1
|
Chauhan N, Gaur KK, Asuru TR, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
2
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
3
|
Uemura K, Nobori H, Sato A, Toba S, Kusakabe S, Sasaki M, Tabata K, Matsuno K, Maeda N, Ito S, Tanaka M, Anraku Y, Kita S, Ishii M, Kanamitsu K, Orba Y, Matsuura Y, Hall WW, Sawa H, Kida H, Matsuda A, Maenaka K. 2-thiouridine is a broad-spectrum antiviral nucleoside analogue against positive-strand RNA viruses. Proc Natl Acad Sci U S A 2023; 120:e2304139120. [PMID: 37831739 PMCID: PMC10589713 DOI: 10.1073/pnas.2304139120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.
Collapse
Affiliation(s)
- Kentaro Uemura
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - Haruaki Nobori
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
| | - Shinsuke Toba
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Shinji Kusakabe
- Drug Discovery and Disease Research Laboratory, Shionogi & Co. Ltd., Osaka561-0825, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Keita Matsuno
- Unit of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Naoyoshi Maeda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayu Tanaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, Tokyo113-0033, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, DublinD04, Ireland
- Global Virus Network, Baltimore, MD21201
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
- Global Virus Network, Baltimore, MD21201
| | - Hiroshi Kida
- Laboratory for Biologics Development, International Institute for Zoonosis Control, Hokkaido University, Sapporo001-0020, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo001-0021, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo060-0812, Japan
| |
Collapse
|
4
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
5
|
Delgado-Maldonado T, Moreno-Herrera A, Pujadas G, Vázquez-Jiménez LK, González-González A, Rivera G. Recent advances in the development of methyltransferase (MTase) inhibitors against (re)emerging arboviruses diseases dengue and Zika. Eur J Med Chem 2023; 252:115290. [PMID: 36958266 DOI: 10.1016/j.ejmech.2023.115290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Emerging and/or re-emerging viral diseases such as dengue and Zika are a worldwide concern. Therefore, new antiviral therapeutics are necessary. In this sense, a non-structural protein with methyltransferase (MTase) activity is an attractive drug target because it plays a crucial role in dengue and Zika virus replication. Different drug strategies such as virtual screening, molecular docking, and molecular dynamics have identified new inhibitors that bind on the MTase active site. Therefore, in this review, we analyze MTase inhibitors, including S-adenosyl-L-methionine (SAM), S-adenosyl-l-homocysteine (SAH) and guanosine-5'-triphosphate (GTP) analogs, nitrogen-containing heterocycles (pyrimidine, adenosine, and pyridine), urea derivatives, and natural products. Advances in the design of MTase inhibitors could lead to the optimization of a possible single or broad-spectrum antiviral drug against dengue and Zika virus.
Collapse
Affiliation(s)
- Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gerard Pujadas
- Departament de Bioquímica i Biotecnologia, Research group in Cheminformatics & Nutrition, Campus de Sescelades, Universitat Rovira i Virgili, 43007, Tarragona, Catalonia, Spain
| | - Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico.
| |
Collapse
|
6
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
7
|
Abstract
Flaviviruses are vector-borne pathogens capable of causing devastating human diseases. The re-emergence of Zika in 2016 notoriously led to a widescale epidemic in the Americas. New daunting evidence suggests that a single mutation in Zika virus genome may increase transmission and pathogenesis, further highlighting the need to be prepared for flavivirus outbreaks. Dengue, in particular infects about 400 million people each year, leading to reoccurring local outbreaks. Public health efforts to mitigate flavivirus transmission is largely dependent on vector control strategies, as only a limited number of flavivirus vaccines have been developed thus far. There are currently no commercially available antivirals for flaviviruses, leaving supportive care as the primary treatment option. In this review, we will briefly paint a broad picture of the flavivirus landscape in terms of therapeutics, with particular focus on viral targets, promising novel compounds entering the drug discovery pipeline, as well as model systems for evaluating drug efficacy.
Collapse
|
8
|
Taniguchi K, Ando Y, Kobayashi M, Toba S, Nobori H, Sanaki T, Noshi T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022; 14:v14010111. [PMID: 35062315 PMCID: PMC8777714 DOI: 10.3390/v14010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takao Sanaki
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takeshi Noshi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Makoto Kawai
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Ryu Yoshida
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Takao Shishido
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +81-6-6331-7263
| | - Akira Naito
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| |
Collapse
|
9
|
Nakamura M, Uemura K, Saito-Tarashima N, Sato A, Orba Y, Sawa H, Matsuda A, Maenaka K, Minakawa N. Synthesis and anti-dengue virus activity of 5-ethynylimidazole-4-carboxamide (EICA) nucleotide prodrugs. Chem Pharm Bull (Tokyo) 2021; 70:220-225. [PMID: 34955490 DOI: 10.1248/cpb.c21-01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that 5-ethynyl-(1-β-D-ribofuranosyl)imidazole-4-carboxamide (1; EICAR) is a potent anti-dengue virus (DENV) compound but is cytotoxic to some cell lines, while its 4-thio derivative, 5-ethynyl-(4-thio-1-β-D-ribofuranosyl)imidazole-4-carboxamide (2; 4'-thioEICAR), has less cytotoxicity but also less anti-DENV activity. Based on the hypothesis that the lower anti-DENV activity of 2 is due to reduced susceptibility to phosphorylation by cellular kinase(s), we investigated whether a monophosphate prodrug of 2 can improve its activity. Here, we first prepared two types of prodrug of 1, which revealed that the S-acyl-2-thioethyl (SATE) prodrug had stronger anti-DENV activity than the aryloxyphosphoramidate (so-called ProTide) prodrug. Based on these findings, we next prepared the SATE prodrug of 4'-thioEICAR 18. As expected, the resulting 18 showed potent anti-DENV activity, which was comparable to that of 1; however, its cytotoxicity was also increased relative to 2. Our findings suggest that prodrugs of 4'-thioribonucleoside derivatives such as EICAR (1) represent an effective approach to developing potent biologically active compounds; however, the balance between antiviral activity and cytotoxicity remains to be addressed.
Collapse
Affiliation(s)
- Motoki Nakamura
- Graduate School of Pharmaceutical Science, Tokushima University
| | - Kentaro Uemura
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd.,Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University.,International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University.,One Health Research Center, Hokkaido University
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University.,Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University
| | | |
Collapse
|
10
|
Norshidah H, Vignesh R, Lai NS. Updates on Dengue Vaccine and Antiviral: Where Are We Heading? Molecules 2021; 26:molecules26226768. [PMID: 34833860 PMCID: PMC8620506 DOI: 10.3390/molecules26226768] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 100–400 million people from more than 100 countries in the tropical and subtropical world are affected by dengue infections. Recent scientific breakthroughs have brought new insights into novel strategies for the production of dengue antivirals and vaccines. The search for specific dengue inhibitors is expanding, and the mechanisms for evaluating the efficacy of novel drugs are currently established, allowing for expedited translation into human trials. Furthermore, in the aftermath of the only FDA-approved vaccine, Dengvaxia, a safer and more effective dengue vaccine candidate is making its way through the clinical trials. Until an effective antiviral therapy and licensed vaccine are available, disease monitoring and vector population control will be the mainstays of dengue prevention. In this article, we highlighted recent advances made in the perspectives of efforts made recently, in dengue vaccine development and dengue antiviral drug.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Correspondence:
| |
Collapse
|
11
|
Uemura K, Nobori H, Sato A, Sanaki T, Toba S, Sasaki M, Murai A, Saito-Tarashima N, Minakawa N, Orba Y, Kariwa H, Hall WW, Sawa H, Matsuda A, Maenaka K. 5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2. iScience 2021; 24:103120. [PMID: 34541466 PMCID: PMC8433052 DOI: 10.1016/j.isci.2021.103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Newly emerging or re-emerging viral infections continue to cause significant morbidity and mortality every year worldwide, resulting in serious effects on both health and the global economy. Despite significant drug discovery research against dengue viruses (DENVs) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), no fully effective and specific drugs directed against these viruses have been discovered. Here, we examined the anti-DENV activity of tubercidin derivatives from a compound library from Hokkaido University and demonstrated that 5-hydroxymethyltubercidin (HMTU, HUP1108) possessed both potent anti-flavivirus and anti-coronavirus activities at submicromolar levels without significant cytotoxicity. Furthermore, HMTU inhibited viral RNA replication and specifically inhibited replication at the late stages of the SARS-CoV-2 infection process. Finally, we demonstrated that HMTU 5′-triphosphate inhibited RNA extension catalyzed by the viral RNA-dependent RNA polymerase. Our findings suggest that HMTU has the potential of serving as a lead compound for the development of a broad spectrum of antiviral agents, including SARS-CoV-2. We identified tubercidin derivatives as broad-spectrum antiviral compounds HMTU exhibited potent antiviral activity against flaviviruses and coronaviruses HMTU specifically inhibited replication at a late stage of the viral infection process HMTU 5′-triphosphate inhibited RNA extension catalyzed by viral RdRp
Collapse
Affiliation(s)
- Kentaro Uemura
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Haruaki Nobori
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Corresponding author
| | - Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shinsuke Toba
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akiho Murai
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | | | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Tokushima, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W. Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Ireland
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Corresponding author
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Corresponding author
| |
Collapse
|
12
|
Langerman SD, Ververs M. Micronutrient Supplementation and Clinical Outcomes in Patients with Dengue Fever. Am J Trop Med Hyg 2020; 104:45-51. [PMID: 33258437 PMCID: PMC7790074 DOI: 10.4269/ajtmh.20-0731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue fever (DF) is a viral infection that is common in tropical countries and represents a significant cause of global morbidity and mortality. Despite its prevalence and severity, treatment options for DF remain limited and consist primarily of supportive measures. Several recent studies have concluded that micronutrient supplementation may improve clinical outcomes in patients with DF, but no review has summarized and synthesized these findings. We conducted a literature review to identify articles investigating the effect of micronutrient supplementation on clinical outcomes among patients with DF. We found several studies which indicated that supplemental vitamin C, vitamin D, vitamin E, and zinc may be useful adjuncts in DF treatment. Folic acid supplementation did not appear to affect clinical outcomes. The reviewed studies have significant limitations including small sample sizes and limited data about the baseline nutritional status of study subjects. We identify a need for additional high-quality randomized trials to elucidate the role of micronutrient supplementation in DF treatment.
Collapse
Affiliation(s)
| | - Mija Ververs
- Address correspondence to Mija Ververs, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333. E-mail:
| |
Collapse
|
13
|
Identification of quinolone derivatives as effective anti-Dengue virus agents. Antiviral Res 2020; 184:104969. [PMID: 33160000 DOI: 10.1016/j.antiviral.2020.104969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 11/20/2022]
Abstract
Dengue virus (DENV) infection is one of the most important infectious diseases in tropical and subtropical regions around the world. Previously, we performed an initial phenotypic screening of 7000 compounds using DENV type 2 (DENV2)-infected BHK-21 cells to identify small molecules which could inhibit virus replication. In this study, we describe two novel compounds with anti-DENV2 activity, tentatively named Compound-X and Compound-Y. Both compounds possess a quinolone skeleton, and the EC50s of Compound-X and Compound-Y against DENV2 were 3.9 μM and 9.2 μM, respectively. Based on a DENV replicon assay, it was suggested that these compounds have anti-DENV2 activity by inhibition of a step in virus replication. Furthermore, using mutational analysis we obtained compounds-resistant to DENV2 infection and identified a mutation, V130A in the NS5 methyltransferase (MTase) domain. However, these compounds did not inhibit MTase activity. In addition, incorporation of an additional NS1 N246D mutation with the NS5 V130A mutation in DENV2 resulted in recovery of viral replication and a further reduction of the sensitivity to the quinolone compounds by an unknown mechanism. Therefore further investigations are required to clarify the antiviral mechanisms of these quinolone compounds.
Collapse
|
14
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Torii S, Orba Y, Sasaki M, Tabata K, Wada Y, Carr M, Hobson-Peters J, Hall RA, Takada A, Fukuhara T, Matsuura Y, Hall WW, Sawa H. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 2020; 295:7941-7957. [PMID: 32341071 PMCID: PMC7278350 DOI: 10.1074/jbc.ra119.012303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chikungunya fever is a re-emerging zoonotic disease caused by chikungunya virus (CHIKV), a member of the Alphavirus genus in the Togaviridae family. Only a few studies have reported on the host factors required for intracellular CHIKV trafficking. Here, we conducted an imaging-based siRNA screen to identify human host factors for intracellular trafficking that are involved in CHIKV infection, examined their interactions with CHIKV proteins, and investigated the contributions of these proteins to CHIKV infection. The results of the siRNA screen revealed that host endosomal sorting complexes required for transport (ESCRT) proteins are recruited during CHIKV infection. Co-immunoprecipitation analyses revealed that both structural and nonstructural CHIKV proteins interact with hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a component of the ESCRT-0 complex. We also observed that HGS co-localizes with the E2 protein of CHIKV and with dsRNA, a marker of the replicated CHIKV genome. Results from gene knockdown analyses indicated that, along with other ESCRT factors, HGS facilitates both genome replication and post-translational steps during CHIKV infection. Moreover, we show that ESCRT factors are also required for infections with other alphaviruses. We conclude that during CHIKV infection, several ESCRT factors are recruited via HGS and are involved in viral genome replication and post-translational processing of viral proteins.
Collapse
Affiliation(s)
- Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Michael Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Ayato Takada
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - William W Hall
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, Dublin, Ireland
- Global Virus Network, Baltimore, Maryland, USA
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Yokokawa F. Recent progress on phenotype-based discovery of dengue inhibitors. RSC Med Chem 2020; 11:541-551. [PMID: 33479655 DOI: 10.1039/d0md00052c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue fever is the world's most prevalent mosquito-borne viral disease caused by the four serotypes of dengue virus, which are widely spread throughout tropical and sub-tropical countries. There has been an urgent need to identify an effective and safe dengue inhibitor as a therapeutic and a prophylactic agent for dengue fever. Most clinically approved antiviral drugs for the treatment of human immunodeficiency syndrome-1 (HIV-1) and hepatitis C virus (HCV) target virally encoded enzymes such as protease or polymerase. Inhibitors of these enzymes were typically identified by target-based screening followed by optimization via structure-based design. However, due to the lack of success to date of research efforts to identify dengue protease and polymerase inhibitors, alternative strategies for anti-dengue drug discovery need to be considered. As a complementary approach to the target-based drug discovery, phenotypic screening is a strategy often used in identification of new chemical starting points with novel mechanisms of action in the area of infectious diseases such as antibiotics, antivirals, and anti-parasitic agents. This article is an overview of recent reports on dengue phenotypic screens and discusses phenotype-based hit-to-lead chemistry optimization. The challenges encountered and the outlook on dengue phenotype-based lead discovery are discussed at the end of this article.
Collapse
Affiliation(s)
- Fumiaki Yokokawa
- Novartis Institute for Tropical Diseases , Emeryville , CA 94608 , USA .
| |
Collapse
|
17
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
19
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|