1
|
Lu X, Wang X, Liu X, Liu X. The multifaceted interactions between Newcastle disease virus proteins and host proteins: a systematic review. Virulence 2024; 15:2299182. [PMID: 38193514 PMCID: PMC10793697 DOI: 10.1080/21505594.2023.2299182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.
Collapse
Affiliation(s)
- Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Wu ZN, Zhang YB, Wang GC, Tang Q, Li YL, Cheng W. Pegaharolines A - I, structurally novel indole alkaloids with anti-HSV-2 virus activities from Peganum harmala L. seeds. Fitoterapia 2024; 179:106237. [PMID: 39321852 DOI: 10.1016/j.fitote.2024.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Leading by the antiviral activities against HSV-2 virus, bioactivity-guided the fraction of crude alkaloids from seeds of Peganum harmala led to the isolation of nine structurally novel indole alkaloids, pegaharolines A - I (1-9), and 11 known ones (10-20). Compound 3 was an unusual 6/5/5/5 spirotetracyclic indole-derived alkaloids featuring a classic bicyclic indole unit fused with an additional pyrrolizine ring via a spiral atom (C-3). Compound 4 was determined as a novel indole alkaloid, characterized with a rare hexacyclic 6/5/6/5-6/6 ring system, by a single-crystal X-ray diffraction. Compounds 5 and 6 were peculiar indole dimers featuring with the rare carbon skeleton of an octacyclic scaffold. Compounds 1-6 were six racemates. Most compounds exhibited different levels of antiviral activities against HSV-2. Especially, the anti-HSV-2 activity of compound 1 (IC50 = 0.90 ± 0.10 μM) was much better than that of the positive control (acyclovir, IC50 = 1.12 ± 0.15 μM). In this study, the discovery of anti-HSV-2 components from the seeds of P. harmala, could benefit development and utilization of this plant in antiviral medicinal products.
Collapse
Affiliation(s)
- Zhong-Nan Wu
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, College of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen Cheng
- The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, College of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
4
|
Wang C, Wang T, Dai J, Han Y, Hu R, Li N, Yang Z, Wang J. Canthin-6-one analogs block Newcastle disease virus proliferation via suppressing the Akt and ERK pathways. Poult Sci 2024; 103:103944. [PMID: 38941786 PMCID: PMC11261124 DOI: 10.1016/j.psj.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/30/2024] Open
Abstract
Newcastle disease virus, a member of the Paramyxoviridae family, causes significant economic losses in poultry worldwide. To identify novel antiviral agents against NDV, 36 canthin-6-one analogs were evaluated in this study. Our data showed that 8 compounds exhibited excellent inhibitory effects on NDV replication with IC50 values in the range of 5.26 to 11.76 μM. Besides, these analogs inhibited multiple NDV strains with IC50 values within 12 μM and exerted antiviral activity against peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). Among these analogs, 16 presented the strongest anti-NDV activity (IC50 = 5.26 μM) and minimum cytotoxicity (CC50 > 200 μM) in DF-1 cells. Furthermore, 16 displayed antiviral activity in different cell lines. Our results showed that 16 did not affect the viral adsorption while it can inhibit the entry of NDV by suppressing the Akt pathway. Further study found that 16-treatment inhibited the NDV-activated ERK pathway, thereby promoting the expression of interferon-related genes. Our findings reveal an antiviral mechanism of canthin-6-one analogs through inhibition of the Akt and ERK signaling pathways. These results point to the potential value of canthin-6-one analogs to serve as candidate antiviral agents for NDV.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Ting Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, China
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yu Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Na Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China.
| |
Collapse
|
5
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Xu H, Zhou N, Huang Z, Wu J, Qian Y. Harmol used for the treatment of herpes simplex virus induced keratitis. Virol J 2024; 21:118. [PMID: 38802860 PMCID: PMC11131330 DOI: 10.1186/s12985-024-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the eyes results in herpes simplex keratitis (HSK), which has led to vision loss and even blindness in patients. However, the rate of drug resistance in HSV is on the rise; therefore, new antiviral agents with sufficient safety profiles must be developed. At present, we assessed the anti-HSV-1 activity of 502 natural compounds and their ability to reduce the HSV-1-induced cytopathic effect. We chose harmol for further studies because it exhibited the highest antiviral activity. We found that harmol inhibited both HSV-1 F and HSV-1/153 (a clinical drug-resistant strain) replication, with an EC50 of 9.34 µM and 5.84 µM, respectively. Moreover, harmol reduced HSV-1 replication in corneal tissues and viral progeny production in tears, and also alleviated early corneal surface lesions related to HSK. For example, harmol treatment preserved corneal thickness and nerve density in HSK mice. Interestingly, harmol also showed a promising antiviral effect on HSV-1/153 induced HSK in mouse model. Furthermore, harmol combined with acyclovir (ACV) treatment showed a greater antiviral effect than either one alone in vitro. Therefore, harmol may be a promising therapeutic agent for managing HSK.
Collapse
Affiliation(s)
- Huanhuan Xu
- Department of Ophthalmology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Zhou
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 22# Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wu
- Medical School of Nanjing University, 22# Hankou Road, Nanjing, 210093, Jiangsu Province, China.
| | - Yajie Qian
- Department of Caries and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30# Zhongyang Road, Xuanwu District, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
7
|
Gonzalez MM, Vizoso-Pinto MG, Erra-Balsells R, Gensch T, Cabrerizo FM. In Vitro Effect of 9,9'-Norharmane Dimer against Herpes Simplex Viruses. Int J Mol Sci 2024; 25:4966. [PMID: 38732185 PMCID: PMC11084892 DOI: 10.3390/ijms25094966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Herpes simplex virus (HSV) infections are highly widespread among humans, producing symptoms ranging from ulcerative lesions to severe diseases such as blindness and life-threatening encephalitis. At present, there are no vaccines available, and some existing antiviral treatments can be ineffective or lead to adverse effects. As a result, there is a need for new anti-HSV drugs. In this report, the in vitro anti-HSV effect of 9,9'-norharmane dimer (nHo-dimer), which belongs to the β-carboline (βC) alkaloid family, was evaluated. The dimer exhibited no virucidal properties and did not impede either the attachment or penetration steps of viral particles. The antiviral effect was only exerted under the constant presence of the dimer in the incubation media, and the mechanism of action was found to involve later events of virus infection. Analysis of fluorescence lifetime imaging data showed that the nHo-dimer internalized well into the cells when present in the extracellular incubation medium, with a preferential accumulation into perinuclear organelles including mitochondria. After washing the host cells with fresh medium free of nHo-dimer, the signal decreased, suggesting the partial release of the compound from the cells. This agrees with the observation that the antiviral effect is solely manifested when the alkaloid is consistently present in the incubation media.
Collapse
Affiliation(s)
- María Micaela Gonzalez
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| | - Maria Guadalupe Vizoso-Pinto
- Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU, D-80336 Munich, Germany;
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán 4000, Argentina
- Laboratorio Central de Cs. Básicas, Facultad de Medicina, Universidad Nacional de Tucumán, Tucumán 4000, Argentina
| | - Rosa Erra-Balsells
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires 1428, Argentina;
- Centro de Investigación en Hidratos de Carbono (CIHIDECAR), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Naturales Pabellón II, 3er P. Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Thomas Gensch
- Institute of Biological Information Processing 1 (IBI-1; Molecular and Cellular Physiology), Forschungszentrum Jülich, Wilhelm-Jonen-Straße, 52428 Jülich, Germany
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús 7130, Argentina;
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín 1650, Argentina
| |
Collapse
|
8
|
Ma Y, Li W, Yao Q, Liu Y, Yu J, Zang L, Wang S, Zhou L, Wen S, Luo Y, Li W, Niu X. Harmine ameliorates CCl 4-induced acute liver injury through suppression of autophagy and inflammation. Int Immunopharmacol 2024; 129:111538. [PMID: 38306830 DOI: 10.1016/j.intimp.2024.111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
CCl4-induced acute liver injury (ALI) is characterized by heightened autophagy, inflammation, and oxidative damage. Accumulating evidence suggests that harmine exerts beneficial effects in countering CCl4-induced ALI by mitigating inflammation and oxidative stress. However, the impact of autophagy on CCl4-induced ALI and the protective role of harmine remain unclear. This study aimed to investigate the potential protective effects of harmine against CCl4-induced ALI in mice by suppressing autophagy and inflammation. Male Kunming mice were orally administered harmine or bifendate for seven days. Subsequently, one hour after the final administration, the model group and treatment groups were intraperitoneally injected with CCl4 to induce ALI. The findings revealed that harmine significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum, and ameliorated the liver histopathological changes induced by CCl4. Furthermore, harmine diminished the levels of TNF-α and IL-6, restored the levels of glutathione (GSH) and superoxide dismutase (SOD), and suppressed the production of nitric oxide (NO) and malondialdehyde (MDA) in the liver. Mechanistically, harmine down-regulated LC3B II/I, p38 MAPK, TLR4, and NF-κB levels, while upregulating p62, Bcl-2, Beclin1, ULK1, and p-mTOR expression. In conclusion, harmine mitigated CCl4-induced ALI by inhibiting autophagy and inflammation through the p38 MAPK/mTOR autophagy pathway, the Bcl-2/Beclin1 pathway, and the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Wenqi Li
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qing Yao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lulu Zang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
9
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Dahal S, Clayton K, Cabral T, Cheng R, Jahanshahi S, Ahmed C, Koirala A, Villasmil Ocando A, Malty R, Been T, Hernandez J, Mangos M, Shen D, Babu M, Calarco J, Chabot B, Attisano L, Houry WA, Cochrane A. On a path toward a broad-spectrum anti-viral: inhibition of HIV-1 and coronavirus replication by SR kinase inhibitor harmine. J Virol 2023; 97:e0039623. [PMID: 37706687 PMCID: PMC10617549 DOI: 10.1128/jvi.00396-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.
Collapse
Affiliation(s)
- Subha Dahal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kiera Clayton
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahrzad Jahanshahi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Choudhary Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amrit Koirala
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ramy Malty
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Terek Been
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Javier Hernandez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Mangos
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Shen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - John Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Wu Z, Li W, Tang Q, Huang L, Zhan Z, Li Y, Wang G, Dai X, Zhang Y. A Novel Aniline Derivative from Peganum harmala L. Promoted Apoptosis via Activating PI3K/AKT/mTOR-Mediated Autophagy in Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2023; 24:12626. [PMID: 37628807 PMCID: PMC10454575 DOI: 10.3390/ijms241612626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common clinical malignant tumor with limited therapeutic drugs. Leading by cytotoxicity against NSCLC cell lines (A549 and PC9), bioactivity-guided isolation of components from Peganum harmala seeds led to the isolation of pegaharoline A (PA). PA was elucidated as a structurally novel aniline derivative, originating from tryptamine with a pyrrole ring cleaved and the degradation of carbon. Biological studies showed that PA significantly inhibited NSCLC cell proliferation, suppressed DNA synthesis, arrested the cell cycle, suppressed colony formation and HUVEC angiogenesis, and blocked cell invasion and migration. Molecular docking and surface plasmon resonance (SPR) demonstrated PA could bind with CD133, correspondingly decreased CD133 expression to activate autophagy via inhibiting the PI3K/AKT/mTOR pathway, and increased ROS levels, Bax, and cleaved caspase-3 to promote apoptosis. PA could also decrease p-cyclinD1 and p-Erk1/2 and block the EMT pathway to inhibit NSCLC cell growth, invasion, and migration. According to these results, PA could inhibit NSCLC cell growth by blocking PI3K/AKT/mTOR and EMT pathways. This study provides evidence that PA has a promising future as a candidate for developing drugs for treating NSCLC.
Collapse
Affiliation(s)
- Zhongnan Wu
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wen Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhaochun Zhan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Yaolan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| | - Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yubo Zhang
- Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China (G.W.)
| |
Collapse
|
12
|
Wang C, Hu R, Wang T, Duan L, Hou Q, Wang J, Yang Z. A bivalent β-carboline derivative inhibits macropinocytosis-dependent entry of pseudorabies virus by targeting the kinase DYRK1A. J Biol Chem 2023; 299:104605. [PMID: 36918100 PMCID: PMC10140166 DOI: 10.1016/j.jbc.2023.104605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Pseudorabies virus (PRV) has become a "new life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2020. To identify novel anti-PRV agents, we screened a total of 107 β-carboline derivatives and found 20 compounds displaying antiviral activity against PRV. Among them, 14 compounds showed better antiviral activity than acyclovir. We found that compound 45 exhibited the strongest anti-PRV activity with an IC50 value of less than 40 nM. Our in vivo studies showed that treatment with 45 significantly reduced the viral loads and protected mice challenged with PRV. To clarify the mode of action of 45, we conducted a time of addition assay, an adsorption assay, and an entry assay. Our results indicated that 45 neither had a virucidal effect nor affected viral adsorption while significantly inhibiting PRV entry. Using the FITC-dextran uptake assay, we determined that 45 inhibits macropinocytosis. The actin-dependent plasma membrane protrusion, which is important for macropinocytosis, was also suppressed by 45. Further, the kinase DYRK1A was predicted to be a potential target for 45. The binding of 45 to DYRK1A was confirmed by DARTS and CETSA. Further analysis revealed that knockdown of DYRK1A by siRNA suppressed PRV macropinocytosis and the TNFα-induced formation of protrusions. These results suggested that 45 could restrain PRV macropinocytosis by targeting DYRK1A. Together, these findings reveal a unique mechanism through which β-carboline derivatives restrain PRV infection, pointing to their potential value in the development of anti-PRV agents. Our data also reveal a potential target for designing novel macropinocytosis inhibitors.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Qili Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China.
| |
Collapse
|
13
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Hegazy A, Mahmoud SH, Elshaier YAMM, Shama NMA, Nasr NF, Ali MA, El-Shazly AM, Mostafa I, Mostafa A. Antiviral activities of plant-derived indole and β-carboline alkaloids against human and avian influenza viruses. Sci Rep 2023; 13:1612. [PMID: 36709362 PMCID: PMC9883826 DOI: 10.1038/s41598-023-27954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and β-carboline (βC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Nasr Fawzy Nasr
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - M A Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.,Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
15
|
Jin SJ, Song Y, Park HS, Park KW, Lee S, Kang H. Harmine Inhibits Multiple TLR-Induced Inflammatory Expression through Modulation of NF-κB p65, JNK, and STAT1. Life (Basel) 2022; 12:2022. [PMID: 36556387 PMCID: PMC9787735 DOI: 10.3390/life12122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Harmine is a beta-carboline alkaloid present in various plants, including in the seeds of Peganum harmala L. This study aimed to investigate the anti-inflammatory activity and mechanism of harmine using macrophages stimulated with various toll-like receptor (TLR) agonists and a model of endotoxemia. The expression of inflammatory mediators induced by ligands of TLRs 2, 3, 4, and 9 were examined in thioglycollate-elicited peritoneal macrophages isolated from BALB/c and C57BL/6 mouse strains. Further, the activation of NF-κB, MAPK, AP-1, and STAT1 was explored using lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly(I:C)). Finally, the liver inflammatory response during endotoxemia was examined. Harmine inhibited inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-12, and other markers induced by various TLR agonists. The inhibition of NF-κB activity by harmine occurred via the modulation of p65 phosphorylation, independent of IκBα degradation. The inhibition of AP-1 activity by harmine was associated with the modulation of JNK. Harmine inhibited the LPS-induced serine and tyrosine phosphorylation of STAT1, but only affected serine phosphorylation by poly(I:C) treatment. In vivo, harmine inhibited iNOS and COX-2 expression during endotoxemia. Collectively, the results show that harmine can be effective against infectious inflammation through modulation of NF-κB, JNK, and STAT1.
Collapse
Affiliation(s)
- So-Jung Jin
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - SeungGwan Lee
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
16
|
Cui Y, Zhang L, Hu D, Yang Y. Berberine Inhibits Herpes Simplex Virus 1 Replication in HEK293T Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7137401. [PMID: 36276998 PMCID: PMC9586773 DOI: 10.1155/2022/7137401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
Abstract
Berberine exhibits polytrophic medicinal roles in various diseases and is safe and effective. However, its role and the underlying mechanism in the replication of herpes simplex virus 1 (HSV-1) remain unreported. This research aimed to determine the functional mechanisms of berberine on HSV-1 infection. We determined the CC50 (405.11 ± 15.67 μM) and IC50 (45.6 ± 6.84 μM) of berberine on HEK293T cells infected with HSV-1. Berberine inhibited the transcription and translation of HSV-1 activity-related genes (gD, ICP-4, ICP-5, and ICP-8) in HSV-1-infected HEK293T cells dose-dependently. Berberine also inhibited the phosphorylation of MAPK proteins (JNK and p38) and inflammatory responses induced by HSV-1 infection in HEK293T cells dose-dependently. In conclusion, berberine attenuates HSV-1 replication through its activity, infective ability, and inflammatory response. Our research indicated that berberine may be a candidate drug for HSV-1 infection.
Collapse
Affiliation(s)
- Yujuan Cui
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China
- Beijing Yanqing Center for Diseases Prevention and Control, Beijing 102100, China
| | - Liangjun Zhang
- Beijing Yanqing Center for Diseases Prevention and Control, Beijing 102100, China
| | - Dandong Hu
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China
- Beijing Yanqing Center for Diseases Prevention and Control, Beijing 102100, China
- Beijing Yanqing Market Supervision Inspection and Testing Monitoring Center, Beijing 102100, China
| | - Yingli Yang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
17
|
Shi Y, Chen X, Shu J, Liu Y, Zhang Y, Lv Q, Wang J, Deng X, Liu H, Qiu J. Harmine, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2022; 12:967149. [PMID: 36176578 PMCID: PMC9513467 DOI: 10.3389/fcimb.2022.967149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
New therapeutic strategies for clinical Salmonella enterica serovar Typhimurium (S. Typhimurium) infection are urgently needed due to the generation of antibiotic-resistant bacteria. Inhibition of bacterial virulence has been increasingly regarded as a potential and innovative strategy for the development of anti-infection drugs. Salmonella pathogenicity island (SPI)-encoded type III secretion system (T3SS) represents a key virulence factor in S. Typhimurium, and active invasion and replication in host cells is facilitated by the secretion of T3SS effector proteins. In this study, we found that harmine could inhibit T3SS secretion; thus, its potential anti-S. Typhimurium infection activity was elucidated. Harmine inhibits the secretion and expression of T3SS effector proteins and consequently attenuates the S. Typhimurium invasion function of HeLa cells. This inhibition may be implemented by reducing the transcription of pathogenesis-related SPI-1 transcriptional activator genes hilD, hilC, and rtsA. Harmine improves the survival rate and bacterial loads of mice infected with S. Typhimurium. In summary, harmine, an effective T3SS inhibitor, could be a leading compound for the development of treatments for Salmonella infection.
Collapse
Affiliation(s)
- Yunjia Shi
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xindi Chen
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingyan Shu
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yang Liu
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Zhang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qianghua Lv
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuming Deng
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongtao Liu
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Jiazhang Qiu, ; Hongtao Liu,
| | - Jiazhang Qiu
- Laboratory for Zoonotic Diseases, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Jiazhang Qiu, ; Hongtao Liu,
| |
Collapse
|
18
|
Zhu Z, Zhao S, Wang C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. Molecules 2022; 27:molecules27134161. [PMID: 35807407 PMCID: PMC9268262 DOI: 10.3390/molecules27134161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases have always been the number one enemy threatening health and well-being. With increasing numbers of infectious diseases, growing resistance of pathogens, and declining roles of antibiotics in the treatment of infectious diseases, it is becoming increasingly difficult to treat new infectious diseases, and there is an urgent need to develop new antibiotics to change the situation. Natural products tend to exhibit many special biological properties. The genus Peganum (Zygophyllaceae) has been used, for a long time, to treat cough, asthma, lumbago, hypertension, diabetes, and Alzheimer’s disease. Over the past two decades, a growing number of studies have shown that components from Peganum harmala Linn and its derivatives can inhibit a variety of microorganisms by inducing the accumulation of ROS in microorganisms, damaging cell membranes, thickening cell walls, disturbing cytoplasm, and interfering with DNA synthesis. In this paper, we provide a review on the antibacterial, antifungal, antiviral, and antiparasitic activities of P. harmala, with a view to contribute to research on utilizing P. harmala for medicinal applicaitons and to provide a reference in the field of antimicrobial and a basis for the development of natural antimicrobial agents for the treatment of infectious diseases.
Collapse
|
19
|
Tang Q, Luan F, Yuan A, Sun J, Rao Z, Wang B, Liu Y, Zeng N. Sophoridine Suppresses Herpes Simplex Virus Type 1 Infection by Blocking the Activation of Cellular PI3K/Akt and p38 MAPK Pathways. Front Microbiol 2022; 13:872505. [PMID: 35756044 PMCID: PMC9229184 DOI: 10.3389/fmicb.2022.872505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and important human pathogen capable of causing significant clinical diseases ranging from skin damage to encephalitis, particularly in immunocompromised and neonatal hosts. Currently, widely used nucleoside analogs, including acyclovir and penciclovir, have some limitations in their use due to side effects and drug resistance. Herein, we report sophoridine's (SRI) dramatic inhibition of HSV-1 replication in vitro. SRI exhibited a remarkable inhibitory influence on HSV-1 virus-induced cytopathic effect and plaque formation, as well as on progeny viruses in Vero and HeLa cells, with selection indexes (SI) of 38.96 and 22.62, respectively. Moreover, SRI also considerably suppressed HSV-1 replication by hindering the expression of viral immediate-early (ICP0 and ICP22), early (ICP8 and TK), and late (gB and gD) genes and the expression of viral proteins ICP0, gB, and gD. We suggest that SRI can directly inactivate viral particles and block some stages in the life cycle of HSV-1 after adsorption. Further experiments showed that SRI downregulated the cellular PI3K/Akt signaling pathway and obstructed HSV-1 replication even more. Most importantly, SRI markedly repressed HSV-1-induced p38 MAPK pathway activation. Collectively, this natural bioactive alkaloid could be a promising therapeutic candidate against HSV-1 via the modulation of cellular PI3K/Akt and p38 MAPK pathways.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - An Yuan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhili Rao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baojun Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Homologous recombination technology generated recombinant pseudorabies virus expressing EGFP facilitates to evaluate its susceptibility to different cells and screen antiviral compounds. Res Vet Sci 2022; 145:125-134. [DOI: 10.1016/j.rvsc.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022]
|
21
|
Breine A, Van Gysel M, Elsocht M, Whiteway C, Philippe C, Quinet T, Valcek A, Wouters J, Ballet S, Van der Henst C. Antimicrobial Activity of a Repurposed Harmine-Derived Compound on Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Front Cell Infect Microbiol 2022; 11:789672. [PMID: 35141168 PMCID: PMC8819726 DOI: 10.3389/fcimb.2021.789672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives The spread of antibiotic resistant bacteria is an important threat for human health. Acinetobacter baumannii bacteria impose such a major issue, as multidrug- to pandrug-resistant strains have been isolated, rendering some infections untreatable. In this context, carbapenem-resistant A. baumannii bacteria were ranked as top priority by both WHO and CDC. In addition, A. baumannii bacteria survive in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is very challenging because of the requirement of drug target conservation amongst the different strains. Here, we screened a chemical library to identify compounds active against several reference strains and carbapenem-resistant A. baumannii bacteria. Methods A repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining the IC50 and testing the activity on 43 modern clinical A. baumannii isolates, amongst which 40 are carbapenem-resistant. Results The repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proves to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 µM. In addition, HDC1 impairs growth of 43 clinical A. baumannii isolates. Conclusions We identified a compound with inhibitory activity on all tested strains, including carbapenem-resistant clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Anke Breine
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mégane Van Gysel
- Namur Medicine and Drug Innovation Center (NAMEDIC), University of Namur (UNamur), Namur, Belgium
| | - Mathias Elsocht
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Clémence Whiteway
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chantal Philippe
- Research Unit in the Biology of Microorganisms (URBM), NARILIS, University of Namur (UNamur), Namur, Belgium
| | - Théo Quinet
- Laboratory of Evolutionary Genetics and Ecology, URBE, University of Namur (UNamur), Namur, Belgium
- Molecular Biology and Evolution, Universite´ Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adam Valcek
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johan Wouters
- Namur Medicine and Drug Innovation Center (NAMEDIC), University of Namur (UNamur), Namur, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, Vlaams Instituut voor Biotechnologie-Vrije Universiteit Brussel (VIB-VUB) Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Flanders Institute for Biotechnology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- *Correspondence: Charles Van der Henst,
| |
Collapse
|
22
|
Beus M, Persoons L, Daelemans D, Schols D, Savijoki K, Varmanen P, Yli-Kauhaluoma J, Pavić K, Zorc B. Anthranilamides with quinoline and β-carboline scaffolds: design, synthesis, and biological activity. Mol Divers 2022; 26:2595-2612. [PMID: 34997441 PMCID: PMC8741576 DOI: 10.1007/s11030-021-10347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
In the present study, we report the design and synthesis of novel amide-type hybrid molecules based on anthranilic acid and quinoline or β-carboline heterocyclic scaffolds. Three types of biological screenings were performed: (i) in vitro antiproliferative screening against a panel of solid tumor and leukemia cell lines, (ii) antiviral screening against several RNA viruses, and (iii) anti-quorum sensing screening using gram-negative Chromobacterium violaceum as the reporter strain. Antiproliferative screening revealed a high activity of several compounds. Anthranilamides 12 and 13 with chloroquine core and halogenated anthranilic acid were the most active agents toward diverse cancer cell lines such as glioblastoma, pancreatic adenocarcinoma, colorectal carcinoma, lung carcinoma, acute lymphoblastic, acute myeloid, chronic myeloid leukemia, and non-Hodgkin lymphoma, but also against noncancerous cell lines. Boc-protected analogs 2 and 3 showed moderate activities against the tested cancer cells without toxic effects against noncancerous cells. A nonhalogenated quinoline derivative 10 with N-benzylanthranilic acid residue was equally active as 12 and 13 and selective toward tumor cells. Chloroquine and quinoline anthranilamides 10-13 exerted pronounced antiviral effect against human coronaviruses 229E and OC43, whereas 12 and 13 against coronavirus OC43 (EC50 values in low micromolar range; selectivity indices from 4.6 to > 10.4). Anthranilamides 14 and 16 with PQ core inhibited HIV-1 with EC50 values of 9.3 and 14.1 µM, respectively. Compound 13 displayed significant anti-quorum/biofilm effect against the quorum sensing reporter strain (IC50 of 3.7 μM) with no apparent bactericidal effect.
Collapse
Affiliation(s)
- Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, 00014, Helsinki, Finland.,Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristina Pavić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
23
|
Huang J, Liu Y, Chen JX, Lu XY, Zhu WJ, Qin L, Xun ZX, Zheng QY, Li EM, Sun N, Xu C, Chen HY. Harmine is an effective therapeutic small molecule for the treatment of cardiac hypertrophy. Acta Pharmacol Sin 2022; 43:50-63. [PMID: 33785860 PMCID: PMC8724320 DOI: 10.1038/s41401-021-00639-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/04/2021] [Indexed: 01/03/2023] Open
Abstract
Harmine is a β-carboline alkaloid isolated from Banisteria caapi and Peganum harmala L with various pharmacological activities, including antioxidant, anti-inflammatory, antitumor, anti-depressant, and anti-leishmanial capabilities. Nevertheless, the pharmacological effect of harmine on cardiomyocytes and heart muscle has not been reported. Here we found a protective effect of harmine on cardiac hypertrophy in spontaneously hypertensive rats in vivo. Further, harmine could inhibit the phenotypes of norepinephrine-induced hypertrophy in human embryonic stem cell-derived cardiomyocytes in vitro. It reduced the enlarged cell surface area, reversed the increased calcium handling and contractility, and downregulated expression of hypertrophy-related genes in norepinephrine-induced hypertrophy of human cardiomyocytes derived from embryonic stem cells. We further showed that one of the potential underlying mechanism by which harmine alleviates cardiac hypertrophy relied on inhibition of NF-κB phosphorylation and the stimulated inflammatory cytokines in pathological ventricular remodeling. Our data suggest that harmine is a promising therapeutic agent for cardiac hypertrophy independent of blood pressure modulation and could be a promising addition of current medications for cardiac hypertrophy.
Collapse
Affiliation(s)
- Jie Huang
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yang Liu
- grid.8547.e0000 0001 0125 2443Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Jia-xin Chen
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Xin-ya Lu
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Wen-jia Zhu
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Le Qin
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Zi-xuan Xun
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Qiu-yi Zheng
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Er-min Li
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Ning Sun
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China ,grid.411333.70000 0004 0407 2968Shanghai Key Lab of Birth Defect, Children’s Hospital of Fudan University, Shanghai, 201100 China ,grid.8547.e0000 0001 0125 2443Research Center on Aging and Medicine, Fudan University, Shanghai, 200032 China
| | - Chen Xu
- grid.8547.e0000 0001 0125 2443Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Hai-yan Chen
- grid.8547.e0000 0001 0125 2443Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| |
Collapse
|
24
|
Wang C, Wang T, Dai J, An Z, Hu R, Duan L, Chen H, Wang X, Chu Z, Liu H, Wang J, Li N, Yang Z, Wang J. 1-Formyl- β-carboline Derivatives Block Newcastle Disease Virus Proliferation through Suppressing Viral Adsorption and Entry Processes. Biomolecules 2021; 11:1687. [PMID: 34827684 PMCID: PMC8616010 DOI: 10.3390/biom11111687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
Newcastle disease virus (NDV) is one of the highly contagious pathogens causing devastating economic effects on the global poultry industry. In the present study, three 1-formyl-β-carboline derivatives (compounds 6, 7, and 9) were found to be potent inhibitors of different genotypes of NDV with IC50 values within 10 μM, which are similar to ribavirin. The virus titers were decreased by the presence of 1-formyl-β-carboline derivatives in a dose-dependent manner, and the inhibition rate was found to exceed 90% at the concentration of 20 μM. These compounds mainly suppressed the adsorption and entry processes of NDV lifecycle. Through DARTS, CETSA, and RBC binding assay, these compounds were identified as novel HN inhibitors, which could directly interact with the NDV HN protein to affect the adsorption of NDV. Furthermore, they could inhibit the entry of NDV through suppressing the PI3K/Akt pathway rather than the ERK pathway. The PI3K/Akt pathway was proved to be involved in NDV entry. Our findings reveal a unique mechanism through which 1-formyl-β-carboline derivatives restrain NDV infection. Moreover, these compounds represent suitable scaffolds for designing novel HN inhibitors.
Collapse
Affiliation(s)
- Chongyang Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Jiangkun Dai
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Zhiyuan An
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Xiangwei Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.W.); (R.H.); (L.D.); (H.C.); (Z.C.); (H.L.); (J.W.)
| | - Junru Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Xianyang 712100, China; (C.W.); (J.D.); (Z.A.)
| |
Collapse
|
25
|
Chin LT, Liu KW, Chen YH, Hsu SC, Huang L. Cell-based assays and molecular simulation reveal that the anti-cancer harmine is a specific matrix metalloproteinase-3 (MMP-3) inhibitor. Comput Biol Chem 2021; 94:107556. [PMID: 34384998 DOI: 10.1016/j.compbiolchem.2021.107556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1-10 μM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 μM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Li-Te Chin
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, 11400, Taiwan, ROC
| | - Ke-Wei Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Yi-Han Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Shu-Ching Hsu
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC
| | - Lin Huang
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC.
| |
Collapse
|
26
|
Antiviral Active Compounds Derived from Natural Sources against Herpes Simplex Viruses. Viruses 2021; 13:v13071386. [PMID: 34372592 PMCID: PMC8310208 DOI: 10.3390/v13071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex viruses (HSV) are ubiquitously distributed with a seroprevalence ranging up to 95% in the adult population. Refractory viral infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) represent a major global health issue. In particular, the increasing occurrence of resistance to conventional antiviral drugs make the therapy of such infections even more challenging. For instance, the frequent and long-term use of acyclovir and other nucleoside analogues targeting the viral DNA-polymerase enhance the development of resistant viruses. Particularly, the incidental increase of those strains in immunocompromised patients is alarming and represent a major health concern. Alternative treatment concepts are clearly needed. Natural products such as herbal medicines showed antiherpetic activity in vitro and in vivo and proved to be an excellent source for the discovery and isolation of novel antivirals. By this means, numerous plant-derived compounds with antiviral or antimicrobial activity could be isolated. Natural medicines and their ingredients are well-tolerated and could be a good alternative for treating herpes simplex virus infections. This review provides an overview of the recent status of natural sources such as plants, bacteria, fungi, and their ingredients with antiviral activity against herpes simplex viruses. Furthermore, we highlight the most potent herbal medicines and ingredients as promising candidates for clinical investigation and give an overview about the most important drug classes along with their potential antiviral mechanisms. The content of this review is based on articles that were published between 1996 and 2021.
Collapse
|
27
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Sankaranarayanan M. Recent Update on the Anti-infective Potential of β-carboline Analogs. Mini Rev Med Chem 2021; 21:398-425. [PMID: 33001013 DOI: 10.2174/1389557520666201001130114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| |
Collapse
|
28
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
29
|
Li C, Zhang M, Guan X, Hu H, Fu M, Liu Y, Hu Q. Herpes Simplex Virus Type 2 Glycoprotein D Inhibits NF-κB Activation by Interacting with p65. THE JOURNAL OF IMMUNOLOGY 2021; 206:2852-2861. [PMID: 34049972 DOI: 10.4049/jimmunol.2001336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
NF-κB plays a crucial role in regulating cell proliferation, inflammation, apoptosis, and immune responses. HSV type 2 (HSV-2) is one of the most predominant sexually transmitted pathogens worldwide, and its infection increases the risk of HIV type 1 (HIV-1) acquisition and transmission. HSV-2 glycoprotein D (gD), highly homologous to HSV-1 gD, is essential for viral adhesion, fusion, entry, and spread. It is known that HSV-1 gD can bind herpesvirus entry mediator (HVEM) to trigger NF-κB activation and thereby facilitate viral replication at the early stage of infection. In this study, we found that purified HSV-2 gD triggered NF-κB activation at the early stage of infection, whereas ectopic expression of HSV-2 gD significantly downregulated TNF-α-induced NF-κB activity as well as TNF-α-induced IL-6 and IL-8 expression. Mechanistically, HSV-2 gD inhibited NF-κB, but not IFN-regulatory factor 3 (IRF3), activation and suppressed NF-κB activation mediated by overexpression of TNFR-associated factor 2 (TRAF2), IκB kinase α (IKKα), IKKβ, or p65. Coimmunoprecipitation and binding kinetic analyses demonstrated that HSV-2 gD directly bound to the NF-κB subunit p65 and abolished the nuclear translocation of p65 upon TNF-α stimulation. Mutational analyses further revealed that HSV-2 gD interacted with the region spanning aa 19-187 of p65. Findings in this study together demonstrate that HSV-2 gD interacts with p65 to regulate p65 subcellular localization and thereby prevents NF-κB-dependent gene expression, which may contribute to HSV-2 immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mudan Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; and
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; and
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China;
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; .,Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
30
|
Fakhri S, Piri S, Majnooni MB, Farzaei MH, Echeverría J. Targeting Neurological Manifestations of Coronaviruses by Candidate Phytochemicals: A Mechanistic Approach. Front Pharmacol 2021; 11:621099. [PMID: 33708124 PMCID: PMC7941749 DOI: 10.3389/fphar.2020.621099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a wide range of manifestations. In this regard, growing evidence is focusing on COVID-19 neurological associations; however, there is a lack of established pathophysiological mechanisms and related treatments. Accordingly, a comprehensive review was conducted, using electronic databases, including PubMed, Scopus, Web of Science, and Cochrane, along with the author's expertize in COVID-19 associated neuronal signaling pathways. Besides, potential phytochemicals have been provided against neurological signs of COVID-19. Considering a high homology among SARS-CoV, Middle East Respiratory Syndrome and SARS-CoV-2, revealing their precise pathophysiological mechanisms seems to pave the road for the treatment of COVID-19 neural manifestations. There is a complex pathophysiological mechanism behind central manifestations of COVID-19, including pain, hypo/anosmia, delirium, impaired consciousness, pyramidal signs, and ischemic stroke. Among those dysregulated neuronal mechanisms, neuroinflammation, angiotensin-converting enzyme 2 (ACE2)/spike proteins, RNA-dependent RNA polymerase and protease are of special attention. So, employing multi-target therapeutic agents with considerable safety and efficacy seems to show a bright future in fighting COVID-19 neurological manifestations. Nowadays, natural secondary metabolites are highlighted as potential multi-target phytochemicals in combating several complications of COVID-19. In this review, central pathophysiological mechanisms and therapeutic targets of SARS-CoV-2 has been provided. Besides, in terms of pharmacological mechanisms, phytochemicals have been introduced as potential multi-target agents in combating COVID-19 central nervous system complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
31
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
32
|
Kim TI, Kwon EB, Oh YC, Go Y, Choi JG. Mori ramulus and its Major Component Morusin Inhibit Herpes Simplex Virus Type 1 Replication and the Virus-Induced Reactive Oxygen Species. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:163-179. [PMID: 33371809 DOI: 10.1142/s0192415x21500099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is ubiquitous in many populations despite the use of acyclovir or related nucleoside analogs for treating infection. Drug resistance impairs the treatment of HSV-infected individuals who have immune deficits, underscoring the need for new safe and effective antiviral agents. Mori ramulus (the young twig of Morus alba L.) has long been used to treat diseases in Korea, Japan, and China. Recent studies have reported multiple pharmacological activities of Mori ramulus and its constituent morusin, but their effects on HSV-1 remain unknown. Here, we found that treatment with Mori ramulus ethanol extract (MRE) significantly reduced the replication of fluorescently labeled HSV-1 in Vero cells and inhibited the expression of HSV-1 envelope glycoprotein D (gD) and tegument protein VP16. MRE, furthermore, blocked HSV-1-induced production of reactive oxygen species (ROS), and this mediated the inhibition of viral replication. We identified morusin as the active antiviral component of MRE and found that morusin post-treatment was sufficient to inhibit viral gD and VP16 in addition to HSV-1-induced ROS production. Therefore, the inhibition of HSV-1-induced ROS may explain the antiviral activity of MRE against HSV-1. MRE or its component morusin may be potentially developed for anti-HSV-1 agents.
Collapse
Affiliation(s)
- Tae In Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - You-Chang Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 701-300, Republic of Korea
| |
Collapse
|
33
|
Xie QJ, Zhang WY, Wu ZL, Xu MT, He QF, Huang XJ, Che CT, Wang Y, Ye WC. Alkaloid constituents from the fruits of Flueggea virosa. Chin J Nat Med 2020; 18:385-392. [PMID: 32451096 DOI: 10.1016/s1875-5364(20)30045-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 10/24/2022]
Abstract
Three new indole alkaloids, flueindolines A-C (1-3), along with nine known alkaloids (4-12), were isolated from the fruits of Flueggea virosa (Roxb. ex Willd.) Voigt. Compounds 1 and 2 are two new fused tricyclic indole alkaloids possessing an unusual pyrido[1, 2-a]indole framework, and 3 presents a rare spiro (pyrrolizidinyl-oxindole) backbone. Their structures with absolute configurations were elucidated by means of comprehensive spectroscopic analysis, chemical calculation, as well as X-ray crystallography. Chiral resolution and absolute configuration determination of the known compounds 4, 10, and 11 were reported for the first time. The hypothetical biogenetical pathways of 1-3 were herein also proposed.
Collapse
Affiliation(s)
- Qiu-Jie Xie
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wei-Yan Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Zhen-Long Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ming-Tao Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Qi-Fang He
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago 60612, United States
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Luo Z, Kuang XP, Zhou QQ, Yan CY, Li W, Gong HB, Kurihara H, Li WX, Li YF, He RR. Inhibitory effects of baicalein against herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:2323-2338. [PMID: 33354504 PMCID: PMC7745058 DOI: 10.1016/j.apsb.2020.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain) in vitro. In the ocular inoculation mice model, baicalein markedly reduced in vivo HSV-1/F replication, receded inflammatory storm and attenuated histological changes in the cornea. Consistently, baicalein was found to reduce the mortality of mice, viral loads both in nose and trigeminal ganglia in HSV-1 intranasal infection model. Moreover, an ex vivo HSV-1-EGFP infection model established in isolated murine epidermal sheets confirmed that baicalein suppressed HSV-1 replication. Further investigations unraveled that dual mechanisms, inactivating viral particles and inhibiting IκB kinase beta (IKK-β) phosphorylation, were involved in the anti-HSV-1 effect of baicalein. Collectively, our findings identified baicalein as a promising therapy candidate against the infection of HSV-1, especially acyclovir-resistant strain. Baicalein is highly effective against HSV-1infection ex vivo and in vivo. Inactivation of viral particles and suppression of NF-κB activation were involved in the anti-viral effect of baicalein. Hence, our work offers experimental basis for baicalein as a potential drug in treating HSV-1 associated diseases.
Collapse
Key Words
- Anti-HSV-1
- Baicalein
- CC50, 50% cytotoxic concentration
- DCFH-DA, 2′,7′-dichlorofluorescin diacetate
- EC50, 50% effective concentration
- GB, glycoprotein B
- HSV-1 infection
- HSV-1, herpes simplex virus types 1
- ICP, infected cell polypeptide
- IKK-β phosphorylation
- IKK-β, IκB kinase beta
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IκB-α, inhibitor of NF-κB alpha
- LPS, lipopolysaccharides
- MOI, multiplicity of infection
- NAC, N-acetyl-l-cysteine
- NF-κB activation
- NF-κB, nuclear factor kappa-B
- PFU, plaque-forming units
- PGA1, prostaglandin A1
- ROS, reactive oxygen species
- SI, selectivity index
- TG, trigeminal ganglia
- TNF-α, tumor necrosis factor alpha
- Viral inactivation
- dpi, days post-infection
- p-IKK-β, phosphorylated-IKK beta
- p-IκB-α, phosphorylated-IκB alpha
Collapse
|
35
|
Pharmacological effects of harmine and its derivatives: a review. Arch Pharm Res 2020; 43:1259-1275. [PMID: 33206346 DOI: 10.1007/s12272-020-01283-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Harmine is isolated from the seeds of the medicinal plant, Peganum harmala L., and has been used for thousands of years in the Middle East and China. Harmine has many pharmacological activities including anti-inflammatory, neuroprotective, antidiabetic, and antitumor activities. Moreover, harmine exhibits insecticidal, antiviral, and antibacterial effects. Harmine derivatives exhibit pharmacological effects similar to those of harmine, but with better antitumor activity and low neurotoxicity. Many studies have been conducted on the pharmacological activities of harmine and harmine derivatives. This article reviews the pharmacological effects and associated mechanisms of harmine. In addition, the structure-activity relationship of harmine derivatives has been summarized.
Collapse
|
36
|
Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 2020; 228:45-54. [PMID: 33035575 DOI: 10.1016/j.imlet.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
With a rise in the incidence of autoimmune diseases (AiD), health care providers continue to seek out more efficacious treatment approaches for the AiD patient population. Classic serotonergic psychedelics have recently been gaining public and professional interest as novel interventions to a number of mental health afflictions. Psychedelics have also been shown to be able to modulate immune functions, however, while there has been great interest to researching into their psychotherapeutic applications, there has so far been very little exploration into the potential to treat inflammatory and immune-related diseases with these compounds. A handful of studies from a variety of fields suggest that psychedelics do indeed have effects in the body that may attenuate the outcome of AiD. This literature review explores existing evidence that psychedelic compounds may offer a potential novel application in the treatment of pathologies related to autoimmunity. We propose that psychedelics hold the potential to attenuate or even resolve autoimmunity by targeting psychosomatic origins, maladaptive chronic stress responses, inflammatory pathways, immune modulation and enteric microbiome populations.
Collapse
Affiliation(s)
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
37
|
Wu ZN, Chen NH, Tang Q, Chen S, Zhan ZC, Zhang YB, Wang GC, Li YL, Ye WC. β-Carboline Alkaloids from the Seeds of Peganum harmala and Their Anti-HSV-2 Virus Activities. Org Lett 2020; 22:7310-7314. [PMID: 32896126 DOI: 10.1021/acs.orglett.0c02650] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pegaharines A-G (1-6), six novel β-carboline alkaloids representing three types of skeleton, were isolated from the seeds of Peganum harmala. Compound 1 is a peculiar β-carboline alkaloid characterized by the unprecedented carbon skeleton of an azepine-indole system. Compounds 3-6 represent the first examples of heterodimers constructed from rare tetracyclic β-carboline and classic tricyclic β-carboline alkaloids. Compounds 1 and 2 were characterized by X-ray crystallography. Compound 4 exhibited strong antiviral activity against HSV-2, with an IC50 value of 2.12 ± 0.14 μM.
Collapse
Affiliation(s)
- Zhong-Nan Wu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,The First Affiliated Hospital, Jinan University, Guangzhou 510632, P. R. China
| | - Neng-Hua Chen
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Qing Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Si Chen
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhao-Chun Zhan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P. R. China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
38
|
Ahmad I, Fakhri S, Khan H, Jeandet P, Aschner M, Yu ZL. Targeting cell cycle by β-carboline alkaloids in vitro: Novel therapeutic prospects for the treatment of cancer. Chem Biol Interact 2020; 330:109229. [PMID: 32835667 DOI: 10.1016/j.cbi.2020.109229] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/25/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Cell cycle dysregulation is the mainstay of aberrant cell proliferation, which leads to tumor progression. Mutations in tumor cells initiate various dysregulated pathways and spontaneous over-proliferation with genomic/chromosomal instability. Despite advances in cancer therapy, it has remained a medicinal challenge to treat. Besides, the complexity of pathophysiological pathways behind cancer raises the need for novel multi-target agents, possessing fewer side effects. Alkaloid-based therapies have been explored so far to target cell division in cancer, including vinca alkaloids. As a class of hopeful β-carboline derivatives, growing evidence has indicated their auspicious roles in combating cancer by inhibiting topoisomerase (TOPO), kinesin Eg5, telomerase, cyclin-dependent kinase (CDK), IκB kinase (IKK), and polo-like kinase-1 (PLK1) in the transition phases of cell cycle. In this review, in vitro potential of β-carboline has been revealed through targeting cell division cycle at different phases. In conclusion, β-carboline alkaloids could be introduced as novel candidates in cancer therapy.
Collapse
Affiliation(s)
- Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences University of Reims Champagne-Ardenne, Reims Cedex, 51687, France.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209 1300 Morris Park Avenue Bronx, NY, 10461, USA.
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
39
|
Zhong J, Xia Y, Hua L, Liu X, Xiao M, Xu T, Zhu B, Cao H. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3485-3491. [PMID: 31422717 DOI: 10.1080/21691401.2019.1640716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enterovirus 71 (EV71) which commonly caused the hand-foot-mouth disease (HFMD) has become one of public health challenges worldwide. However, no effective vaccines or drugs for this disease has been developed. Thus, there is an urgent need to find a new strategy for treating the EV71 infection. Oseltamivir (OT) is an effective antiviral agent, but continuous use of oseltamivir leads to a diminished therapeutic effect in the clinic. In order to improve the antiviral activity of oseltamivir, oseltamivir was loaded onto surfaces of selenium nanoparticles (SeNPs) to fabricate a functionalized antiviral nanoparticles SeNPs@OT. The size of SeNPs@OT was tested by TEM and dynamic light scattering. The chemical structure and elemental composition of SeNPs@OT were analyzed by FT-IR and EDX, respectively. SeNPs@OT exhibited good stability and effective drug release in serum and PBS. SeNPs@OT efficiently entered into human astrocyte U251 cells (host cells) via clathrin-associated endocytosis and inhibited EV71 proliferation, which could protect EV71-infected U251 cells from apoptosis through mitochondrial pathway. Furthermore, SeNPs@OT inhibited EV71 activity probably by reducing the generation of reactive oxygen species in EV71-infected U251 cells. Interestingly, SeNPs obviously enhanced antiviral activity of oseltamivir in the anti-EV71 cell model. Taken together, SeNPs@OT is a promising antiviral drug candidate for EV71 infection.
Collapse
Affiliation(s)
- Jiayu Zhong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , People's Republic of China.,Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Yu Xia
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Liang Hua
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Xiaomin Liu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Misi Xiao
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Tiantian Xu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Bing Zhu
- Virus Laboratory, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou 510120 , People's Republic of China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangzhou , People's Republic of China
| |
Collapse
|
40
|
Huang Q, Hou J, Yang P, Yan J, Yu X, Zhuo Y, He S, Xu F. Antiviral activity of mitoxantrone dihydrochloride against human herpes simplex virus mediated by suppression of the viral immediate early genes. BMC Microbiol 2019; 19:274. [PMID: 31812160 PMCID: PMC6898960 DOI: 10.1186/s12866-019-1639-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background HSV-1 is a common pathogen that infects 50–90% of the human population worldwide. HSV-1 causes numerous infection-related diseases, some of which are severely life-threatening. There are antiviral medications with activity against HSV-1. However, with the emergence of drug-resistant mutant strains of HSV-1, there is an urgent need to develop new effective anti-HSV-1 agents. Methods Therefore, we screened a chemical library of approximately 1500 compounds to identify inhibitors of HSV-1-induced toxicity for further drug development. Moreover, we performed several experiments, including western blot analysis, Q-PCR analysis and luciferase activity assay, to explore the antiviral mechanism of the candidates. Results Here, we identified a small molecule, mitoxantrone dihydrochloride, with potency against HSV-1-induced toxicity. Furthermore, the viral titers and expression levels of HSV-1 viral proteins were potently reduced by the presence of MD in many cell lines. Using Q-PCR analysis, we found that MD efficiently reduced the transcription of viral genes that are essential for DNA synthesis, namely, UL5, UL9, UL29, UL30, UL42 and UL52. Notably, MD also significantly inhibited the transcription of the immediate early genes ICP0, ICP22, ICP27 and ICP47, all of which are required for the expression of early and late viral gene products. Using immunofluorescence and western blot analysis, we found that the antiviral effect of MD was independent of the activation of the NF-κB and MAPK pathways. Furthermore, we found that the reduction in the transcription of viral immediate early genes was not related to the promoter activities of ICP0. Conclusions Therefore, the identification of compound MD as an inhibitor of toxicity induced by HSV-1 highlights its potential use in the development of novel anti-HSV-1 drugs.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Obstetrics and Gynecology, Suzhou Dushuhu Public Hospital (Soochow University Multi-Disciplinary Polyclinic), Suzhou, China
| | - Jue Hou
- Blood Research Laboratory, Chengdu Blood Center, Chengdu, Sichuan, 610041, China.,Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Peng Yang
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizi Rd, Suzhou, China
| | - Jun Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiaoliang Yu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ying Zhuo
- Department of Pulmonology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Sudan He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Feng Xu
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizi Rd, Suzhou, China.
| |
Collapse
|
41
|
Li X, Wu X, Gao Y, Hao L. Synergistic Effects and Mechanisms of Combined Treatment With Harmine Hydrochloride and Azoles for Resistant Candida albicans. Front Microbiol 2019; 10:2295. [PMID: 31749766 PMCID: PMC6843067 DOI: 10.3389/fmicb.2019.02295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Several studies have demonstrated the significant antiviral, antimicrobial, antiplasmodial, antioxidative, antifungal, antimutagenic, and antitumor properties of harmine hydrochloride (HMH). The main objective of the present study was to investigate the antifungal effects and underlying mechanisms of HMH when combined with azoles to determine whether such combinations act in a synergistic manner. As a result, we found that HMH exhibits synergistic antifungal effects in combination with azoles against resistant Candida albicans (C. albicans) planktonic cells, as well as resistant C. albicans biofilm in the early stage. Antifungal potential of HMH with fluconazole was also explored in vivo using an invertebrate model. Our results suggest that HMH combined with azoles is synergistic against resistant C. albicans in vitro and in vivo. No synergy is seen with azole sensitive C. albicans strains nor with other Candida species. Such synergistic mechanisms on resistance C. albicans are involved in increasing intracellular azoles, inhibiting hyphal growth, disturbing cytosolic calcium concentration, and inducing apoptosis of resistant C. albicans cells.
Collapse
Affiliation(s)
- Xiuyun Li
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Xuexin Wu
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Yan Gao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| | - Lina Hao
- Department of Pharmacy, Qilu Children's Hospital, Shandong University, Jinan, China
| |
Collapse
|
42
|
Xu W, Zhou H, Li X, Wang L, Guo X, Yin L, Chang H, Wei Y, Li Q, Deng J, Zhou X, Yang H, Zhang X, Yi F, Ma W. C1Q/TNF-related protein 4 expression correlates with herpes simplex encephalitis progression. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:235. [PMID: 31317005 PMCID: PMC6603354 DOI: 10.21037/atm.2019.05.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Herpes simplex encephalitis (HSE), an acute inflammatory disease of the central nervous system is caused by the herpes simplex virus infection. HSE occurs at any age, and it is often accompanied by high mortality and neurological dysfunction. The C1Q/TNF-related protein (CTRP) family, usually contains a homotrimeric structure, which comprises the N-terminal signal peptide and the C-terminal C1q globular domain. It has been demonstrated that CTRPs play pivotal roles in the inflammation process. CTRP4 is a member of the CTRP family and contains two C1q globular domains. Moreover, evidence shows that the recombinant human CTRP4 (rhCTRP4) protein exerts satisfactory anti-inflammatory effects in experimental colitis models via the NF-κB pathway. However, its role in inflammation-related neurological diseases remains unknown. METHODS The purpose of this study is to evaluate the expression of CTRP4 and its correlation with HSE progression. We determined the serum CTRP4 levels in a normal brain, tuberculous meningitis (TBM), bacterial meningitis (BM) and HSE. RESULTS We found that compared to a normal brain, TBM and BM, CTRP4 was significantly increased in HSE. Moreover, in the course of HSE, serum interleukin (IL-6) and necrosis factor-α (TNF-α) were also increased and were closely associated with CTRP4 expression. CTRP4 expression was examined by immunohistochemistry (IHC) in the normal control brain tissues, HSE, TBM and BM brain tissues. High positively expression of CTRP4 was found in HSE. In the normal brain tissue, TBM, and BM brain tissues, CTRP4 showed a weak expression. In the clinical evaluation, CTRP4 expression correlated closely with an ascending stage of the disease [mini-mental state examination (MMSE) evaluation, MRI imaging). CONCLUSIONS Our findings suggest that CTRP4 is highly expressed in HSE and is closely related to the progression of HSE. Thus, CTRP4 may serve as a potential severity index for HSE and targeting CTRP4 might be a promising therapeutic strategy against HSE.
Collapse
Affiliation(s)
- Wangshu Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Heng Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Xiaojuan Li
- Department of Radiology, The First Hospital of Harbin Medical University, Harbin 150001, China
| | - Lu Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinwu Guo
- Sansure Biotech Inc., Changsha 410205, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Yuzhen Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Qingsong Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jinhai Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Haifeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100050, China
| | - Fang Yi
- Department of Neurology Lishilu Outpatient, PLA Rocket Force General Hospital, Beijing 100045, China
| | - Wenping Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
43
|
Liu H, Huang CX, He Q, Li D, Luo MH, Zhao F, Lu W. Proteomics analysis of HSV-1-induced alterations in mouse brain microvascular endothelial cells. J Neurovirol 2019; 25:525-539. [PMID: 31144288 DOI: 10.1007/s13365-019-00752-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus 1 (HSV-1) is a predominant cause of herpes simplex encephalitis (HSE), leading to a high mortality rate and severe neurological sequelae worldwide. HSE is typically accompanied by the blood-brain barrier (BBB) disruption, but the underlying mechanisms are unclear. To explore the disruption mechanisms of the BBB, quantitative analysis of the cellular proteome was carried out to investigate the proteomic changes that occur after infection. In this study, bEnd.3 cells were infected with HSV-1, followed by liquid chromatography-tandem mass spectrometry. A total of 6761 proteins were identified in three independent mass spectrometry analyses. Compared to the uninfected cells, 386 and 293 differentially expressed proteins were markedly upregulated or downregulated, respectively. Bioinformatic analysis showed that the activator protein-1 factor, including Fos, Jun, and ATF family proteins and cell adhesion molecules were significantly changed. Further validation of the changes observed for these proteins was carried out by western blotting and quantitative real-time PCR. Transendothelial electrical resistance (TEER) studies were performed to explore the effects of ATF3, Fra1, or JunB overexpression on the function of bEnd.3 cells. Characterization of the differential expression of these proteins in bEnd.3 cells will facilitate further exploration of BBB disruption upon HSV-1 infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chu-Xin Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430000, China.
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
44
|
Marino-Merlo F, Papaianni E, Frezza C, Pedatella S, De Nisco M, Macchi B, Grelli S, Mastino A. NF-κB-Dependent Production of ROS and Restriction of HSV-1 Infection in U937 Monocytic Cells. Viruses 2019; 11:v11050428. [PMID: 31083280 PMCID: PMC6563512 DOI: 10.3390/v11050428] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) can infect a wide range of cell types, including cells of the adaptive and innate immunity but, normally, it completes a fully-permissive replication cycle only in epithelial or neural cells. Complex mechanisms controlling this delicate balance in immune cells and consequent restriction of HSV-1 infection in these cells have not been completely elucidated. We have recently demonstrated that the transcription factor nuclear factor kappa B (NF-κB) can act as a main permissiveness regulator of HSV-1 infection in monocytic cells, however, mediators involved in this regulation have not been identified. To better define mechanisms involved in this phenomenon and, particularly, the possible involvement of ROS, wild type U937 cells or U937 cells stably transfected with a dominant-negative (DN) IκB-mutant and selenium-containing compounds, as anti-oxidants, were utilized. The main results can be summarized as follows. HSV-1 infection induces an immediate ROS production in U937 monocytic cells that can efficiently activate NF-κB but not in DN-IκB-mutant cells. Treatment with selenium-containing antioxidants efficiently inhibited HSV-1-induced ROS generation while producing increased levels of HSV-1 replication and a reduction of HSV-1-induced NF-κB activation in U937 monocytic cells. Our results suggest a scenario in which an efficient NF-κB-dependent ROS production in response to infection could contribute in limiting HSV-1 replication in monocytes/macrophages, thus avoiding possible irreparable damage to the innate immune system of the host during HSV-1 infection.
Collapse
Affiliation(s)
| | - Emanuela Papaianni
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Caterina Frezza
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy.
| | - Mauro De Nisco
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Beatrice Macchi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Antonio Mastino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy.
| |
Collapse
|
45
|
Synthetic modifications of carboline alkaloid harmine: synthesis of 8-substituted derivatives. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Zhao Z, Sun Y, Wang L, Chen X, Sun Y, Lin L, Tang Y, Li F, Chen D. Organic base-promoted efficient dehydrogenative/decarboxylative aromatization of tetrahydro-β-carbolines into β-carbolines under air. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Li W, Wang XH, Luo Z, Liu LF, Yan C, Yan CY, Chen GD, Gao H, Duan WJ, Kurihara H, Li YF, He RR. Traditional Chinese Medicine as a Potential Source for HSV-1 Therapy by Acting on Virus or the Susceptibility of Host. Int J Mol Sci 2018; 19:ijms19103266. [PMID: 30347851 PMCID: PMC6213986 DOI: 10.3390/ijms19103266] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the most common virus, with an estimated infection rate of 60–95% among the adult population. Once infected, HSV-1 can remain latent in the host for a lifetime and be reactivated in patients with a compromised immune system. Reactivation of latent HSV-1 can also be achieved by other stimuli. Though acyclovir (ACV) is a classic drug for HSV-1 infection, ACV-resistant strains have been found in immune-compromised patients and drug toxicity has also been commonly reported. Therefore, there is an urge to search for new anti-HSV-1 agents. Natural products with potential anti-HSV-1 activity have the advantages of minimal side effects, reduced toxicity, and they exert their effect by various mechanisms. This paper will not only provide a reference for the safe dose of these agents if they are to be used in humans, referring to the interrelated data obtained from in vitro experiments, but also introduce the main pharmacodynamic mechanisms of traditional Chinese medicine (TCM) against HSV-1. Taken together, TCM functions as a potential source for HSV-1 therapy by direct (blocking viral attachment/absorption/penetration/replication) or indirect (reducing the susceptibility to HSV-1 or regulating autophagy) antiviral activities. The potential of these active components in the development of anti-HSV-1 drugs will also be described.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xiao-Hua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Li-Fang Liu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Guo-Dong Chen
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
48
|
Bowman‒Birk Inhibitor Suppresses Herpes Simplex Virus Type 2 Infection of Human Cervical Epithelial Cells. Viruses 2018; 10:v10100557. [PMID: 30322047 PMCID: PMC6213026 DOI: 10.3390/v10100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The Bowman‒Birk inhibitor (BBI), a protease inhibitor derived from soybeans, has been extensively studied in anti-tumor and anti-inflammation research. We recently reported that BBI has an anti-HIV-1 property in primary human macrophages. Because HSV-2 infection plays a role in facilitating HIV-1 sexual transmission, we thus examined whether BBI has the ability to inhibit HSV-2 infection. We demonstrated that BBI could potently inhibit HSV-2 replication in human cervical epithelial cells (End1/E6E7). This BBI-mediated HSV-2 inhibition was partially through blocking HSV-2-mediated activation of NF-κB and p38 MAPK pathways. In addition, BBI could activate the JAK/STAT pathway and enhance the expression of several antiviral interferon-stimulated genes (ISGs). Furthermore, BBI treatment of End1/E6E7 cells upregulated the expression of tight junction proteins and reduced HSV-2-mediated cellular ubiquitinated proteins’ degradation through suppressing the ubiquitin‒proteasome system. These observations indicate that BBI may have therapeutic potential for the prevention and treatment of HSV-2 infections.
Collapse
|
49
|
Ibáñez FJ, Farías MA, Gonzalez-Troncoso MP, Corrales N, Duarte LF, Retamal-Díaz A, González PA. Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro. Front Microbiol 2018; 9:2406. [PMID: 30386309 PMCID: PMC6198116 DOI: 10.3389/fmicb.2018.02406] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) produce lifelong infections and are highly prevalent in the human population. Both viruses elicit numerous clinical manifestations and produce mild-to-severe diseases that affect the skin, eyes, and brain, among others. Despite the existence of numerous antivirals against HSV, such as acyclovir and acyclovir-related analogs, virus variants that are resistant to these compounds can be isolated from immunosuppressed individuals. For such isolates, second-line drugs can be used, yet they frequently produce adverse side effects. Furthermore, topical antivirals for treating cutaneous HSV infections usually display poor to moderate efficacy. Hence, better or novel anti-HSV antivirals are needed and details on their mechanisms of action would be insightful for improving their efficacy and identifying specific molecular targets. Here, we review and dissect the lytic replication cycles of herpes simplex viruses, discussing key steps involved in cell infection and the processes that yield new virions. Additionally, we review and discuss rapid, easy-to-perform and simple experimental approaches for studying key steps involved in HSV replication to facilitate the identification of the mechanisms of action of anti-HSV compounds.
Collapse
Affiliation(s)
- Francisco J Ibáñez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria P Gonzalez-Troncoso
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
β-Carboline derivatives as novel antivirals for herpes simplex virus. Int J Antimicrob Agents 2018; 52:459-468. [DOI: 10.1016/j.ijantimicag.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/06/2018] [Accepted: 06/30/2018] [Indexed: 11/21/2022]
|