1
|
Wang LL, Alfson K, Eaton B, Mattix ME, Goez-Gazi Y, Holbrook MR, Carrion R, Xiang SH. Algal Lectin Griffithsin Inhibits Ebola Virus Infection. Molecules 2025; 30:892. [PMID: 40005201 PMCID: PMC11858388 DOI: 10.3390/molecules30040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Algal lectin Griffithsin (GRFT) is a well-known mannose-binding protein which has broad-spectrum antiviral activity against several important infectious viruses including HIV, HCV, and SARS-CoV-2. Therefore, GRFT has been brought great attention to antiviral therapeutic development. In this report, we have tested GRFT's activity against the lethal Ebola virus in vitro and in vivo. Our data have shown that the IC50 value is about 42 nM for inhibiting Zaire Ebola virus (EBOV) infection in vitro. The preliminary in vivo mice model using mouse-adapted EBOV has also shown a certain efficacy for delayed mortality compared to the control animals. A GRFT pull-down experiment using viral particles demonstrates that GRFT can bind to N-glycans of EBOV. Thus, it can be concluded that GRFT, through binding to viral glycans, may block Ebola virus infection and has potential for the treatment of Ebola virus disease (EVD).
Collapse
Affiliation(s)
- Leah Liu Wang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Kendra Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, 5920 Clubhouse Pointe Dr., Medina 44256, OH, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Michael R. Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, MD 21702, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA (Y.G.-G.)
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| |
Collapse
|
2
|
Wiggins J, Karim SU, Liu B, Li X, Zhou Y, Bai F, Yu J, Xiang SH. Identification of a Novel Antiviral Lectin against SARS-CoV-2 Omicron Variant from Shiitake-Mushroom-Derived Vesicle-like Nanoparticles. Viruses 2024; 16:1546. [PMID: 39459880 PMCID: PMC11512411 DOI: 10.3390/v16101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Lectins are a class of carbohydrate-binding proteins that may have antiviral activity by binding to the glycans on the virion surface to interfere with viral entry. We have identified a novel lectin (named Shictin) from Shiitake mushroom (Lentinula edodes)-derived vesicle-like nanoparticles (VLNs, or exosomes) that exhibits strong activity against the SARS-CoV-2 Omicron variant with an IC50 value of 87 nM. Shictin contains 298 amino acids and consists of two unique domains (N-terminal and C-terminal domain). The N-terminal domain is the carbohydrate-binding domain (CBD) that is homologous with CBDs of other lectins, suggesting that Shictin inhibits SARS-CoV-2 infection by binding to the glycans on the virion surface to prevent viral entry. This finding demonstrates that exosomes of vegetables are a valuable source for the identification of antiviral lectins. Therefore, it is believed that lectins from vegetable VLNs have potential as antiviral therapeutic agents.
Collapse
Affiliation(s)
- Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xingzhi Li
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Wang Z, Yang Z, Shishido M, Daoudi K, Hidaka M, Tateno H, Futai E, Ogawa T. Microcystis viridis NIES-102 Cyanobacteria Lectin (MVL) Interacts with SARS-CoV-2 Spike Protein Receptor Binding Domains (RBDs) via Protein-Protein Interaction. Int J Mol Sci 2024; 25:6696. [PMID: 38928400 PMCID: PMC11203576 DOI: 10.3390/ijms25126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of coronavirus disease 2019 (COVID-19) posed a major challenge to healthcare systems worldwide, especially as mutations in the culprit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) complicated the development of vaccines and antiviral drugs. Therefore, the search for natural products with broad anti-SARS-CoV-2 capabilities is an important option for the prevention and treatment of similar infectious diseases. Lectins, which are widely recognized as antiviral agents, could contribute to the development of anti-SARS-CoV-2 drugs. This study evaluated the binding affinity of six lectins (including the cyanobacterial lectin from Microcystis viridis NIES-102 (MVL), and Jacalin, a lectin from the breadfruit, Artocarpus altilis) to the receptor binding domain (RBD) of the spike protein on the original (wild) SARS-CoV-2 and three of its mutants: Alpha, Delta, and Omicron. MVL and Jacalin showed distinct binding affinity to the RBDs of the four SARS-CoV-2 strains. The remaining four lectins (DB1, ConA, PHA-M and CSL3) showed no such binding affinity. Although the glycan specificities of MVL and Jacalin were different, they showed the same affinity for the spike protein RBDs of the four SARS-CoV-2 strains, in the order of effectiveness Alpha > Delta > original > Omicron. The verification of glycan-specific inhibition revealed that both lectins bind to RBDs by glycan-specific recognition, but, in addition, MVL binds to RBDs through protein-protein interactions.
Collapse
Affiliation(s)
- Zhengguang Wang
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Zhihan Yang
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Mami Shishido
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Khadija Daoudi
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Masafumi Hidaka
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan;
| | - Eugene Futai
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| | - Tomohisa Ogawa
- Laboratory of Enzymology, Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan; (Z.W.); (Z.Y.); (M.S.); (K.D.); (M.H.); (E.F.)
| |
Collapse
|
4
|
Xavier G, Lima Farias de Sousa AC, Queiroz Dos Santos L, Aguiar D, Gonçalves E, Santos Siqueira A. Structural and functional analysis of Cyanovirin-N homologs: Carbohydrate binding affinities and antiviral potential of cyanobacterial peptides. J Mol Graph Model 2024; 129:108718. [PMID: 38382198 DOI: 10.1016/j.jmgm.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/23/2024]
Abstract
Cyanobacteria, a group of photosynthetic prokaryotes, can sinthesize several substances due to their secondary metabolism, with notable properties, such as Cyanovirin-N(CVN), a carbohydrate-binding lectin, that exhibits antiviral activity against several pathogens, due to its ability to bind viral surface carbohydrates such as mannose, thus interfering with the viral entry on the cell. CVN has been described in several cyanobacterial strains and shows biotechnological potential for the development of drugs of pharmaceutical interest. This study focuses on the genomic exploration and characterization of Cyanovirin-N homologs to assess the conservation of carbohydrate-binding affinity within the group. The analysis of their antiviral properties was carried out using bioinformatics tools to study protein models through an in silico pipeline, following the steps of genomic prospection on public databases, homology modeling, docking, molecular dynamics and energetic analysis. Mannose served as the reference ligand, and the lectins' binding affinity with mannose was assessed across Cyanovirin-N homologs. Genomic mining identified 33 cyanobacterial lectin sequences, which underwent structural and functional characterization. The results obtained from this work indicate strong carbohydrate affinity on several homologs, pointing to the conservation of antiviral properties alongside the group. However, this affinity was not uniformly distributed among sequences, exhibiting significant heterogeneity in binding site residues, suggesting potential multi-ligand binding capabilities on the Cyanovirin-N homologs group. Studies focused on the properties involved in these molecules and the investigation of the genetic diversity of Cyanovirin-N homologs could provide valuable insights into the discovery of new drug candidates, harvesting the potential of bioinformatics for large-scale functional and structural analysis.
Collapse
Affiliation(s)
- Gabriel Xavier
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém-PA, Brazil.
| | | | - Larissa Queiroz Dos Santos
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém-PA, Brazil
| | - Délia Aguiar
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém-PA, Brazil
| | - Evonnildo Gonçalves
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém-PA, Brazil
| | - Andrei Santos Siqueira
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém-PA, Brazil
| |
Collapse
|
5
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
6
|
Loffredo MR, Nencioni L, Mangoni ML, Casciaro B. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. J Pept Sci 2024; 30:e3534. [PMID: 37501572 DOI: 10.1002/psc.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Gonçalves CDCS, Barros MGA, Bilha JK, Ottoni JR, Uliana MP, Passarini MR. Pharmacological potential of cyanobacteria secondary metabolites. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:385-409. [DOI: 10.1016/b978-0-443-22214-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Akmukhanova NR, Leong YK, Seiilbek SN, Konysbay A, Zayadan BK, Sadvakasova AK, Sarsekeyeva FK, Bauenova MO, Bolatkhan K, Alharby HF, Chang JS, Allakhverdiev SI. Eco-friendly biopesticides derived from CO 2-Fixing cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 239:117419. [PMID: 37852466 DOI: 10.1016/j.envres.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.
Collapse
Affiliation(s)
- Nurziya R Akmukhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Sandugash N Seiilbek
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Aigerim Konysbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Fariza K Sarsekeyeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
9
|
Wiggins J, Nguyen N, Wei W, Wang LL, Hollingsead Olson H, Xiang SH. Lactic acid bacterial surface display of scytovirin inhibitors for anti-ebolavirus infection. Front Microbiol 2023; 14:1269869. [PMID: 38075878 PMCID: PMC10704896 DOI: 10.3389/fmicb.2023.1269869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 02/12/2024] Open
Abstract
Scytovirin (SVN) is a lectin from cyanobacteria which has a strong inhibitory activity against Ebola virus infection. We engineered scytovirin as the inhibitor for surface display of lactic acid bacteria to block Ebola virus infection. Two different bacterial strains (Lactobacillus casei and Lactococcus lactis) were successfully engineered for scytovirin expression on the bacterial surface. These bacteria were found to be effective at neutralizing pseudotyped Ebolavirus in a cell-based assay. This approach can be utilized for prophylactic prevention, as well as for treatment. Since lactic acid bacteria can colonize the human body, a long-term efficacy could be achieved. Furthermore, this approach is also simple and cost-effective and can be easily applied in the regions of Ebola outbreaks in the developing countries.
Collapse
Affiliation(s)
- Joshua Wiggins
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ngan Nguyen
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wenzhong Wei
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Leah Liu Wang
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Haley Hollingsead Olson
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, Lincoln, NE, United States
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
10
|
Cock IE, Cheesman MJ. A Review of the Antimicrobial Properties of Cyanobacterial Natural Products. Molecules 2023; 28:7127. [PMID: 37894609 PMCID: PMC10608859 DOI: 10.3390/molecules28207127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multiple-drug-resistant pathogens has prompted medical research toward the development of new and effective antimicrobial therapies. Much research into novel antibiotics has focused on bacterial and fungal compounds, and on chemical modification of existing compounds to increase their efficacy or reactivate their antimicrobial properties. In contrast, cyanobacteria have been relatively overlooked for antibiotic discovery, and much more work is required. This may be because some cyanobacterial species produce environmental toxins, leading to concerns about the safety of cyanobacterial compounds in therapy. Despite this, several cyanobacterial-derived compounds have been identified with noteworthy inhibitory activity against bacterial, fungal and protozoal growth, as well as viral replication. Additionally, many of these compounds have relatively low toxicity and are therefore relevant targets for drug development. Of particular note, several linear and heterocyclic peptides and depsipeptides with potent activity and good safety indexes have been identified and are undergoing development as antimicrobial chemotherapies. However, substantial further studies are required to identify and screen the myriad other cyanobacterial-derived compounds to evaluate their therapeutic potential. This study reviews the known phytochemistry of cyanobacteria, and where relevant, the effects of those compounds against bacterial, fungal, protozoal and viral pathogens, with the aim of highlighting gaps in the literature and focusing future studies in this field.
Collapse
Affiliation(s)
- Ian E. Cock
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, QLD 4111, Australia
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia;
| |
Collapse
|
11
|
Alvarez C, Félix C, Lemos MFL. The Antiviral Potential of Algal Lectins. Mar Drugs 2023; 21:515. [PMID: 37888450 PMCID: PMC10608189 DOI: 10.3390/md21100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Collapse
Affiliation(s)
| | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (C.A.); (C.F.)
| |
Collapse
|
12
|
Singh U, Gandhi HA, Bhattacharya J, Tandon R, Tiwari GL, Tandon R. Cyanometabolites: molecules with immense antiviral potential. Arch Microbiol 2023; 205:164. [PMID: 37012452 PMCID: PMC10069739 DOI: 10.1007/s00203-023-03514-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Cyanometabolites are active compounds derived from cyanobacteria that include small low molecular weight peptides, oligosaccharides, lectins, phenols, fatty acids, and alkaloids. Some of these compounds may pose a threat to human and environment. However, majority of them are known to have various health benefits with antiviral properties against pathogenic viruses including Human immunodeficiency virus (HIV), Ebola virus (EBOV), Herpes simplex virus (HSV), Influenza A virus (IAV) etc. Cyanometabolites classified as lectins include scytovirin (SVN), Oscillatoria agardhii agglutinin (OAAH), cyanovirin-N (CV-N), Microcystis viridis lectin (MVL), and microvirin (MVN) also possess a potent antiviral activity against viral diseases with unique properties to recognize different viral epitopes. Studies showed that a small linear peptide, microginin FR1, isolated from a water bloom of Microcystis species, inhibits angiotensin-converting enzyme (ACE), making it useful for the treatment of coronavirus disease 2019 (COVID-19). Our review provides an overview of the antiviral properties of cyanobacteria from the late 90s till now and emphasizes the significance of their metabolites in combating viral diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has received limited attention in previous publications. The enormous medicinal potential of cyanobacteria is also emphasized in this review, which justifies their use as a dietary supplement to fend off pandemics in future.
Collapse
Affiliation(s)
- Uma Singh
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Harsh A Gandhi
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jaydeep Bhattacharya
- Nanobiotechnology Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - G L Tiwari
- Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Richa Tandon
- Department of Botany, S. S. Khanna Girls Degree College, University of Allahabad, Prayagraj, 211003, India.
| |
Collapse
|
13
|
Salampe M, Mamada SS, Evary YM, Mitra S, Bin Emran T, Harapan H, Nainu F, Simal-Gandara J. Promising Marine Natural Products for Tackling Viral Outbreaks: A Focus on Possible Targets and Structure-activity Relationship. Curr Top Med Chem 2023; 23:1352-1379. [PMID: 36045529 DOI: 10.2174/1568026622666220831114838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
Abstract
Recently, people worldwide have experienced several outbreaks caused by viruses that have attracted much interest globally, such as HIV, Zika, Ebola, and the one being faced, SARSCoV- 2 viruses. Unfortunately, the availability of drugs giving satisfying outcomes in curing those diseases is limited. Therefore, it is necessary to dig deeper to provide compounds that can tackle the causative viruses. Meanwhile, the efforts to explore marine natural products have been gaining great interest as the products have consistently shown several promising biological activities, including antiviral activity. This review summarizes some products extracted from marine organisms, such as seaweeds, seagrasses, sponges, and marine bacteria, reported in recent years to have potential antiviral activities tested through several methods. The mechanisms by which those compounds exert their antiviral effects are also described here, with several main mechanisms closely associated with the ability of the products to block the entry of the viruses into the host cells, inhibiting replication or transcription of the viral genetic material, and disturbing the assembly of viral components. In addition, the structure-activity relationship of the compounds is also highlighted by focusing on six groups of marine compounds, namely sulfated polysaccharides, phlorotannins, terpenoids, lectins, alkaloids, and flavonoids. In conclusion, due to their uniqueness compared to substances extracted from terrestrial sources, marine organisms provide abundant products having promising activities as antiviral agents that can be explored to tackle virus-caused outbreaks.
Collapse
Affiliation(s)
| | - Sukamto Salang Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Yayu Mulsiani Evary
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka ,1207, Bangladesh
| | - Harapan Harapan
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
14
|
Kar J, Ramrao DP, Zomuansangi R, Lalbiaktluangi C, Singh SM, Joshi NC, Kumar A, Kaushalendra, Mehta S, Yadav MK, Singh PK. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol 2022; 13:1034471. [PMID: 36466636 PMCID: PMC9717611 DOI: 10.3389/fmicb.2022.1034471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2023] Open
Abstract
Cyanobacterial species are ancient photodiazotrophs prevalent in freshwater bodies and a natural reservoir of many metabolites (low to high molecular weight) such as non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids, cyanotoxins, and isoprenoids with a well-established bioactivity potential. These metabolites enable cyanobacterial survival in extreme environments such as high salinity, heavy metals, cold, UV-B, etc. Recently, these metabolites are gaining the attention of researchers across the globe because of their tremendous applications as antimicrobial agents. Many reports claim the antimicrobial nature of these metabolites; unfortunately, the mode of action of such metabolites is not well understood and/or known limited. Henceforth, this review focuses on the properties and potential application, also critically highlighting the possible mechanism of action of these metabolites to offer further translational research. The review also aims to provide a comprehensive insight into current gaps in research on cyanobacterial biology as antimicrobials and hopes to shed light on the importance of continuing research on cyanobacteria metabolites in the search for novel antimicrobials.
Collapse
Affiliation(s)
- Joyeeta Kar
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Devde Pandurang Ramrao
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Ruth Zomuansangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - C. Lalbiaktluangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Shiv Mohan Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology (AIMT), Amity University, Noida, Uttar Pradesh, India
| | - Ajay Kumar
- Agriculture Research Organization (ARO) - The Volcani Center, Rishon LeZion, Israel
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | | - Mukesh Kumar Yadav
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| |
Collapse
|
15
|
Al-Khayri JM, Asghar W, Khan S, Akhtar A, Ayub H, Khalid N, Alessa FM, Al-Mssallem MQ, Rezk AAS, Shehata WF. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Mar Drugs 2022; 20:md20080477. [PMID: 35892945 PMCID: PMC9394390 DOI: 10.3390/md20080477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is a chronic and potentially fatal ailment caused by the human immunodeficiency virus (HIV) and remains a major health problem worldwide. In recent years, the research focus has shifted to a greater emphasis on complementing treatment regimens involving conventional antiretroviral (ARV) drug therapies with novel lead structures isolated from various marine organisms that have the potential to be utilized as therapeutics for the management of HIV-AIDS. The present review summarizes the recent developments regarding bioactive peptides sourced from various marine organisms. This includes a discussion encompassing the potential of these novel marine bioactive peptides with regard to antiretroviral activities against HIV, preparation, purification, and processing techniques, in addition to insight into the future trends with an emphasis on the potential of exploration and evaluation of novel peptides to be developed into effective antiretroviral drugs.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Haris Ayub
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Adel Abdel-Sabour Rezk
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| | - Wael Fathi Shehata
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| |
Collapse
|
16
|
Saad MH, Sidkey NM, Khan RH, El-Fakharany EM. Nostoc muscorum is a novel source of microalgal lectins with potent antiviral activity against herpes simplex type-1. Int J Biol Macromol 2022; 210:415-429. [PMID: 35504413 DOI: 10.1016/j.ijbiomac.2022.04.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
Abstract
In our survey for a new antiviral agent, two types of lectin were purified from Nostoc muscorum using both ion-exchange and affinity columns chromatography. Nostoc muscorum lectins (NMLs) are categorized based on their carbohydrate preference. Nostoc muscorum lectin-1(NML-1) exhibited a strict binding specificity for complex glycoproteins without linked carbohydrates, and the other displayed specificity for α- glycosides mannose polymers (NML-2) and was classified as a glycoprotein with 16.8% linked carbohydrates. NML-1 displayed a single band of 166 kDa on native-PAGE and two bands of 81 kDa and 85 kDa on SDS-PAGE, which confirmed the heterodimeric nature of this lectin. While NML-2 is a 50 kDa glycoprotein composed of 25 kDa subunits. Physical characterization of NML-1 displayed its stability at a higher temperature of 90 °C for 5 min and over a wide pH range (4-9), while MNL-2 displayed stability up to a temperature of 80 °C for 25 min and a pH range of 5-8. NML-1 didn't require metal ions for agglutination activity, while the activity of NML-2 was doubled by manganese ions. The antiviral activity of two lectins was assessed against herpes simplex type-1 (HSV-1) using a plaque assay which revealed that NML-1 inhibited HSV-1 infection at an early stage in contrast to NML-2 which exerted its antiviral effect at the late stage of infection. These results suggest that Nostoc muscorum is a unique lead for antiviral drug discovery as it is a novel source for antiviral lectins with different modes of action.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt; Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt.
| |
Collapse
|
17
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
18
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
19
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 2022; 40:3560-3580. [PMID: 33200676 DOI: 10.1080/07391102.2020.1848632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
Abstract
A novel lectin was purified from newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1 using affinity chromatography with a molecular weight of 120 kDa under native-PAGE and 30 kDa on reducing-PAGE, represented tetramer nature of this lectin. Oscillatorial lectin showed stability at 60 °C for 30 min, pH-dependent, with the highest activities over the pH range of 6-8, and required zinc ions to express its full activity. Oscillatorial lectin is a glycan-binding protein with a neutral carbohydrate content of 7.0% as evaluated by the phenol-sulfuric acid method. Polyols and α- glycosides polymer of mannose sugar or sugars alcohol were completely inhibited oscillatorial lectin with MIC of 0.195 mM, while β-glycosides sugars did not show any inhibition effect. The oscillatorial lectin has anti-proliferative activity against Huh-7 and MCF-7 cancer cells and inhibited their proliferation with EC50 values of 106.75 µg/ml and 254.14 µg/ml, respectively. Besides the anticancer effect, oscillatorial lectin also has potent antiviral activity against HSV-1 in a dose-dependent manner via virions neutralization and inhibition of viral replication with IC50 values of 90.95 ng/ml and 131.3 ng/ml, respectively. The unique carbohydrate affinity of oscillatorial lectin provides insight into its use as a promising candidate in many biotechnological applications, like fighting viral infection and combating cancer disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
20
|
Verma S, Thapa S, Siddiqui N, Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World J Microbiol Biotechnol 2022; 38:100. [PMID: 35486205 DOI: 10.1007/s11274-022-03285-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes responsible for the oxygenation of the earth's reducing atmosphere. Apart from oxygen they are producers of a myriad of bioactive metabolites with diverse complex chemical structures and robust biological activities. These secondary metabolites are known to have a variety of medicinal and therapeutic applications ranging from anti-microbial, anti-viral, anti-inflammatory, anti-cancer, and immunomodulating properties. The present review discusses various aspects of secondary metabolites viz. biosynthesis, types and applications, which highlights the repertoire of bioactive constituents they harbor. Majority of these products have been produced from only a handful of genera. Moreover, with the onset of various OMICS approaches, cyanobacteria have become an attractive chassis for improved secondary metabolites production. Also the intervention of synthetic biology tools such as gene editing technologies and a variety of metabolomics and fluxomics approaches, used for engineering cyanobacteria, have significantly enhanced the production of secondary metabolites.
Collapse
Affiliation(s)
- Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.,Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kushmaur, Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
21
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2022; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
22
|
Armario-Najera V, Blanco-Perera A, Shenoy SR, Sun Y, Marfil S, Muñoz-Basagoiti J, Perez-Zsolt D, Blanco J, Izquierdo-Useros N, Capell T, O'Keefe BR, Christou P. Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. PLANT CELL REPORTS 2022; 41:1013-1023. [PMID: 35178612 PMCID: PMC9034974 DOI: 10.1007/s00299-022-02834-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.
Collapse
Affiliation(s)
- Victoria Armario-Najera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Amaya Blanco-Perera
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Shilpa R Shenoy
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, 21702, USA
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Yi Sun
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
- Chair of AIDS and Related Diseases, University of Vic-Central University of Catalonia, 08500, Vic, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA.
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering, University of Lleida-Agrotecnio CERCA Center, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
23
|
Prabhu S, Vijayakumar S, Praseetha P. Cyanobacterial metabolites as novel drug candidates in corona viral therapies: A review. Chronic Dis Transl Med 2022; 8:172-183. [PMID: 35572950 PMCID: PMC9086949 DOI: 10.1002/cdt3.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
Most of the medical and nonmedical research labs, all around the world, are racing against time to produce an effective vaccine or an antiviral medicine for coronavirus disease 2019 (COVID‐19). Conventional medicines and novel nano‐materials including chemical and herbal‐based compounds are all into positive trials toward coronaviruses and other pandemic infections. Among them, natural immune boosters have attracted physicians because of their longevity and reliability for fewer side effects. This is a review article with a detailed picture of an unexplored antiviral source with maximum potency in curing viral infections. Cyanobacteriae have been known for centuries and are rich in secondary metabolites of proteins, biopeptides, and polysaccharides for prominent antiviral action against chest infections. But detailed exploratory research is required to purify, scale‐up, and commercialize the pharmacologically active agents from these drug reserves.
Collapse
Affiliation(s)
- Srinivasan Prabhu
- Department of Botany Annai Vailankanni Arts and Science College Thanjavur Tamil Nadu India
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Subramaniyan Vijayakumar
- Department of Botany A.V.V.M Sri Pushpam College, Poondi (Affiliated to Bharathidasan University) Thanjavur Tamil Nadu India
| | - Pabakaran Praseetha
- Department of Nanotechnology Noorul Islam Centre for Higher Education Kumaracoil Tamil Nadu India
| |
Collapse
|
24
|
Ahirwar A, Kesharwani K, Deka R, Muthukumar S, Khan MJ, Rai A, Vinayak V, Varjani S, Joshi KB, Morjaria S. Microalgal drugs: A promising therapeutic reserve for the future. J Biotechnol 2022; 349:32-46. [PMID: 35339574 DOI: 10.1016/j.jbiotec.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
Over the decades, a variety of chemically synthesized drugs are being used to cure existing diseases but often these drugs could not be effectively employed for the treatment of serious and newly emerging diseases. Fortunately, in nature there occurs immense treasure of plants and microorganisms which are living jewels with respect to their richness of medically important metabolites of high value. Hence, amongst the existing microorganism(s), the marine world offers a plethora of biological entities that can contribute to alleviate numerous human ailments. Algae are one such photosynthetic microorganism found in both marine as well as fresh water which are rich source of metabolites known for their nutrient content and health benefits. Various algal species like Haematococcus, Diatoms, Griffithsia, Chlorella, Spirulina, Ulva, etc. have been identified and isolated to produce biologically active and pharmaceutically important high value compounds like astaxanthin, fucoxanthin, sulphur polysaccharides mainly galactose, rhamnose, xylose, fucose etc., which show antimicrobial, antifungal, anti-cancer, and antiviral activities. However, the production of either of these bio compounds is favored under conditions of stress. This review gives detailed information on various nutraceutical metabolites extracted from algae. Additionally focus has been made on the role of these bio compounds extracted from algae especially sulphur polysaccharides to treat several diseases with prospective treatment for SARS-CoV-2. Lastly it covers the knowledge gaps and future perspectives in this area of research.
Collapse
Affiliation(s)
- Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Rahul Deka
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shreya Muthukumar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Anshuman Rai
- MMU, Deemed University, School of Engineering, Department of Biotechnology, Ambala, Haryana, 133203, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| | - Shruti Morjaria
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar (MP) 470003, India
| |
Collapse
|
25
|
Algal Metabolites Can Be an Immune Booster against COVID-19 Pandemic. Antioxidants (Basel) 2022; 11:antiox11030452. [PMID: 35326102 PMCID: PMC8944855 DOI: 10.3390/antiox11030452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists’ interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.
Collapse
|
26
|
Cyanobacteria and Algae-Derived Bioactive Metabolites as Antiviral Agents: Evidence, Mode of Action, and Scope for Further Expansion; A Comprehensive Review in Light of the SARS-CoV-2 Outbreak. Antioxidants (Basel) 2022; 11:antiox11020354. [PMID: 35204236 PMCID: PMC8868401 DOI: 10.3390/antiox11020354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19—a severe acute respiratory syndrome disease caused by coronavirus 2 (SARS-CoV-2)—has recently attracted global attention, due to its devastating impact, to the point of being declared a pandemic. The search for new natural therapeutic drugs is mandatory, as the screening of already-known antiviral drugs so far has led to poor results. Several species of marine algae have been reported as sources of bioactive metabolites with potential antiviral and immunomodulatory activities, among others. Some of these bioactive metabolites might be able to act as antimicrobial drugs and also against viral infections by inhibiting their replication. Moreover, they could also trigger immunity against viral infection in humans and could be used as protective agents against COVID-In this context, this article reviews the main antiviral activities of bioactive metabolites from marine algae and their potential exploitation as anti-SARS-CoV-2 drugs.
Collapse
|
27
|
Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Cells 2022; 11:cells11030339. [PMID: 35159151 PMCID: PMC8834014 DOI: 10.3390/cells11030339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic enveloped viruses are covered with a glycan shield that provides a dual function: the glycan structures contribute to virus protection as well as host cell recognition. The three classical types of N-glycans, in particular complex glycans, high-mannose glycans, and hybrid glycans, together with some O-glycans, participate in the glycan shield of the Ebola virus, influenza virus, human cytomegalovirus, herpes virus, human immunodeficiency virus, Lassa virus, and MERS-CoV, SARS-CoV, and SARS-CoV-2, which are responsible for respiratory syndromes. The glycans are linked to glycoproteins that occur as metastable prefusion glycoproteins on the surface of infectious virions such as gp120 of HIV, hemagglutinin of influenza, or spike proteins of beta-coronaviruses. Plant lectins with different carbohydrate-binding specificities and, especially, mannose-specific lectins from the Vicieae tribe, such as pea lectin and lentil lectin, can be used as glycan probes for targeting the glycan shield because of their specific interaction with the α1,6-fucosylated core Man3GlcNAc2, which predominantly occurs in complex and hybrid glycans. Other plant lectins with Neu5Ac specificity or GalNAc/T/Tn specificity can also serve as potential glycan probes for the often sialylated complex glycans and truncated O-glycans, respectively, which are abundantly distributed in the glycan shield of enveloped viruses. The biomedical and therapeutical potential of plant lectins as antiviral drugs is discussed.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Els J. M. Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Bernard Klonjkowski
- UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Jan Sudor
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, F-31062 Toulouse, France; (A.B.); (M.S.); (J.S.); (H.B.)
- Correspondence: ; Tel.: +33-069-552-0851
| |
Collapse
|
28
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
29
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
30
|
Abstract
Cyanobacteria constitute an interesting group of photosynthetic microorganisms due to their morphological and genetic diversity that is related to their extremely long evolution process, which created the need for them to adapt to immensely heterogeneous environmental conditions. Cyanobacteria grow in salt and fresh waters as well as on the surface of soils and rocks. The diverse cell structure is characterized by the fact that they occur in many morphological forms, from small single cells through to larger ones as well as branches, threads, or spirals. Taking into account the presence of cyanobacteria in virtually all possible conditions and places on Earth, cyanobacteria represent an unexplored potential that is worth investigating. This review presents the possibilities of using algae in chosen areas of biotechnology: e.g., as biocatalysts or in industries such as the pharmaceutical industry. It covers the characteristics of secondary metabolites along with their division and the potential of using them as sources of effective drugs for many diseases. It presents an overview of the possibilities of using cyanobacteria in biotransformation processes. These processes are of great importance in the case of, for example, the neutralization of municipal, industrial, or chemical waste, the amount of which is constantly growing every year, and they are also an easier and cheaper path to obtain chemical compounds.
Collapse
|
31
|
Chettri D, Boro M, Sarkar L, Verma AK. Lectins: Biological significance to biotechnological application. Carbohydr Res 2021; 506:108367. [PMID: 34130214 DOI: 10.1016/j.carres.2021.108367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Lectins are a set of non-enzymatic carbohydrate binding proteins appearing in all domains of life. They function to recognize, interact and bring about reversible binding of a specific sugar moiety present in a molecule. Since glycans are ubiquitous in nature and are an essential part of various biological process, the lectins are been investigated to understand the profile of these versatile but complex glycan molecule. The knowledge gained can be used to explore and streamline the various mechanisms involving glycans and their conjugates. Thus, lectins have gained importance in carbohydrate-protein interactions contributing to the development in the field of glycobiology. This has led to a deeper understanding of the importance of saccharide recognition in life. Since their discovery, the lectins have become a great choice of research in the field of glycobiology and their biological significances have recently received considerable attention in the biocontrol field as well as medical sectors.
Collapse
Affiliation(s)
| | - Manswama Boro
- Department of Microbiology, Sikkim University, India.
| | - Lija Sarkar
- Department of Microbiology, Sikkim University, India.
| | | |
Collapse
|
32
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
33
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
34
|
Sangtani R, Ghosh A, Jha HC, Parmar HS, Bala K. Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. Phytother Res 2021; 35:2296-2316. [PMID: 33210447 PMCID: PMC7753317 DOI: 10.1002/ptr.6948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. Till October 19, 2020, total confirmed patients of COVID-19 are 39,944,882, whereas 1,111,998 people died across the globe. Till to date, we do not have any specific medicine and/or vaccine to treat COVID-19; however, research is still going on at war footing. So far vaccine development is concerned, here it is noteworthy that till now three major variants (named A, B, and C) of severe acute respiratory syndrome-coronavirus2 (SARS-CoV-2) have been recognized. Increased mutational rate and formation of new viral variants may increase the attrition rate of vaccines and/or candidate chemotherapies. Herbal remedies are chemical cocktails, thus open another avenue for effective antiviral therapeutics development. In fact, India is a large country, which is densely populated, but the overall severity of COVID-19 per million populations is lesser than any other country of the world. One of the major reasons for the aforesaid difference is the use of herbal remedies by the Government of India as a preventive measure for COVID-19. Therefore, the present review focuses on the epidemiology and molecular pathogenesis of COVID-19 and explores algal metabolites for their antiviral properties.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Atreyee Ghosh
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Hem C. Jha
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | | | - Kiran Bala
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| |
Collapse
|
35
|
Alam MA, Parra-Saldivar R, Bilal M, Afroze CA, Ahmed MN, Iqbal HM, Xu J. Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2. Molecules 2021; 26:2134. [PMID: 33917694 PMCID: PMC8068085 DOI: 10.3390/molecules26082134] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to tackle COVID-19. The ocean is an immense source of biologically active molecules and/or compounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some specific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 disease. Algae have successfully synthesized several metabolites as natural defense compounds that enable them to survive under extreme environments. Several algae-derived bioactive molecules and/or compounds can be used against many diseases, including microbial and viral infections. Moreover, some algae species can also improve immunity and suppress human viral activity. Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived, biologically active molecules that could be used against this disease by looking at their natural sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts.
Collapse
Affiliation(s)
- Md. Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Chowdhury Alfi Afroze
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh;
| | - Md. Nasir Ahmed
- Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka 1209, Bangladesh;
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
36
|
Antiviral Cyanometabolites-A Review. Biomolecules 2021; 11:biom11030474. [PMID: 33810129 PMCID: PMC8004682 DOI: 10.3390/biom11030474] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system’s response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.
Collapse
|
37
|
Sami N, Ahmad R, Fatma T. Exploring algae and cyanobacteria as a promising natural source of antiviral drug against SARS-CoV-2. Biomed J 2021; 44:54-62. [PMID: 33640332 PMCID: PMC7836382 DOI: 10.1016/j.bj.2020.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The present outburst of coronavirus-associated (SARS-CoV-2) acute respiratory disease coronavirus disease 19 (COVID-19) in December 2019 in Wuhan, China is the third recognised spill over due to the zoonotic transmission. SARS-CoVs are about 29.7 kb positive, single stranded (ss) RNA viruses that are considered as zoonotic pathogens, bat being their natural reservoirs and also shows transmission within humans. The rapidly increasing COVID-19 cases and need of best and efficient drug/vaccine/strategy to counteract the virus entry and its pathogenesis has made it a Herculean challenge for scientists. Synthetic drugs associated complications has attracted scientific attention for natural product-based drugs. Chemo-diversity of algae and cyanobacteria offers a novel approach and can be recognized as a relevant source for developing a future natural "antiviral drug". The aim of this review is to highlight important features of SARS-CoV-2/COVID-19 and the antiviral compounds recognized in algae and cyanobacteria, with their mechanisms of actions. Algae possess both immunity improving capacity and suppresses many viruses. Thus, they can be recommended as a preventive and curative remedy against SARS-CoV-2.
Collapse
Affiliation(s)
- Neha Sami
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rakhshan Ahmad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
38
|
COVID-19 Crisis: How Can Plant Biotechnology Help? PLANTS 2021; 10:plants10020352. [PMID: 33673316 PMCID: PMC7917634 DOI: 10.3390/plants10020352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
The emergence of the COVID-19 pandemic has led to significant public health crisis all over the world. The rapid spreading nature and high mortality rate of COVID-19 places a huge pressure on scientists to develop effective diagnostics and therapeutics to control the pandemic. Some scientists working on plant biotechnology together with commercial enterprises for the emergency manufacturing of diagnostics and therapeutics have aimed to fulfill the rapid demand for SARS-CoV-2 protein antigen and antibody through a rapid, scalable technology known as transient/stable expression in plants. Plant biotechnology using transient/stable expression offers a rapid solution to address this crisis through the production of low-cost diagnostics, antiviral drugs, immunotherapy, and vaccines. Transient/stable expression technology for manufacturing plant-based biopharmaceuticals is already established at commercial scale. Here, current opinions regarding how plant biotechnology can help fight against COVID-19 through the production of low-cost diagnostics and therapeutics are discussed.
Collapse
|
39
|
Antiviral Potential of Algal Metabolites-A Comprehensive Review. Mar Drugs 2021; 19:md19020094. [PMID: 33562153 PMCID: PMC7914423 DOI: 10.3390/md19020094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Historically, algae have stimulated significant economic interest particularly as a source of fertilizers, feeds, foods and pharmaceutical precursors. However, there is increasing interest in exploiting algal diversity for their antiviral potential. Here, we present an overview of 50-years of scientific and technological developments in the field of algae antivirals. After bibliometric analysis of 999 scientific references, a survey of 16 clinical trials and analysis of 84 patents, it was possible to identify the dominant algae, molecules and viruses that have been shaping and driving this promising field of research. A description of the most promising discoveries is presented according to molecule class. We observed a diverse range of algae and respective molecules displaying significant antiviral effects against an equally diverse range of viruses. Some natural algae molecules, like carrageenan, cyanovirin or griffithsin, are now considered prime reference molecules for their outstanding antiviral capacity. Crucially, while many algae antiviral applications have already reached successful commercialization, the large spectrum of algae antiviral capacities already identified suggests a strong potential for future expansion of this field.
Collapse
|
40
|
Carpine R, Sieber S. Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
El-Fakharany EM, Saad MH, Salem MS, Sidkey NM. Biochemical characterization and application of a novel lectin from the cyanobacterium Lyngabya confervoides MK012409 as an antiviral and anticancer agent. Int J Biol Macromol 2020; 161:417-430. [PMID: 32526302 DOI: 10.1016/j.ijbiomac.2020.06.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
In the present study, a novel lectin was purified from the newly isolated cyanobacterium, Lyngabya confervoides MK012409 and tested for its antiviral and anticancer activity. Out of 30 isolates, Mabroka-s isolate which identified as Lyngabya confervoides MK012409 showed the highest agglutination titer. Lyngabyal lectin showed the greatest haemagglutination activity with pigeon/rabbit erythrocytes with a minimum concentration of 2.4 μg/ml. Physical characterization of Lyngabyal lectin showed ability to keep the activity at a higher temperature up to 80 °C with stability over a wide pH range (4-8) as well as its stability toward chemical denaturants. Carbohydrate specificity test revealed that the sugar alcohols completely inhibited the lectin haemagglutination activity. The electrophoretic analysis revealed that the lyngabyal lectin is a 140 kDa composed of two 70 kDa subunits. Lyngabyal lectin was able to inhibit the proliferation of MCF-7 and Caco-2 cancer cell lines with IC50 values of 246 ± 0.17 and 376.4 ± 0.34 μg/ml, respectively. Lyngabyal lectin also showed virucidal activity against HSV-1 with EC50 of 167 ± 0.52 ng/ml and inhibited plaque formation in the HSV-1 infected Vero cells with EC50 of 84.94 ± 0.34 ng/ml. These findings emphasize the ability of the lyngabyal lectin to fight breast and colon cancer besides it represents a promising antiviral agent.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt.
| | - Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab 21934, Alexandria, Egypt; Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Egypt
| |
Collapse
|
42
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
43
|
Capell T, Twyman RM, Armario-Najera V, Ma JKC, Schillberg S, Christou P. Potential Applications of Plant Biotechnology against SARS-CoV-2. TRENDS IN PLANT SCIENCE 2020; 25:635-643. [PMID: 32371057 PMCID: PMC7181989 DOI: 10.1016/j.tplants.2020.04.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for an ongoing human pandemic (COVID-19). There is a massive international effort underway to develop diagnostic reagents, vaccines, and antiviral drugs in a bid to slow down the spread of the disease and save lives. One part of that international effort involves the research community working with plants, bringing researchers from all over the world together with commercial enterprises to achieve the rapid supply of protein antigens and antibodies for diagnostic kits, and scalable production systems for the emergency manufacturing of vaccines and antiviral drugs. Here, we look at some of the ways in which plants can and are being used in the fight against COVID-19.
Collapse
Affiliation(s)
- Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | | | - Victoria Armario-Najera
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Julian K-C Ma
- Institute for Infection and Immunity, St George's University of London, London, UK.
| | | | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluıís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
44
|
de Oliveira DT, da Costa AAF, Costa FF, da Rocha Filho GN, do Nascimento LAS. Advances in the Biotechnological Potential of Brazilian Marine Microalgae and Cyanobacteria. Molecules 2020; 25:molecules25122908. [PMID: 32599827 PMCID: PMC7356545 DOI: 10.3390/molecules25122908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Due the worldwide need to improve care for the environment and people, there is a great demand for the development of new renewable, sustainable, and less polluting technologies for food, health, and environmental industries. The marine environment is one of the main areas investigated in the search for alternatives to the raw materials currently used. Thereby, cyanobacteria and marine microalgae are microorganisms that are capable of producing a diverse range of metabolites useful for their cellular maintenance, but that also represent a great biotechnological potential. Due its great potential, they have an enormous appeal in the scientific research where, the biological activity of metabolites produced by these microorganisms, such as the antioxidant action of sterols are, some examples of biotechnological applications investigated around the world. Thereby, Brazil due to its extensive biodiversity, has high potential as a raw material supplier of marine waters, researching cyanobacteria and microalgae metabolites and their applications. Thus, this rapid review intends to present some important contributions and advances from Brazilian researchers, using the biomass of Brazilian cyanobacteria and marine microalgae, in order to illustrate the value of what has already been discovered and the enormous potential of what remains unexplored so far.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| | - Ana Alice Farias da Costa
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Fabíola Fernandes Costa
- Campus of Salinópolis, Universidade Federal do Pará, Salinópolis, Pará, CEP 68721-000, Brazil;
| | - Geraldo Narciso da Rocha Filho
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Luís Adriano Santos do Nascimento
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| |
Collapse
|
45
|
Jaakkonen A, Volkmann G, Iwaï H. An off-the-Shelf Approach for the Production of Fc Fusion Proteins by Protein Trans-Splicing towards Generating a Lectibody In Vitro. Int J Mol Sci 2020; 21:ijms21114011. [PMID: 32503354 PMCID: PMC7313076 DOI: 10.3390/ijms21114011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a “lectibody”. Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.
Collapse
Affiliation(s)
- Anniina Jaakkonen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Present Address: Microbiology Unit, Finnish Food Authority, FI-00790 Helsinki, Finland
| | - Gerrit Volkmann
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Correspondence: ; Tel.: +358-2941-59752
| |
Collapse
|
46
|
Schilling PE, Kontaxis G, Dragosits M, Schiestl RH, Becker CFW, Maier I. Mannosylated hemagglutinin peptides bind cyanovirin-N independent of disulfide-bonds in complementary binding sites. RSC Adv 2020; 10:11079-11087. [PMID: 35495330 PMCID: PMC9050506 DOI: 10.1039/d0ra01128b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
Cyanovirin-N (CV-N) has been shown to reveal broad neutralizing activity against human immunodeficiency virus (HIV) and to specifically bind Manα(1→2)Manα units exposed on various glycoproteins of enveloped viruses, such as influenza hemagglutinin (HA) and Ebola glycoprotein. Chemically synthesized dimannosylated HA peptides bound domain-swapped and dimeric CV-N with either four disulfide-bonds (Cys-Cys), or three Cys-Cys bonds and an intact fold of the high-affinity binding site at an equilibrium dissociation constant K D of 10 μM. Cys-Cys mutagenesis with ion-pairing amino-acids glutamic acid and arginine was calculated by in silico structure-based protein design and allowed for recognizing dimannose and dimannosylated peptide binding to low-affinity binding sites (K D ≈ 11 μM for one C58-C73 bond, and binding to dimannosylated peptide). In comparison, binding to HA was achieved based on one ion-pairing C58E-C73R substitution at K D = 275 nM, and K D = 5 μM for two C58E-C73R substitutions. We were utilizing a triazole bioisostere linkage to form the respective mannosylated-derivative on the HA peptide sequence of residues glutamine, glycine, and glutamic acid. Thus, mono- and dimannosylated peptides with N-terminal cysteine facilitated site-specific interactions with HA peptides, mimicking a naturally found N-linked glycosylation site on the HA head domain.
Collapse
Affiliation(s)
- Philipp E Schilling
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna Campus Vienna Bohrgasse 5 A-1030 Vienna Austria
| | - Martin Dragosits
- Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences Muthgasse 18 A-1190 Vienna Austria
| | - Robert H Schiestl
- Department of Pathology and Laboratory Medicine, Geffen School of Medicine, University of California Los Angeles CA-90095 USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| | - Christian F W Becker
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
| | - Irene Maier
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna Währinger Straße 38 A-1090 Vienna Austria
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles 650 Charles E. Young Dr. South Los Angeles CA-90095 USA +1-310-267-2578 +1-310-267-2087
| |
Collapse
|
47
|
Ko SM, Cho SY, Oh MJ, Kwon J, Vaidya B, Kim D. Application of Concanavalin A-Linked Magnetic Beads for the Detection of Hepatitis A Virus. J Food Prot 2018; 81:1997-2002. [PMID: 30476442 DOI: 10.4315/0362-028x.jfp-18-218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt and inexpensive detection of hepatitis A virus (HAV) is essential to control acute hepatitis outbreaks associated with the consumption of contaminated raw or minimally processed food. In this study, various carbohydrate-binding lectins, including concanavalin A (Con A), wheat germ agglutinin, and soybean agglutinin, were compared for their binding affinity to HAV. Con A, which showed significantly higher binding affinity than other lectins, was used to develop an alternative and affordable method to conventional antibody-linked immunomagnetic separation prior to detection of HAV using reverse transcriptase PCR. This method, Con A-linked immunomagnetic separation combined with reverse transcriptase PCR, can detect HAV at a dilution concentration of 10-4 of the virus stock (titer: 104 median tissue culture infective dose per mL), indicating that Con A could be a promising candidate for concentrating HAV.
Collapse
Affiliation(s)
- Sang-Mu Ko
- 1 Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Se-Young Cho
- 2 Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, South Korea
| | - Myung-Joo Oh
- 3 Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, South Korea
| | - Joseph Kwon
- 2 Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, South Korea
| | - Bipin Vaidya
- 1 Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Duwoon Kim
- 1 Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
48
|
Siqueira AS, Lima ARJ, Aguiar DCF, Santos AS, Vianez Júnior JLDSG, Gonçalves EC. Genomic screening of new putative antiviral lectins from Amazonian cyanobacteria based on a bioinformatics approach. Proteins 2018; 86:1047-1054. [PMID: 30035823 PMCID: PMC7167734 DOI: 10.1002/prot.25577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Lectins are proteins of nonimmune origin, which are capable of recognizing and binding to glycoconjugate moieties. Some of them can block the interaction of viral glycoproteins to the host cell receptors acting as antiviral agents. Although cyanobacterial lectins have presented broad biotechnological potential, little research has been directed to Amazonian Cyanobacterial diversity. In order to identify new antiviral lectins, we performed genomic analysis in seven cyanobacterial strains from Coleção Amazônica de Cianobactérias e Microalgas (CACIAM). We found 75 unique CDS presenting one or more lectin domains. Since almost all were annotated as hypothetical proteins, we used homology modeling and molecular dynamics simulations to evaluate the structural and functional properties of three CDS that were more similar to known antiviral lectins. Nostoc sp. CACIAM 19 as well as Tolypothrix sp. CACIAM 22 strains presented cyanovirin‐N homologues whose function was confirmed by binding free energy calculations. Asn, Glu, Thr, Lys, Leu, and Gly, which were described as binding residues for cyanovirin, were also observed on those structures. As for other known cyanovirins, those residues in both our models also made favorable interactions with dimannose. Finally, Alkalinema sp. CACIAM 70d presented one CDS, which was identified as a seven‐bladed beta‐propeller structure with binding sites predicted for sialic acid and N‐acetylglucosamine. Despite its singular structure, our analysis suggested this molecule as a new putative antiviral lectin. Overall, the identification and the characterization of new lectins and their homologues are a promising area in antiviral research, and Amazonian cyanobacteria present biotechnological potential to be explored in this regard.
Collapse
Affiliation(s)
- Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Delia Cristina Figueira Aguiar
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| | - Alberdan Silva Santos
- Laboratórios de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular – Instituto de Ciências Naturais – Universidade Federal do ParáBelém‐PennsylvaniaBrazil
| | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular – Instituto de Ciências BiológicasUniversidade Federal do ParáBelém‐PennsylvaniaBrazil
| |
Collapse
|
49
|
Breitenbach Barroso Coelho LC, Marcelino Dos Santos Silva P, Felix de Oliveira W, de Moura MC, Viana Pontual E, Soares Gomes F, Guedes Paiva PM, Napoleão TH, Dos Santos Correia MT. Lectins as antimicrobial agents. J Appl Microbiol 2018; 125:1238-1252. [PMID: 30053345 DOI: 10.1111/jam.14055] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022]
Abstract
The resistance of micro-organisms to antimicrobial agents has been a challenge to treat animal and human infections, and for environmental control. Lectins are natural proteins and some are potent antimicrobials through binding to carbohydrates on microbial surfaces. Oligomerization state of lectins can influence their biological activity and maximum binding capacity; the association among lectin polypeptide chains can alter the carbohydrate-lectin binding dissociation rate constants. Antimicrobial mechanisms of lectins include the pore formation ability, followed by changes in the cell permeability and latter, indicates interactions with the bacterial cell wall components. In addition, the antifungal activity of lectins is associated with the chitin-binding property, resulting in the disintegration of the cell wall or the arrest of de novo synthesis from the cell wall during fungal development or division. Quorum sensing is a cell-to-cell communication process that allows interspecies and interkingdom signalling which coordinate virulence genes; antiquorum-sensing therapies are described for animal and plant lectins. This review article, among other approaches, evaluates lectins as antimicrobials.
Collapse
Affiliation(s)
| | | | - W Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M C de Moura
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - E Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - F Soares Gomes
- Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Maceió, Brazil
| | - P M Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - T H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - M T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
50
|
Siqueira AS, Lima ARJ, de Souza RC, Santos AS, Vianez Júnior JLDSG, Gonçalves EC. In silico analysis of the cyanobacterial lectin scytovirin: new insights into binding properties. Mol Biol Rep 2017. [PMID: 28756560 DOI: 10.1007/s11033-017-4116-1/figures/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Scytovirin is a lectin isolated from the cyanobacterium Scytonema varium that has shown activity against HIV, SARS coronavirus and Zaire Ebola virus. Its 95 amino acids are divided into two structural domains (SD), the first spanning amino acids 1-48 (SD1) and the second 49-95 (SD2). Interestingly, the domains are nearly identical but differ in their affinities for carbohydrates. With the aim of enhancing understanding of the binding properties of scytovirin, we performed molecular dynamics (MD) simulations of scytovirin complexed with Man4. We set up three systems: (i) Man4 bound to both domains (SD1 + SD2) using the full-length protein; (ii) Man4 bound to an incomplete protein, containing only SD1 and (iii) Man4 bound to an incomplete protein containing only SD2. Contrary to other reports, binding free energy results suggest that Man4 can bind simultaneously to SD1 and SD2 binding regions, but SD1 individually has the best values of energy and the best affinity for Man4. Decomposition of the binding free energy showed that the residues that interact with Man4 were different in the three systems, suggesting that the binding mechanism of Man4 varies between full-length protein, SD1 and SD2. The results presented here may help to formulate strategies to use scytovirin and promote mutagenesis studies to improve the antiviral activity of scytovirin.
Collapse
Affiliation(s)
- Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil.
| | - Alex Ranieri Jerônimo Lima
- Laboratório de Tecnologia Biomolecular - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Rafael Conceição de Souza
- Laboratórios de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular - Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Pará, Brazil
| | - Alberdan Silva Santos
- Laboratórios de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular - Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belem, Pará, Brazil
| | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem, Pará, Brazil
| |
Collapse
|