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and induces cell death, probably via necroptosis.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Center, Thammasart University, Pathum Thani 12120, Thailand
| | - Praphatson Malat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Yodying Yingchutrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Sirinart Aromseree
- Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Suebsasana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Rangsit Center, Thammasat University, Pathum Thani 12120, Thailand;
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.H.); (P.M.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Bildziukevich U, Šlouf M, Rárová L, Šaman D, Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. SOFT MATTER 2023; 19:7625-7634. [PMID: 37772344 DOI: 10.1039/d3sm01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Moronic acid and morolic acid, less frequently studied plant triterpenoids, were subjected to derivation with several structural modifiers, namely, piperazine-, pyrazine-, 1H-indole- and L-methionine-based compounds. Derivation was targeted to design and prepare novel compounds capable of nano-assembling and/or displaying cytotoxicity. Formation of nanostructures has been proven for several novel target compounds that formed different types of nanostructures, either in chloroform or in water. Isometric nanoparticles with broad size distributions (12 and 25), distorted single sheets (23) or very large thin warped films (13) were formed in chloroform solutions. Sheet-like nanostructures (12 and 23), and sphere-like nanostructures (hydrogen bonding connected nanoparticles; 3, 5, 13, 21 and 25) were formed in water suspensions. Cytotoxicity was also investigated and compared with that of the parent triterpenoids, showing enhanced effect of 18 that was the most successful derivative of the prepared series with sufficient balance between its cytotoxicity in CEM (IC50 = 11.7 ± 2.4 μM), HeLa (IC50 = 9.0 ± 0.7 μM) and G-361 (IC50 = 10.6 ± 5.5 μM) cancer cell lines, and toxicity in BJ (IC50 = 43.3 ± 1.5 μM). The calculated selectivity index values for 18 are SI = 3.9 (CEM), 4.8 (HeLa) and 4.4 (G-361). Additional compounds displaying cytotoxicity were 5, 7, 9 and 15, all of them showed comparable cytotoxicity with 18, in the investigated cancer cell lines; however, they were more toxic in BJ than 18.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovský sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Palacký University, Faculty of Science, Department of Experimental Biology, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague, Czech Republic.
| |
Collapse
|
6
|
Mügge FLB, Morlock GE. Chemical and cytotoxicity profiles of 11 pink pepper (Schinus spp.) samples via non-targeted hyphenated high-performance thin-layer chromatography. Metabolomics 2023; 19:48. [PMID: 37130976 PMCID: PMC10154279 DOI: 10.1007/s11306-023-02008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Pink pepper is a worldwide used spice that corresponds to the berries of two species, Schinus terebinthifolia Raddi or S. molle L. (Anacardiaceae). Toxic and allergic reactions by ingestion or contact with these plants were reported, and classical in vitro studies have highlighted the cytotoxic properties of apolar extracts from the fruits. OBJECTIVES Perform a non-targeted screening of 11 pink pepper samples for the detection and identification of individual cytotoxic substances. METHODS After reversed-phase high-performance thin-layer chromatography (RP-HPTLC) separation of the extracts and multi-imaging (UV/Vis/FLD), cytotoxic compounds were detected by bioluminescence reduction from luciferase reporter cells (HEK 293 T-CMV-ELuc) applied directly on the adsorbent surface, followed by elution of detected cytotoxic substance into atmospheric-pressure chemical ionization high-resolution mass spectrometry (APCI-HRMS). RESULTS Separations for mid-polar and non-polar fruit extracts demonstrated the selectivity of the method to different substance classes. One cytotoxic substance zone was tentatively assigned as moronic acid, a pentacyclic triterpenoid acid. CONCLUSION The developed non-targeted hyphenated RP-HPTLC-UV/Vis/FLD-bioluminescent cytotoxicity bioassay-FIA-APCI-HRMS method was successfully demonstrated for cytotoxicity screening (bioprofiling) and respective cytotoxin assignment.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Eladwy RA, Vu HT, Shah R, Li CG, Chang D, Bhuyan DJ. The Fight against the Carcinogenic Epstein-Barr Virus: Gut Microbiota, Natural Medicines, and Beyond. Int J Mol Sci 2023; 24:1716. [PMID: 36675232 PMCID: PMC9862477 DOI: 10.3390/ijms24021716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Despite recent advances in oncology, cancer has remained an enormous global health burden, accounting for about 10 million deaths in 2020. A third of the cancer cases in developing counties are caused by microbial infections such as human papillomavirus (HPV), Epstein-Barr Virus (EBV), and hepatitis B and C viruses. EBV, a member of the human gamma herpesvirus family, is a double-stranded DNA virus and the primary cause of infectious mononucleosis. Most EBV infections cause no long-term complications. However, it was reported that EBV infection is responsible for around 200,000 malignancies worldwide every year. Currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection. Recently, the gut microbiota has been investigated for its pivotal roles in pathogen protection and regulating metabolic, endocrine, and immune functions. Several studies have investigated the efficacy of antiviral agents, gut microbial metabolites, and natural products against EBV infection. In this review, we aim to summarise and analyse the reported molecular mechanistic and clinical studies on the activities of gut microbial metabolites and natural medicines against carcinogenic viruses, with a particular emphasis on EBV. Gut microbial metabolites such as short-chain fatty acids were reported to activate the EBV lytic cycle, while bacteriocins, produced by Enterococcus durans strains, have shown antiviral properties. Furthermore, several natural products and dietary bioactive compounds, such as curcumin, epigallocatechin gallate, resveratrol, moronic acid, and andrographolide, have shown antiviral activity against EBV. In this review, we proposed several exciting future directions for research on carcinogenic viruses.
Collapse
Affiliation(s)
- Radwa A. Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Hang Thi Vu
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 100000, Vietnam
| | - Ravi Shah
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Chang CH, Lee YC, Hsiao G, Chang LK, Chi WC, Cheng YC, Huang SJ, Wang TC, Lu YS, Lee TH. Anti-Epstein-Barr Viral Agents from the Medicinal Herb-Derived Fungus Alternaria alstroemeriae Km2286. JOURNAL OF NATURAL PRODUCTS 2022; 85:2667-2674. [PMID: 36346918 DOI: 10.1021/acs.jnatprod.2c00783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatographic separation on the liquid-state fermented products produced by the fungal strain Alternaria alstroemeriae Km2286 isolated from the littoral medicinal herb Atriplex maximowicziana Makino resulted in the isolation of compounds 1-9. Structures were determined by spectroscopic analysis as four undescribed perylenequinones, altertromins A-D (1-4), along with altertoxin IV (5), altertoxin VIII (6), stemphyperylenol (7), tenuazonic acid (8), and allo-tenuazonic acid (9). Compounds 1-6 exhibited antiviral activities against Epstein-Barr virus (EBV) with EC50 values ranging from 0.17 ± 0.07 to 3.13 ± 0.31 μM and selectivity indices higher than 10. In an anti-neuroinflammatory assay, compounds 1-4, 6, and 7 showed inhibitory activity of nitric oxide production in lipopolysaccharide-induced microglial BV-2 cells, with IC50 values ranging from 0.33 ± 0.04 to 4.08 ± 0.53 μM without significant cytotoxicity. This is the first report to describe perylenequinone-type compounds with potent anti-EBV and anti-neuroinflammatory activities.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chieh Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chiung Chi
- Department of Food Science, National Quemoy University, Kinmen 89250, Taiwan
| | - Yuan-Chung Cheng
- Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Jung Huang
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tai-Chou Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Shan Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Yi J, Cai S. Phytochemical characteristics and biological activities of Rhus chinensis Mill.: a review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Malat P, Ekalaksananan T, Heawchaiyaphum C, Suebsasana S, Roytrakul S, Yingchutrakul Y, Pientong C. Andrographolide Inhibits Epstein–Barr Virus Lytic Reactivation in EBV-Positive Cancer Cell Lines through the Modulation of Epigenetic-Related Proteins. Molecules 2022; 27:molecules27144666. [PMID: 35889536 PMCID: PMC9316603 DOI: 10.3390/molecules27144666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Reactivation of Epstein–Barr virus (EBV) is associated with EBV-associated malignancies and is considered to be a benefit target for treatment. Andrographolide is claimed to have antiviral and anti-tumor activities. Therefore, this study aimed to investigate the effect of andrographolide on the inhibition of EBV lytic reactivation in EBV-positive cancer cells. The cytotoxicity of andrographolide was firstly evaluated in EBV-positive cancer cells; P3HR1, AGS-EBV and HONE1-EBV cells, using an MTT assay. Herein, the spontaneous expression of EBV lytic genes; BALF5, BRLF1 and BZLF1, was significantly inhibited in andrographolide-treated cells. Accordingly, andrographolide inhibited the expression of Zta and viral production in sodium butyrate (NaB)-induced EBV lytic reactivation. Additionally, proteomics and bioinformatics analysis revealed the differentially expressed proteins that inhibit EBV lytic reactivation in all treated cell lines were functionally related with the histone modifications and chromatin organization, such as histone H3-K9 modification and histone H3-K27 methylation. Taken together, andrographolide inhibits EBV reactivation in EBV-positive cancer cells by inhibiting EBV lytic genes, probably, through the histone modifications.
Collapse
Affiliation(s)
- Praphatson Malat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Biotechnology, Faculty of Science and Technology, Rangsit Center, Thammasart University, Pathum Thani 12120, Thailand;
| | - Supawadee Suebsasana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Bangkok 10200, Thailand;
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Yodying Yingchutrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (Y.Y.)
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (T.E.)
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
11
|
Li M, Wang A, Zhang Y, Han T, Guan L, Fan D, Liu J, Xu Y. A comprehensive review on ethnobotanical, phytochemical and pharmacological aspects of Rhus chinensis Mill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115288. [PMID: 35430289 DOI: 10.1016/j.jep.2022.115288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhus chinensis Mill., firstly recorded as herbal medicine in Shan Hai Jing, have been used for thousands of years to treat various diseases. AIM OF THIS REVIEW This review targets on the ethnomedicinal applications of R. chinensis and to gather the phytochemical, pharmacological and toxicological data which support the therapeutic potential of R. chinensis in treatment on different diseases, with emphasis on the naturally occurring compounds and detailed pharmacological developments. MATERIALS AND METHODS The information of R. chinensis was collected based on a variety of popular databases such as Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar and other published materials (books and Ph.D. and M. Sc. Dissertations). The keywords "Rhus chinensis", "Rhus amela", "Rhus javanica", "Rhus osbeckii", "Rhus semialata", and "Schinus indicus" were applied to search the literature related in this review. RESULTS 152 natural compounds of R. chinensis belong to different classes are presented in this review, including flavonoids, lignans, coumarins, simple phenolics, urushiols, tannins, triterpenoids, steroids and other types of constituents. Among them, flavonoids, lignans, and triterpenoids are most frequently reported components. The pharmacological effects of R. chinensis were numerous and complicated, including anti-viral, anti-bacterial, anti-diarrheal, hepatoprotective, anti-proliferation, enzyme-inhibiting, anti-oxidants and so on. CONCLUSION In order to discover more compounds with novel structures to both enrich chemical context of genus Rhus and expand the variety of constituents, the phytochemical research is urgent and indispensable. Anti-diarrhea, the most widely application of R. chinensis traditionally, is insufficient in underlying mechanism exploration. And for other activities, in-depth studies on the mechanism of pharmacological effects in vivo and in vitro are both needed. Meanwhile, pharmacokinetics, toxicology, quality control and preclinical and clinical data are urgent to assess the rationale and safety of the medicinal and food application of R. chinensis.
Collapse
Affiliation(s)
- Meichen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, PR China.
| | - Yunqiang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tingting Han
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lu Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dongxue Fan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
12
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
13
|
Yiu CY, Kuan YH, Chen YJ, Wu BS, Lin TP. Chemical Components of Polygonum cuspidatum Ethylacetate Subfraction and their Effects on Epstein-Barr Virus Lytic Genes Expression. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/hcnopboeew] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Asha K, Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front Cell Infect Microbiol 2021; 11:603309. [PMID: 33816328 PMCID: PMC8017445 DOI: 10.3389/fcimb.2021.603309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses utilize various host factors to establish latent infection, survival, and spread disease in the host. These factors include host cellular machinery, host proteins, gene expression, multiple transcription factors, cellular signal pathways, immune cell activation, transcription factors, cytokines, angiogenesis, invasion, and factors promoting metastasis. The knowledge and understanding of host genes, protein products, and biochemical pathways lead to discovering safe and effective antivirals to prevent viral reactivation and spread infection. Here, we focus on the contribution of pro-inflammatory, anti-inflammatory, and resolution lipid metabolites of the arachidonic acid (AA) pathway in the lifecycle of herpesvirus infections. We discuss how various herpesviruses utilize these lipid pathways to their advantage and how we target them to combat herpesvirus infection. We also summarize recent development in anti-herpesvirus therapeutics and new strategies proposed or under clinical trials. These anti-herpesvirus therapeutics include inhibitors blocking viral life cycle events, engineered anticancer agents, epigenome influencing factors, immunomodulators, and therapeutic compounds from natural extracts.
Collapse
Affiliation(s)
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
15
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
16
|
Tsai YC, Hohmann J, El-Shazly M, Chang LK, Dankó B, Kúsz N, Hsieh CT, Hunyadi A, Chang FR. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112493. [PMID: 31863859 DOI: 10.1016/j.jep.2019.112493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lindernia crustacea (L.) F.Muell. (Scrophulariaceae) was selected for phytochemical investigation owing to its traditional use against human herpes virus infection and its anti-Epstein-Barr virus (EBV) effect. AIMS OF THE STUDY The present study focused on the phytochemical investigation of L. crustacea including the isolation and structure determination of its biologically active compounds. Compounds with anti-EBV effects were also investigated. MATERIALS AND METHODS The EtOH extract of L. crustacea was subsequently partitioned using different solvents. The EtOAc fraction was subjected to several chromatographic methods to obtain pure compounds. The structures of all isolates were established by spectroscopic analysis and compared with previously reported physical data. The anti-EBV effect was evaluated in an EBV-containing Burkitt's lymphoma cell line (P3HR1) to study the expression of EBV lytic proteins. RESULTS Thirty-three compounds, including one diterpene (1), four anthraquinones (2-5), two ionones (6 and 7), fourteen phenylpropanoid glycosides (8-21), five flavonoids (22-26), one lignan glycoside (27), one phenethyl alcohol glycoside (28), one phenylpropene glycoside (29), one glucosyl glycerol derivative (30), one furanone (31), and two cinnamic acid derivatives (32 and 33), were isolated from the ethanolic extract of the plant. All isolated compounds were obtained for the first time from Lindernia sp. The evaluation of the anti-EBV activity of L. crustacea crude extract, partitioned fractions, and constituents was performed for the first time. Phytol (1), aloe-emodin (2), byzantionoside B (7), a mixture of trans-martynoside (8) and cis-martynoside (9), a mixture of trans-isomartynoside (10) and cis-isomartynoside (11), luteolin-7-O-β-D-glucopyranoside (24), and apigenin-7-O-[β-D-apiofuranosyl (1→6)-β-D-glucopyranoside] (25) exhibited significant inhibitory effects on the EBV lytic cycle at 20 μg/mL in the immunoblot analysis. On the other hand, (6R,7E,9R)-3-oxo-α-ionol-β-D-glucopyranoside (6) and a mixture of trans-dolichandroside A (12) and cis-dolichandroside A (13) showed moderate anti-EBV activity at 20 μg/mL. CONCLUSIONS L. crustacea and its active isolates could be developed as potential candidates against EBV. Our findings provide scientific evidence for the traditional use of L. crustacea for its antiviral effects.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan; Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary; Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary; Interdisciplinary Centre of Natural Products, University of Szeged, 6720, Szeged, Hungary
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, 11566, Cairo, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, The German University in Cairo, 11835, Cairo, Egypt
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, 106, Taipei, Taiwan
| | - Balázs Dankó
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Norbert Kúsz
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Chi-Ting Hsieh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Attila Hunyadi
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 804, Kaohsiung, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 112, Taipei, Taiwan.
| |
Collapse
|
17
|
Wu CC, Chen MS, Cheng YJ, Ko YC, Lin SF, Chiu IM, Chen JY. Emodin Inhibits EBV Reactivation and Represses NPC Tumorigenesis. Cancers (Basel) 2019; 11:cancers11111795. [PMID: 31731581 PMCID: PMC6896023 DOI: 10.3390/cancers11111795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignancy derived from the epithelium of the nasopharynx. Despite great advances in the development of radiotherapy and chemotherapy, relapse and metastasis in NPC patients remain major causes of mortality. Evidence accumulated over recent years indicates that Epstein-Barr virus (EBV) lytic replication plays an important role in the pathogenesis of NPC and inhibition of EBV reactivation is now being considered as a goal for the therapy of EBV-associated cancers. With this in mind, a panel of dietary compounds was screened and emodin was found to have potential anti-EBV activity. Through Western blotting, immunofluorescence, and flow cytometric analysis, we show that emodin inhibits the expression of EBV lytic proteins and blocks virion production in EBV- positive epithelial cell lines. In investigating the underlying mechanism, reporter assays indicated that emodin represses Zta promoter (Zp) and Rta promoter (Rp) activities, triggered by various inducers. Mapping of the Zp construct reveals that the SP1 binding region is important for emodin-triggered repression and emodin is shown to be able to inhibit SP1 expression, suggesting that it likely inhibits EBV reactivation by suppression of SP1 expression. Moreover, we also show that emodin inhibits the tumorigenic properties induced by repeated EBV reactivation, including micronucleus formation, cell proliferation, migration, and matrigel invasiveness. Emodin administration also represses the tumor growth in mice which is induced by EBV activation. Taken together, our results provide a potential chemopreventive agent in restricting EBV reactivation and NPC recurrence.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.); Tel.: +886-37-206166 (ext. 31718) (C.-C.W.); +886-37-206166 (ext. 35123) (J.-Y.C.)
| | - Mei-Shu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town 350, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town 350, Taiwan
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.); Tel.: +886-37-206166 (ext. 31718) (C.-C.W.); +886-37-206166 (ext. 35123) (J.-Y.C.)
| |
Collapse
|
18
|
Novel Therapeutics for Epstein⁻Barr Virus. Molecules 2019; 24:molecules24050997. [PMID: 30871092 PMCID: PMC6429425 DOI: 10.3390/molecules24050997] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human γ-herpesvirus that infects up to 95% of the adult population. Primary EBV infection usually occurs during childhood and is generally asymptomatic, though the virus can cause infectious mononucleosis in 35–50% of the cases when infection occurs later in life. EBV infects mainly B-cells and epithelial cells, establishing latency in resting memory B-cells and possibly also in epithelial cells. EBV is recognized as an oncogenic virus but in immunocompetent hosts, EBV reactivation is controlled by the immune response preventing transformation in vivo. Under immunosuppression, regardless of the cause, the immune system can lose control of EBV replication, which may result in the appearance of neoplasms. The primary malignancies related to EBV are B-cell lymphomas and nasopharyngeal carcinoma, which reflects the primary cell targets of viral infection in vivo. Although a number of antivirals were proven to inhibit EBV replication in vitro, they had limited success in the clinic and to date no antiviral drug has been approved for the treatment of EBV infections. We review here the antiviral drugs that have been evaluated in the clinic to treat EBV infections and discuss novel molecules with anti-EBV activity under investigation as well as new strategies to treat EBV-related diseases.
Collapse
|
19
|
Li H, Hu J, Luo X, Bode AM, Dong Z, Cao Y. Therapies based on targeting Epstein-Barr virus lytic replication for EBV-associated malignancies. Cancer Sci 2018; 109:2101-2108. [PMID: 29751367 PMCID: PMC6029825 DOI: 10.1111/cas.13634] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022] Open
Abstract
In recent years, Epstein‐Barr virus (EBV) lytic infection has been shown to significantly contribute to carcinogenesis. Thus, therapies aimed at targeting the EBV lytic cycle have been developed as novel strategies for treatment of EBV‐associated malignancies. In this review, focusing on the viral lytic proteins, we describe recent advances regarding the involvement of the EBV lytic cycle in carcinogenesis. Moreover, we further discuss 2 distinct EBV lytic cycle‐targeted therapeutic strategies against EBV‐induced malignancies. One of the strategies involves inhibition of the EBV lytic cycle by natural compounds known to have anti‐EBV properties; another is to intentionally induce EBV lytic replication in combination with nucleotide analogues. Recent advances in EBV lytic‐based strategies are beginning to show promise in the treatment and/or prevention of EBV‐related tumors.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics, Hunan Province, Changsha, China
| |
Collapse
|
20
|
Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev 2018; 38:951-976. [PMID: 29350407 PMCID: PMC7168445 DOI: 10.1002/med.21484] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Viral infections cause many serious human diseases with high mortality rates. New drug‐resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti‐inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized.
Collapse
Affiliation(s)
- Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yufei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed Pharmacother 2017; 95:298-307. [PMID: 28850929 DOI: 10.1016/j.biopha.2017.08.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chemical composition, anti-proliferative and proapoptotic activity as well as the effect of various fractions of Lebanese propolis on the cell cycle distribution were evaluated on Jurkat leukemic T-cells, glioblastoma U251 cells, and breast adenocarcinoma MDA-MB-231 cells using cytotoxic assays, flow cytometry as well as western blot analysis. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that ferulic acid, chrysin, pinocembrin, galangin are major constituents of the ethanolic crude extract of the Lebanese propolis, while the hexane fraction mostly contains chrysin, pinocembrin, galangin but at similar levels. Furthermore chemical analysis was performed using gas chromatography-mass spectrometry (GC-MS) to identify major compounds in the hexane fraction. Reduction of cell viability was observed in Jurkat cells exposed to the ethanolic crude extract and the hexane fraction, while viability of U251 and MDA-MB-231 cells was only affected upon exposure to the hexane fraction; the other fractions (aqueous phase, methylene chloride, and ethyl acetate) were without effect. Maximum toxic effect was obtained when Jurkat cells were cultivated with 90μg/ml of both the crude extract and hexane faction. Toxicity started early after 24h of incubation and remained till 72h. Interestingly, the decrease in cell viability was accompanied by a significant increase in p53 protein expression levels and PARP cleavage. Cell cycle distribution showed an increase in the SubG0 fraction in Jurkat, U251 and MDA-MB-231 cells after 24h incubation with the hexane fraction. This increase in SubG0 was further investigated in Jurkat cells by annexinV/PI and showed an increase in the percentage of cells in early and late apoptosis as well as necrosis. In conclusion, Lebanese propolis exhibited significant cytotoxicity and anti-proliferative activity promising enough that warrant further investigations on the molecular targets and mechanisms of action of Lebanese propolis.
Collapse
|
22
|
EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget 2017; 7:18999-9017. [PMID: 26967558 PMCID: PMC4951347 DOI: 10.18632/oncotarget.7967] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx. Although a combination of radiotherapy with chemotherapy is effective for therapy, relapse and metastasis after remission remain major causes of mortality. Epstein-Barr virus (EBV) is believed to be one of causes of NPC development. We demonstrated previously that EBV reactivation is important for the carcinogenesis of NPC. We sought, therefore, to determine whether EBV reactivation can be a target for retardation of relapse of NPC. After screening, we found luteolin is able to inhibit EBV reactivation. It inhibited EBV lytic protein expression and repressed the promoter activities of two major immediate-early genes, Zta and Rta. Furthermore, luteolin was shown to reduce genomic instability induced by recurrent EBV reactivation in NPC cells. EBV reactivation-induced NPC cell proliferation and migration, as well as matrigel invasiveness, were also repressed by luteolin treatment. Tumorigenicity in mice, induced by EBV reactivation, was decreased profoundly following luteolin administration. Together, these results suggest that inhibition of EBV reactivation is a novel approach to prevent the relapse of NPC.
Collapse
|
23
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
24
|
Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res 2016; 132:99-110. [PMID: 27185626 DOI: 10.1016/j.antiviral.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
Abstract
The lytic reactivation of Epstein-Barr virus (EBV) has been reported to be strongly associated with several human diseases, including nasopharyngeal carcinoma (NPC). Inhibition of the EBV lytic cycle has been shown to be of great benefit in the treatment of EBV-associated diseases. The administration of dietary compounds is safer and more convenient than other approaches to preventing EBV reactivation. We screened several dietary compounds for their ability to inhibit EBV reactivation in NPC cells. Among them, the flavonoid luteolin showed significant inhibition of EBV reactivation. Luteolin inhibited protein expression from EBV lytic genes in EBV-positive epithelial and B cell lines. It also reduced the numbers of EBV-reactivating cells detected by immunofluorescence analysis and reduced the production of virion. Furthermore, luteolin reduced the activities of the promoters of the immediate-early genes Zta (Zp) and Rta (Rp) and also inhibited Sp1-luc activity, suggesting that disruption of Sp1 binding is involved in the inhibitory mechanism. CHIP analysis revealed that luteolin suppressed the activities of Zp and Rp by deregulating Sp1 binding. Taken together, luteolin inhibits EBV reactivation by repressing the promoter activities of Zp and Rp, suggesting luteolin is a potential dietary compound for prevention of virus infection.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ju Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
25
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
26
|
Activation and repression of Epstein-Barr Virus and Kaposi's sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol 2014; 88:8028-44. [PMID: 24807711 DOI: 10.1128/jvi.00722-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. Importance: Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process.
Collapse
|
27
|
Son M, Lee M, Sung GH, Lee T, Shin YS, Cho H, Lieberman PM, Kang H. Bioactive activities of natural products against herpesvirus infection. J Microbiol 2013; 51:545-51. [PMID: 24173639 DOI: 10.1007/s12275-013-3450-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022]
Abstract
More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.
Collapse
Affiliation(s)
- Myoungki Son
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, and Institute for Microorganisms, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brinley AA, Theriot CA, Nelman-Gonzalez M, Crucian B, Stowe RP, Barrett ADT, Pierson DL. Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. J Cell Biochem 2013; 114:616-24. [PMID: 22991253 DOI: 10.1002/jcb.24403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/11/2012] [Indexed: 01/24/2023]
Abstract
Epstein-Barr virus (EBV) is the causative agent of mononucleosis and is also associated with several malignancies, including Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, among others. EBV reactivates during spaceflight, with EBV shedding in saliva increasing to levels ten times those observed pre-and post-flight. Although stress has been shown to increase reactivation of EBV, other factors such as radiation and microgravity have been hypothesized to contribute to reactivation in space. We used a modeled spaceflight environment to evaluate the influence of radiation and microgravity on EBV reactivation. BJAB (EBV-negative) and Raji (EBV-positive) cell lines were assessed for viability/apoptosis, viral antigen and reactive oxygen species expression, and DNA damage and repair. EBV-infected cells did not experience decreased viability and increased apoptosis due to modeled spaceflight, whereas an EBV-negative cell line did, suggesting that EBV infection provided protection against apoptosis and cell death. Radiation was the major contributor to EBV ZEBRA upregulation. Combining modeled microgravity and radiation increased DNA damage and reactive oxygen species while modeled microgravity alone decreased DNA repair in Raji cells. Additionally, EBV-infected cells had increased DNA damage compared to EBV-negative cells. Since EBV-infected cells do not undergo apoptosis as readily as uninfected cells, it is possible that virus-infected cells in EBV seropositive individuals may have an increased risk to accumulate DNA damage during spaceflight. More studies are warranted to investigate this possibility.
Collapse
Affiliation(s)
- Alaina A Brinley
- Departments of Preventive Medicine, Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Gehrke ITS, Neto AT, Pedroso M, Mostardeiro CP, Da Cruz IBM, Silva UF, Ilha V, Dalcol II, Morel AF. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae). JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:486-491. [PMID: 23684720 DOI: 10.1016/j.jep.2013.04.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schinus lentiscifolius Marchand (syn. Schinus weinmannifolius Engl) is a plant native to Rio Grande do Sul (Southern Brazil) and has been used in Brazilian traditional medicine as antiseptic and antimicrobial for the treatment of many different health problems as well as to treat leucorrhea and to assist in ulcer and wound healing. Although it is a plant widely used by the population, there are no studies proving this popular use. MATERIAL AND METHODS The crude aqueous extract, the crude neutral methanol extract, fractions prepared from this extract (n-hexane, ethyl acetate, and n-butanol), pure compounds isolated from these fractions, and derivatives were investigated in vitro for antimicrobial activities against five Gram positive bacteria: Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Streptococcus pyogenes, three Gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, and Shigella sonnei, and four yeasts: Candida albicans, Candida tropicalis, Cryptococcus neoformans, and Saccharomyces cerevisiae. The isolated compound moronic acid, which is the most active, was tested against a range of other bacteria such as two Gram positive bacteria, namely, Bacillus cereus, Enterococcus spp, and six Gram negative bacteria, namely, Burkholderia cepacia, Providencia stuartii, Morganella morganii, Enterobacter cloacae, Enterobacter aerogenes, and Proteus mirabilis. RESULTS The leaf aqueous extract (decoction) of Schinus lentiscifolius showed a broad spectrum of antibacterial activity, ranging from 125 to 250 μg/ml (MIC) against the tested bacteria and fungi. The n-hexane extract, despite being very little active against bacteria, showed an excellent antifungal activity, especially against Candida albicans (MIC=25 μg/ml), Candida tropicalis (MIC=15.5 μg/ml), and Cryptococcus neoformans, (MIC=15.5 μg/ml). From the acetate fraction (the most active against bacteria), compounds 1-6 were isolated: nonadecanol (1), moronic acid (2), gallic acid methyl ester (3), gallic acid (4), quercetin (5) and quercitrin (6). The minimal inhibitory concentration (MIC) of moronic acid between 1.5 and 3 μg/ml against most of the tested bacteria shows that it is one of the metabolites responsible for the antibacterial activity of Schinus lentiscifolius. CONCLUSION The antimicrobial activity and some constituents of Schinus lentiscifolius are reported for the first time. The results of the present study provide scientific basis for the popular use of Schinus lentiscifolius for a number of different health problems.
Collapse
Affiliation(s)
- Ilaine T S Gehrke
- Center for Research in Natural Products (NPPN), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lima RT, Seca H, Palmeira A, Fernandes MX, Castro F, Correia-da-Silva M, Nascimento MSJ, Sousa E, Pinto M, Vasconcelos MH. Sulfated small molecules targeting eBV in Burkitt lymphoma: from in silico screening to the evidence of in vitro effect on viral episomal DNA. Chem Biol Drug Des 2013; 81:631-44. [PMID: 23350710 DOI: 10.1111/cbdd.12109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/13/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the world population. Following primary infection, Epstein-Barr virus persists in an asymptomatic latent state. Occasionally, it may switch to lytic infection. Latent EBV infection has been associated with several diseases, such as Burkitt lymphoma (BL). To date, there are no available drugs to target latent EBV, and the existing broad-spectrum antiviral drugs are mainly active against lytic viral infection. Thus, using computational molecular docking, a virtual screen of a library of small molecules, including xanthones and flavonoids (described with potential for antiviral activity against EBV), was carried out targeting EBV proteins. The more interesting molecules were selected for further computational analysis, and subsequently, the compounds were tested in the Raji (BL) cell line, to evaluate their activity against latent EBV. This work identified three novel sulfated small molecules capable of decreasing EBV levels in a BL. Therefore, the in silico screening presents a good approach for the development of new anti-EBV agents.
Collapse
Affiliation(s)
- Raquel T Lima
- Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 2013; 288:12866-79. [PMID: 23504328 DOI: 10.1074/jbc.m112.413393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes a transcription factor, Rta, which is required to activate the transcription of EBV lytic genes. This study demonstrates that treating P3HR1 cells with a proteasome inhibitor, MG132, causes the accumulation of SUMO-Rta and promotes the expression of EA-D. GST pulldown and coimmunoprecipitation studies reveal that RNF4, a RING-domain-containing ubiquitin E3 ligase, interacts with Rta. RNF4 also targets SUMO-2-conjugated Rta and promotes its ubiquitination in vitro. Additionally, SUMO interaction motifs in RNF4 are important to the ubiquitination of Rta because the RNF4 mutant with a mutation at the motifs eliminates ubiquitination. The mutation of four lysine residues on Rta that abrogated SUMO-3 conjugation to Rta also decreases the enhancement of the ubiquitination of Rta by RNF4. This finding demonstrates that RNF4 is a SUMO-targeted ubiquitin E3 ligase of Rta. Finally, knockdown of RNF4 enhances the expression of Rta and EA-D, subsequently promoting EBV lytic replication and virions production. Results of this study significantly contribute to efforts to elucidate a SUMO-targeted ubiquitin E3 ligase that regulates Rta ubiquitination to influence the lytic development of EBV.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Tung CP, Chang FR, Wu YC, Chuang DW, Hunyadi A, Liu ST. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J Gen Virol 2011; 92:1760-1768. [DOI: 10.1099/vir.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate–early stage of the lytic cycle to activate the transcription of early and late genes. This study finds that 0.31 mM protoapigenone from Thelypteris torresiana (Gaud.) inhibits the expression of EBV lytic proteins, including Rta, Zta, EA-D and VCA, in P3HR1 cells after lytic induction with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate. The lack of expression of EBV lytic proteins after protoapigenone treatment is attributed to the inhibition of the transactivation function of Zta because protoapigenone reduces the transactivation activity of Zta and Gal4–Zta, which contains the transactivation domain of Zta fused with Gal4. In contrast, protoapigenone does not affect the ability of Rta to activate a promoter that contains an Rta-response element, showing that the inhibition is unrelated to Rta. Furthermore, in a lactate dehydrogenase assay, protoapigenone is not toxic to P3HR1 cells at the concentrations that inhibit the function of Zta, showing that protoapigenone is valuable for studying the function of Zta and preventing EBV lytic proliferation.
Collapse
Affiliation(s)
- Chao-Ping Tung
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Da-Wei Chuang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Eotvos str. 6, H-6720 Szeged, Hungary
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan, ROC
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan 333, Taiwan, ROC
| |
Collapse
|