1
|
Carvajal JJ, García-Castillo V, Cuellar SV, Campillay-Véliz CP, Salazar-Ardiles C, Avellaneda AM, Muñoz CA, Retamal-Díaz A, Bueno SM, González PA, Kalergis AM, Lay MK. New insights into the pathogenesis of SARS-CoV-2 during and after the COVID-19 pandemic. Front Immunol 2024; 15:1363572. [PMID: 38911850 PMCID: PMC11190347 DOI: 10.3389/fimmu.2024.1363572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the respiratory distress condition known as COVID-19. This disease broadly affects several physiological systems, including the gastrointestinal, renal, and central nervous (CNS) systems, significantly influencing the patient's overall quality of life. Additionally, numerous risk factors have been suggested, including gender, body weight, age, metabolic status, renal health, preexisting cardiomyopathies, and inflammatory conditions. Despite advances in understanding the genome and pathophysiological ramifications of COVID-19, its precise origins remain elusive. SARS-CoV-2 interacts with a receptor-binding domain within angiotensin-converting enzyme 2 (ACE2). This receptor is expressed in various organs of different species, including humans, with different abundance. Although COVID-19 has multiorgan manifestations, the main pathologies occur in the lung, including pulmonary fibrosis, respiratory failure, pulmonary embolism, and secondary bacterial pneumonia. In the post-COVID-19 period, different sequelae may occur, which may have various causes, including the direct action of the virus, alteration of the immune response, and metabolic alterations during infection, among others. Recognizing the serious adverse health effects associated with COVID-19, it becomes imperative to comprehensively elucidate and discuss the existing evidence surrounding this viral infection, including those related to the pathophysiological effects of the disease and the subsequent consequences. This review aims to contribute to a comprehensive understanding of the impact of COVID-19 and its long-term effects on human health.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Valeria García-Castillo
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | - Shelsy V. Cuellar
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - Camila Salazar-Ardiles
- Center for Research in Physiology and Altitude Medicine (FIMEDALT), Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad Santo Tomás, Antofagasta, Chile
| | - Christian A. Muñoz
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Angello Retamal-Díaz
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Research Center in Immunology and Biomedical Biotechnology of Antofagasta (CIIBBA), University of Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
2
|
Zheng Z, Zhou J, Song Y. Safety of RNA-Dependent RNA Polymerase Inhibitors, Molnupiravir and VV116, for Oral Treatment of COVID-19: A Meta-Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:275-285. [PMID: 38751873 PMCID: PMC11091272 DOI: 10.30476/ijms.2024.99837.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 11/19/2023] [Indexed: 05/18/2024]
Abstract
Background The RNA-dependent RNA polymerase (RdRp) inhibitors, molnupiravir and VV116, have the potential to maximize clinical benefits in the oral treatment of COVID-19. Subjects who consume these drugs may experience an increased incidence of adverse events. This study aimed to evaluate the safety profile of molnupiravir and VV116. Methods A comprehensive search of scientific and medical databases, such as PubMed Central/Medline, Embase, Web of Science, and Cochrane Library, was conducted to find relevant articles in English from January 2020 to June 2023. Any kind of adverse events reported in the study were pooled and analyzed in the drug group versus the control group. Estimates of risk effects were summarized through the random effects model using Review Manager version 5.2, and sensitivity analysis was performed by Stata 17.0 software. Results Fifteen studies involving 32,796 subjects were included. Eleven studies were placebo-controlled, and four were Paxlovid-controlled. Twelve studies reported adverse events for molnupiravir, and three studies described adverse events for VV116. The total odds ratio (OR) for adverse events in the RdRp inhibitor versus the placebo-controlled group was 1.01 (95% CI=0.84-1.22; I2=26%), P=0.88. The total OR for adverse events in the RdRp inhibitor versus the Paxlovid-controlled group was 0.32 (95% CI=0.16-0.65; I2=87%), P=0.002. Individual drug subgroup analysis in the placebo-controlled study showed that compared with the placebo group, a total OR for adverse events was 0.97 (95% CI, 0.85-1.10; I2=0%) in the molnupiravir group and 3.77 (95% CI=0.08-175.77; I2=85%) in the VV116 group. Conclusion The RdRp inhibitors molnupiravir and VV116 are safe for oral treatment of COVID-19. Further evidence is necessary that RdRp inhibitors have a higher safety profile than Paxlovid.
Collapse
Affiliation(s)
- Zequn Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo
- Department of Cardiology, Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Jiaozhi Zhou
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
3
|
Tang WF, Chang YH, Lin CC, Jheng JR, Hsieh CF, Chin YF, Chang TY, Lee JC, Liang PH, Lin CY, Lin GH, Cai JY, Chen YL, Chen YS, Tsai SK, Liu PC, Yang CM, Shadbahr T, Tang J, Hsu YL, Huang CH, Wang LY, Chen CC, Kau JH, Hung YJ, Lee HY, Wang WC, Tsai HP, Horng JT. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024; 68:e0095623. [PMID: 38446062 PMCID: PMC10989008 DOI: 10.1128/aac.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Viral RNA-dependent RNA polymerase (RdRp), a highly conserved molecule in RNA viruses, has recently emerged as a promising drug target for broad-acting inhibitors. Through a Vero E6-based anti-cytopathic effect assay, we found that BPR3P0128, which incorporates a quinoline core similar to hydroxychloroquine, outperformed the adenosine analog remdesivir in inhibiting RdRp activity (EC50 = 0.66 µM and 3 µM, respectively). BPR3P0128 demonstrated broad-spectrum activity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. When introduced after viral adsorption, BPR3P0128 significantly decreased SARS-CoV-2 replication; however, it did not affect the early entry stage, as evidenced by a time-of-drug-addition assay. This suggests that BPR3P0128's primary action takes place during viral replication. We also found that BPR3P0128 effectively reduced the expression of proinflammatory cytokines in human lung epithelial Calu-3 cells infected with SARS-CoV-2. Molecular docking analysis showed that BPR3P0128 targets the RdRp channel, inhibiting substrate entry, which implies it operates differently-but complementary-with remdesivir. Utilizing an optimized cell-based minigenome RdRp reporter assay, we confirmed that BPR3P0128 exhibited potent inhibitory activity. However, an enzyme-based RdRp assay employing purified recombinant nsp12/nsp7/nsp8 failed to corroborate this inhibitory activity. This suggests that BPR3P0128 may inhibit activity by targeting host-related RdRp-associated factors. Moreover, we discovered that a combination of BPR3P0128 and remdesivir had a synergistic effect-a result likely due to both drugs interacting with separate domains of the RdRp. This novel synergy between the two drugs reinforces the potential clinical value of the BPR3P0128-remdesivir combination in combating various SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Wen-Fang Tang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chin Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chung-Fan Hsieh
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Fan Chin
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Tein-Yao Chang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-Yi Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Guan-Hua Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jie-Yun Cai
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Shan-Ko Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Ping-Cheng Liu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Tolou Shadbahr
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Division of Medical Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Jyh-Hwa Kau
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Hsin-Yi Lee
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wen-Chieh Wang
- Institute of Biotechnology and Pharmaceutical Research, Value-Added MedChem Innovation Center, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Hui-Ping Tsai
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei, Taiwan
| | - Jim-Tong Horng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
4
|
Rabie AM, Eltayb WA. Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study. Mol Biotechnol 2024; 66:592-611. [PMID: 36690820 PMCID: PMC9870775 DOI: 10.1007/s12033-022-00551-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Recently, natural and synthetic nitrogenous heterocyclic antivirals topped the scene as first choices for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying disease, the coronavirus disease 2019 (COVID-19). Meanwhile, the mysterious evolution of a new strain of SARS-CoV-2, the Omicron variant and its sublineages, caused a new defiance in the continual COVID-19 battle. Hitting the two principal coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) synchronously using the same ligand is a highly effective novel dual pathway to hinder SARS-CoV-2 reproduction and stop COVID-19 progression irrespective of the SARS-CoV-2 variant type since RdRps and ExoNs are widely conserved among all SARS-CoV-2 strains. Herein, the present computational/biological study screened our previous small libraries of nitrogenous heterocyclic compounds, searching for the most ideal drug candidates predictably able to efficiently act through this double approach. Theoretical filtration gave rise to three promising antioxidant nitrogenous heterocyclic compounds of the 1,3,4-thiadiazole type, which are CoViTris2022, Taroxaz-26, and ChloViD2022. Further experimental evaluation proved for the first time, utilizing the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that ChloViD2022, CoViTris2022, and Taroxaz-26 could effectively inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 0.17 and 0.41 μM for ChloViD2022, 0.21 and 0.69 μM for CoViTris2022, and 0.23 and 0.73 μM for Taroxaz-26, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico outcomes greatly supported these biochemical results, proposing that the three molecules potently strike the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's vital active sites. Moreover, the idealistic pharmacophoric hallmarks of CoViTris2022, Taroxaz-26, and ChloViD2022 molecules relatively make them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their highly flexible structures open for various kinds of chemical derivatization. To cut it short, the present pivotal findings of this comprehensive work disclosed the promising repositioning potentials of the three 2-aminothiadiazoles, CoViTris2022, Taroxaz-26, and ChloViD2022, to successfully interfere with the crucial biological interactions of the coronaviral-2 polymerase/exoribonuclease with the four principal RNA nucleotides, and, as a result, cure COVID-19 infection, encouraging us to rapidly start the three drugs' broad preclinical/clinical anti-COVID-19 evaluations.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City, Mansoura, 35511, Dakahlia Governorate, Egypt.
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City, Dikernis, 35744, Dakahlia Governorate, Egypt.
| | - Wafa A Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, Nher Anile, Sudan.
| |
Collapse
|
5
|
Huang W, Liu W, Yu T, Zhang Z, Zhai L, Huang P, Lu Y. Effect of anti-COVID-19 drugs on patients with cancer. Eur J Med Chem 2024; 268:116214. [PMID: 38367490 DOI: 10.1016/j.ejmech.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
The clinical treatment of patients with cancer who are also diagnosed with coronavirus disease (COVID-19) has been a challenging issue since the outbreak of COVID-19. Therefore, it is crucial to understand the effects of commonly used drugs for treating COVID-19 in patients with cancer. Hence, this review aims to provide a reference for the clinical treatment of patients with cancer to minimize the losses caused by the COVID-19 pandemic. In this study, we also focused on the relationship between COVID-19, commonly used drugs for treating COVID-19, and cancer. We specifically investigated the effect of these drugs on tumor cell proliferation, migration, invasion, and apoptosis. The potential mechanisms of action of these drugs were discussed and evaluated. We found that most of these drugs showed inhibitory effects on tumors, and only in a few cases had cancer-promoting effects. Furthermore, inappropriate usage of these drugs may lead to irreversible kidney and heart damage. Finally, we have clarified the use of different drugs, which can provide useful guidance for the clinical treatment of cancer patients diagnosed with COVID-19.
Collapse
Affiliation(s)
- Weicai Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Wenyu Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tingting Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Zhaoyang Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lingyun Zhai
- Gynecology Department, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Panpan Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Yao Lu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
6
|
Hao Z, Liu Y, Guan W, Pan J, Li M, Wu J, Liu Y, Kuang H, Yang B. Syringa reticulata potently inhibits the activity of SARS-CoV-2 3CL protease. Biochem Biophys Rep 2024; 37:101626. [PMID: 38371528 PMCID: PMC10873874 DOI: 10.1016/j.bbrep.2023.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 02/20/2024] Open
Abstract
The ongoing coronavirus infectious disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still urgently requires effective treatments. The 3C-like (3CL) protease of SARS-CoV-2 is a highly conserved cysteine protease that plays an important role in the viral life cycle and host inflammation, providing an ideal target for developing broad-spectrum antiviral drugs. Herein, we describe the discovery of a large number of herbs mainly produced in Heilongjiang Province, China, that exhibited different inhibitory activities against SARS-CoV-2 3CL protease. We confirmed that Syringa reticulata, which is used for clinical treatment of chronic bronchitis and asthma, is a specific and potent inhibitor of 3CL protease. A 70 % ethanol extract of S. reticulata dose-dependently inhibited the cleavage activity of 3CL protease in a fluorescence resonance energy transfer assay with an IC50 value of 0.0018 mg/mL, but had minimal effect in pseudovirus-based cell entry and luciferase-based RNA-dependent RNA polymerase assays. These results suggest that S. reticulata will be a potential leading candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Zhichao Hao
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - MengMeng Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Jiatong Wu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, No. 24 Haping Road, Xiangfang District, Harbin, 150040, PR China
| |
Collapse
|
7
|
Yang L, Zeng XT, Luo RH, Ren SX, Liang LL, Huang QX, Tang Y, Fan H, Ren HY, Zhang WJ, Zheng YT, Cheng W. SARS-CoV-2 NSP12 utilizes various host splicing factors for replication and splicing regulation. J Med Virol 2024; 96:e29396. [PMID: 38235848 DOI: 10.1002/jmv.29396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
The RNA-dependent RNA polymerase (RdRp) is a crucial element in the replication and transcription of RNA viruses. Although the RdRps of lethal human coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) have been extensively studied, the molecular mechanism of the catalytic subunit NSP12, which is involved in pathogenesis, remains unclear. In this study, the biochemical and cell biological results demonstrate the interactions between SARS-CoV-2 NSP12 and seven host proteins, including three splicing factors (SLU7, PPIL3, and AKAP8). The entry efficacy of SARS-CoV-2 considerably decreased when SLU7 or PPIL3 was knocked out, indicating that abnormal splicing of the host genome was responsible for this occurrence. Furthermore, the polymerase activity and stability of SARS-CoV-2 RdRp were affected by the three splicing factors to varying degrees. In addition, NSP12 and its homologues from SARS-CoV and MERS-CoV suppressed the alternative splicing of cellular genes, which were influenced by the three splicing factors. Overall, our research illustrates that SARS-CoV-2 NSP12 can engage with various splicing factors, thereby impacting virus entry, replication, and gene splicing. This not only improves our understanding of how viruses cause diseases but also lays the foundation for the development of antiviral therapies.
Collapse
Affiliation(s)
- Li Yang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Tao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rong-Hua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si-Xue Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin-Lin Liang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Xia Huang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Tang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hong Fan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hai-Yan Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Homma T, Okamoto M, Koharazawa R, Hayakawa M, Fushimi T, Tode C, Hirota Y, Osakabe N, Baba M, Suhara Y. Exploring Novel Vitamin K Derivatives with Anti-SARS-CoV-2 Activity. ACS OMEGA 2023; 8:42248-42263. [PMID: 38024673 PMCID: PMC10652723 DOI: 10.1021/acsomega.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
From our compound library of vitamin K derivatives, we found that some compounds exhibited anti-SARS-CoV-2 activity in VeroE6/TMPRSS2 cells. The common structure of these compounds was menaquinone-2 (MK-2) with either the m-methylphenyl or the 1-naphthyl group introduced at the end of the side chain. Therefore, new vitamin K derivatives having more potent anti-SARS-CoV-2 activity were explored by introducing various functional groups at the ω-position of the side chain. MK-2 derivatives with a purine moiety showed the most potent antiviral activity among the derivatives. We also found that their mechanism of action was the inhibition of RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. The chemical structures of our compounds were completely different from those of nucleic acid derivatives such as remdesivir and molnupiravir, clinically approved RdRp inhibitors for COVID-19 treatment, suggesting that our compounds may be effective against viruses resistant to these nucleic acid derivatives.
Collapse
Affiliation(s)
- Taiki Homma
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Mika Okamoto
- Division
of Infection Control Research, Center for Advanced Science Research
and Promotion, Kagoshima University, Kagoshima 890-8580, Japan
| | - Ryohto Koharazawa
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Mayu Hayakawa
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Taiki Fushimi
- Functional
Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Chisato Tode
- Instrumental
Analysis Center, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Yoshihisa Hirota
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
- Functional
Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Naomi Osakabe
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
- Functional
Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Masanori Baba
- Division
of Infection Control Research, Center for Advanced Science Research
and Promotion, Kagoshima University, Kagoshima 890-8580, Japan
| | - Yoshitomo Suhara
- Department
of Bioscience and Engineering, College of Systems Engineering and
Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
- Functional
Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
9
|
Tripp RA, Martin DE. Screening Drugs for Broad-Spectrum, Host-Directed Antiviral Activity: Lessons from the Development of Probenecid for COVID-19. Viruses 2023; 15:2254. [PMID: 38005930 PMCID: PMC10675723 DOI: 10.3390/v15112254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets. Screening efforts should be sufficiently robust to identify all potential targets regardless of the antiviral mechanism to avoid misleading conclusions.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
10
|
Shao Y, Li L, Zhao J, Ren G, Liu Q, Lu T, Xu L. Characterization of the activity of 2'-C- methylcytidine against infectious pancreatic necrosis virus replication. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109116. [PMID: 37758098 DOI: 10.1016/j.fsi.2023.109116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV) is the pathogen of infectious pancreatic necrosis (IPN), which can cause high mortality in salmonids, harm the healthy development of salmon-trout aquaculture, and lead to huge economic losses. However, in China, there is currently neither a commercially available vaccine to prevent IPNV infection nor antiviral drugs to treat IPNV infection. The genome of IPNV consists of two segments of dsRNA named A and B. Segment B encodes the RNA-dependent RNA-polymerase (RdRp) VP1 which is essential for viral RNA replication and is therefore considered an important target for the development of antiviral drugs. In this study, we investigate whether 2'-C-methylcytidine (2CMC), a nucleoside analog which target viral polymerases, has an inhibitory effect on IPNV both in vitro and in vivo. The results show that 2CMC inhibits IPNV infection by inhibiting viral RNA replication rather than viral internalization or attachment. In vivo experiment results showed that 2CMC could inhibit viral RNA replication and reduce viral load in rainbow trout (Oncorhynchus mykiss). In our study, we have revealed that 2CMC has a potent inhibitory effect against IPNV infection. Our data suggest that 2CMC is an attractive anti-IPNV drug candidate which will be highly valuable for the development of potential therapeutics for IPNV.
Collapse
Affiliation(s)
- Yizhi Shao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Linfang Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Guangming Ren
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Qi Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Tongyan Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| | - Liming Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
11
|
Huang ZX, Zhou ST, Wang J, Yang ZB, Wang Z. Remdesivir inhibits Porcine epidemic diarrhea virus infection in vitro. Heliyon 2023; 9:e21468. [PMID: 38027806 PMCID: PMC10663732 DOI: 10.1016/j.heliyon.2023.e21468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious and pathogenic virus that causes symptoms such as diarrhea, vomiting, weight loss, and even death in piglets. Due to its high transmission rate, PEDV has resulted in significant global losses. Although some vaccines have been developed and utilized to prevent PEDV, their effectiveness is limited due to the virus's mutations. Therefore, it is imperative to investigate new strategies to combat PEDV. Remdesivir, a classic antiviral drug for coronaviruses, has been proven in our experiment to effectively suppress PEDV replication in Vero and LLC-PK1 cells. Additionally, the cell experiment demonstrated its direct inhibition of PEDV RNA-dependent RNA polymerase (RdRp) enzyme activity. Molecular docking simulations were employed to predict the binding site of remdesivir and PEDV RdRp. Moreover, we observed that remdesivir does not impact the production of inflammatory factors and exhibits antagonistic effects with exogenous nucleosides. Furthermore, we conducted RNA-Seq analysis to investigate the global changes in transcriptome of infected cells treated with remdesivir. Overall, our findings indicate that remdesivir holds promise as a potential candidate for the treatment of PEDV infection.
Collapse
Affiliation(s)
- Zi-Xin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Ting Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
| | - Zhi-Biao Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Rabie AM, Abdel-Dayem MA, Abdalla M. Promising Experimental Anti-SARS-CoV-2 Agent "SLL-0197800": The Prospective Universal Inhibitory Properties against the Coming Versions of the Coronavirus. ACS OMEGA 2023; 8:35538-35554. [PMID: 37810715 PMCID: PMC10552502 DOI: 10.1021/acsomega.2c08073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/22/2023] [Indexed: 10/10/2023]
Abstract
Isoquinoline derivatives having some nucleosidic structural features are considered as candidate choices for effective remediation of the different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their following disease, the coronavirus disease 2019 (COVID-19). SLL-0197800 is a recently discovered isoquinoline compound with potential strong universal anticoronaviral activities against SARS-CoV-2 and its previous strains. SLL-0197800 nonspecifically hits the main protease (Mpro) enzyme of the different coronaviruses. Herein in the present study, we tested the probability of the previous findings of this experimental agent to be extended to comprise any coronavirus through concurrently disrupting the mutable-less replication enzymes like the RNA-dependent RNA polymerase (RdRp) protein as well as the 3'-to-5' exoribonuclease (ExoN) protein. The in vitro anti-RdRp/ExoN assay revealed the potent inhibitory activities of SLL-0197800 on the coronaviral replication with minute values of anti-RdRp and anti-RdRp/ExoN EC50 (about 0.16 and 0.27 μM, respectively). The preliminary in silico outcomes significantly supported these biochemical findings. To put it simply, the present important results of these extension efforts greatly reinforce and extend the SLL-0197800's preceding findings, showing that the restraining/blocking actions (i.e., inhibitory activities) of this novel investigational anti-SARS-CoV-2 agent against the Mpro protein could be significantly extended against other copying and multiplication enzymes such as RdRp and ExoN, highlighting the potential use of SLL-0197800 against the coming versions of the homicidal coronavirus (if any), i.e., revealing the probable nonspecific anticoronaviral features and qualities of this golden experimental drug against nearly any coronaviral strain, for instance, SARS-CoV-3.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Head
of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia
Governorate, Egypt
| | - Marwa A. Abdel-Dayem
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Horus University—Egypt (HUE), New Damietta 34518, Damietta Governorate, Egypt
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, PR China
| |
Collapse
|
13
|
Chatterjee S, Bhattacharya M, Dhama K, Lee SS, Chakraborty C. Molnupiravir's mechanism of action drives "error catastrophe" in SARS-CoV-2: A therapeutic strategy that leads to lethal mutagenesis of the virus. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:49-52. [PMID: 37397276 PMCID: PMC10300273 DOI: 10.1016/j.omtn.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do 24252, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| |
Collapse
|
14
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
15
|
Wang Z, Pan Q, Ma L, Zhao J, McIntosh F, Liu Z, Ding S, Lin R, Cen S, Finzi A, Liang C. Anthracyclines inhibit SARS-CoV-2 infection. Virus Res 2023; 334:199164. [PMID: 37379907 PMCID: PMC10305762 DOI: 10.1016/j.virusres.2023.199164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 μM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Fiona McIntosh
- Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Leonard RA, Rao VN, Bartlett A, Froggatt HM, Luftig MA, Heaton BE, Heaton NS. A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases. J Virol 2023; 97:e0059723. [PMID: 37578235 PMCID: PMC10506478 DOI: 10.1128/jvi.00597-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/11/2023] [Indexed: 08/15/2023] Open
Abstract
Multiple coronaviruses (CoVs) can cause respiratory diseases in humans. While prophylactic vaccines designed to prevent infection are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), incomplete vaccine efficacy, vaccine hesitancy, and the threat of other pathogenic CoVs for which vaccines do not exist have highlighted the need for effective antiviral therapies. While antiviral compounds targeting the viral polymerase and protease are already in clinical use, their sensitivity to potential resistance mutations as well as their breadth against the full range of human and preemergent CoVs remain incompletely defined. To begin to fill that gap in knowledge, we report here the development of an improved, noninfectious, cell-based fluorescent assay with high sensitivity and low background that reports on the activity of viral proteases, which are key drug targets. We demonstrate that the assay is compatible with not only the SARS-CoV-2 Mpro protein but also orthologues from a range of human and nonhuman CoVs as well as clinically reported SARS-CoV-2 drug-resistant Mpro variants. We then use this assay to define the breadth of activity of two clinically used protease inhibitors, nirmatrelvir and ensitrelvir. Continued use of this assay will help define the strengths and limitations of current therapies and may also facilitate the development of next-generation protease inhibitors that are broadly active against both currently circulating and preemergent CoVs. IMPORTANCE Coronaviruses (CoVs) are important human pathogens with the ability to cause global pandemics. Working in concert with vaccines, antivirals specifically limit viral disease in people who are actively infected. Antiviral compounds that target CoV proteases are already in clinical use; their efficacy against variant proteases and preemergent zoonotic CoVs, however, remains incompletely defined. Here, we report an improved, noninfectious, and highly sensitive fluorescent method of defining the sensitivity of CoV proteases to small molecule inhibitors. We use this approach to assay the activity of current antiviral therapies against clinically reported SARS-CoV-2 protease mutants and a panel of highly diverse CoV proteases. Additionally, we show this system is adaptable to other structurally nonrelated viral proteases. In the future, this assay can be used to not only better define the strengths and limitations of current therapies but also help develop new, broadly acting inhibitors that more broadly target viral families.
Collapse
Affiliation(s)
- Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vishwas N. Rao
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alexandria Bartlett
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Hussein MA, Borik RM, Nafie MS, Abo-Salem HM, Boshra SA, Mohamed ZN. Structure Activity Relationship and Molecular Docking of Some Quinazolines Bearing Sulfamerazine Moiety as New 3CLpro, cPLA2, sPLA2 Inhibitors. Molecules 2023; 28:6052. [PMID: 37630304 PMCID: PMC10460087 DOI: 10.3390/molecules28166052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The current work was conducted to synthesize several novel anti-inflammatory quinazolines having sulfamerazine moieties as new 3CLpro, cPLA2, and sPLA2 inhibitors. The thioureido derivative 3 was formed when compound 2 was treated with sulfamerazine. Also, compound 3 was reacted with NH2-NH2 in ethanol to produce the N-aminoquinazoline derivative. Additionally, derivative 4 was reacted with 4-hydroxy-3-methoxybenzaldehyde, ethyl chloroacetate, and/or diethyl oxalate to produce quinazoline derivatives 5, 6, and 12, respectively. The results of the pharmacological study indicated that the synthesized 4-6 and 12 derivatives showed good 3CLpro, cPLA2, and sPLA2 inhibitory activity. The IC50 values of the target compounds 4-6, and 12 against the SARS-CoV-2 main protease were 2.012, 3.68, 1.18, and 5.47 µM, respectively, whereas those of baicalein and ivermectin were 1.72 and 42.39 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against sPLA2 were 2.84, 2.73, 1.016, and 4.45 µM, respectively, whereas those of baicalein and ivermectin were 0.89 and 109.6 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against cPLA2 were 1.44, 2.08, 0.5, and 2.39 µM, respectively, whereas those of baicalein and ivermectin were 3.88 and 138.0 µM, respectively. Also, incubation of lung cells with LPS plus derivatives 4-6, and 12 caused a significant decrease in levels of sPLA2, cPLA2, IL-8, TNF-α, and NO. The inhibitory activity of the synthesized compounds was more pronounced compared to baicalein and ivermectin. In contrast to ivermectin and baicalein, bioinformatics investigations were carried out to establish the possible binding interactions between the newly synthesized compounds 2-6 and 12 and the active site of 3CLpro. Docking simulations were utilized to identify the binding affinity and binding mode of compounds 2-6 and 12 with the active sites of 3CLpro, sPLA2, and cPLA2 enzymes. Our findings demonstrated that all compounds had outstanding binding affinities, especially with the key amino acids of the target enzymes. These findings imply that compound 6 is a potential lead for the development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 quinazoline derivative-based drugs. Compound 6 was shown to have more antiviral activity than baicalein and against 3CLpro. Furthermore, the IC50 value of ivermectin against the SARS-CoV-2 main protease was revealed to be 42.39 µM, indicating that it has low effectiveness.
Collapse
Affiliation(s)
- Mohammed Abdalla Hussein
- Biotechnology Department, Faculty of Applied Heath Science Technology, October 6 University, Giza 28125, Egypt;
| | - Rita M. Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia;
| | - Mohamed S. Nafie
- Chemistry Department (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 28125, Egypt;
| | - Sylvia A. Boshra
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 28125, Egypt
| | - Zahraa N. Mohamed
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza 28125, Egypt;
| |
Collapse
|
18
|
Huang ZX, Zhou ST, Yang ZB, Wang Z. Molnupiravir Inhibits Porcine Epidemic Diarrhea Virus Infection In Vitro. Viruses 2023; 15:1317. [PMID: 37376616 DOI: 10.3390/v15061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a swine coronavirus that is highly infectious and prone to variation. Vaccines derived from traditional PEDV strains provide less protection against PEDV-variant strains. Furthermore; there is a complex diversity of sequences among various PEDV-variant strains. Therefore; there is an urgent need to develop alternative antiviral strategies to defend against PEDV. Molnupiravir is a nucleotide analogue that could replace natural nucleosides to restrain viral RNA replication. Our study provided evidence for the dose-dependent inhibition of PEDV replication by molnupiravir in Vero cells. Molnupiravir also exhibited a strong inhibitory effect on viral RNA and protein production. Our results demonstrated that molnupiravir inhibits PEDV RNA-dependent RNA polymerase (RdRp) activity and induces a high frequency of mutations in the PEDV genome. Further studies revealed that molnupiravir can reverse changes in the transcriptome caused by viral infection. In conclusion, our results indicated that molnupiravir has the potential to be an effective treatment for PEDV infection.
Collapse
Affiliation(s)
- Zi-Xin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Ting Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Biao Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Abdalla M, Rabie AM. Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Comput Biol Chem 2023; 104:107768. [PMID: 36842392 PMCID: PMC9450471 DOI: 10.1016/j.compbiolchem.2022.107768] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023]
Abstract
Nucleoside analogs/derivatives (NAs/NDs) with potent antiviral activities are now deemed very convenient choices for the treatment of coronavirus disease 2019 (COVID-19) arisen by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. At the same time, the appearance of a new strain of SARS-CoV-2, the Omicron variant, necessitates multiplied efforts in fighting COVID-19. Counteracting the crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) jointly altogether using the same inhibitor is a quite successful new plan to demultiplicate SARS-CoV-2 particles and eliminate COVID-19 whatever the SARS-CoV-2 subtype is (due to the significant conservation nature of RdRps and ExoNs in the different SARS-CoV-2 strains). Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode. Further in vitro evaluations affirmed the anti-SARS-CoV-2/anti-COVID-19 potentials of these NAs, with riboprine and forodesine being at the top. The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the coronaviral-2 polymerase/exoribonuclease interactions with RNA nucleotides in the SARS-CoV-2 Omicron variant (BA.5 sublineage) and accordingly alleviate COVID-19 infections, motivating us to initiate the two drugs' diverse anti-COVID-19 pharmacological evaluations to add both of them betimes in the COVID-19 therapeutic protocols.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Shandong Province 250012, PR China.
| | - Amgad M. Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt,Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt,Correspondence to: 16 Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt
| |
Collapse
|
20
|
Padasas BT, Españo E, Kim SH, Song Y, Lee CK, Kim JK. COVID-19 Therapeutics: An Update on Effective Treatments Against Infection With SARS-CoV-2 Variants. Immune Netw 2023; 23:e13. [PMID: 37179752 PMCID: PMC10166656 DOI: 10.4110/in.2023.23.e13] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 05/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is one of the most consequential global health crises in over a century. Since its discovery in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate into different variants and sublineages, rendering previously potent treatments and vaccines ineffective. With significant strides in clinical and pharmaceutical research, different therapeutic strategies continue to be developed. The currently available treatments can be broadly classified based on their potential targets and molecular mechanisms. Antiviral agents function by disrupting different stages of SARS-CoV-2 infection, while immune-based treatments mainly act on the human inflammatory response responsible for disease severity. In this review, we discuss some of the current treatments for COVID-19, their mode of actions, and their efficacy against variants of concern. This review highlights the need to constantly evaluate COVID-19 treatment strategies to protect high risk populations and fill in the gaps left by vaccination.
Collapse
Affiliation(s)
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Youngcheon Song
- Department of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
21
|
Zamzami MA. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn 2023; 41:1846-1858. [PMID: 35037842 DOI: 10.1080/07391102.2021.2025147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SARS-CoV-2 is the causative agent of Coronavirus Disease (COVID-19), which is a life-threatening disease. The World Health Organization has classified COVID-19 as a severe worldwide public health pandemic due to its high death rate, quick transmission, and lack of medicines. To counteract the recurrence of the severe acute respiratory syndrome, active antiviral medications are urgently required. Glycyrrhizin was documented with activity on different viral proteins, including SARS-CoV-2; in this study, the activity of glycyrrhizin and its substructures (604 molecules) were screened on SARS-CoV-2 RNA-dependent-RNA polymerase using molecular docking, molecular dynamic (MD) simulation, and MM/GBSA. Sixteen molecules exhibited docking energy higher than -7 kcal/mol; four compounds (10772603, 101088272, 154730753 and glycyrrhizin) showed the highest binding energy, and good stability during MD simulation. The glycyrrhizin compound exhibited favorable docking energy (-7.9 kcal/mol), and it was the most stable complex during MD simulation. The predicted binding free energy of the glycyrrhizin complex was -57 ± 8 kcal/mol. These findings suggest that this molecule, after more validation, could become a good candidate for developing and manufacturing an anti-SARS-CoV-2 medication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre of Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Eltayb WA, Abdalla M, Rabie AM. Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir "S-217622": A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species. ACS OMEGA 2023; 8:5234-5246. [PMID: 36798145 PMCID: PMC9897045 DOI: 10.1021/acsomega.2c03881] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 06/06/2023]
Abstract
Lately, nitrogenous heterocyclic antivirals, such as nucleoside-like compounds, oxadiazoles, thiadiazoles, triazoles, quinolines, and isoquinolines, topped the therapeutic scene as promising agents of choice for the treatment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their accompanying ailment, the coronavirus disease 2019 (COVID-19). At the same time, the continuous emergence of new strains of SARS-CoV-2, like the Omicron variant and its multiple sublineages, resulted in a new defiance in the enduring COVID-19 battle. Ensitrelvir (S-217622) is a newly discovered orally active noncovalent nonpeptidic agent with potential strong broad-spectrum anticoronaviral activities, exhibiting promising nanomolar potencies against the different SARS-CoV-2 variants. S-217622 effectively and nonspecifically hits the main protease (Mpro) enzyme of a broad scope of coronaviruses. Herein, in the present computational/biological study, we tried to extend these previous findings to prove the universal activities of this investigational agent against any coronavirus, irrespective of its type, through synchronously acting on most of its main unchanged replication enzymes/proteins, including (in addition to the Mpro), e.g., the highly conserved RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN). Biochemical evaluation proved, using the in vitro anti-RdRp/ExoN bioassay, that S-217622 can potently inhibit the replication of coronaviruses, including the new virulent strains of SARS-CoV-2, with extremely minute in vitro anti-RdRp and anti-RdRp/ExoN half-maximal effective concentration (EC50) values of 0.17 and 0.27 μM, respectively, transcending the anti-COVID-19 drug molnupiravir. The preliminary in silico results greatly supported these biochemical results, proposing that the S-217622 molecule strongly and stabilizingly strikes the key catalytic pockets of the SARS-CoV-2 RdRp's and ExoN's principal active sites predictably via the nucleoside analogism mode of anti-RNA action (since the S-217622 molecule can be considered as a uridine analog). Moreover, the idealistic druglikeness and pharmacokinetic characteristics of S-217622 make it ready for pharmaceutical formulation with the expected very good clinical behavior as a drug for the infections caused by coronaviruses, e.g., COVID-19. To cut it short, the current critical findings of this extension work significantly potentiate and extend the S-217622's previous in vitro/in vivo (preclinical) results since they showed that the striking inhibitory activities of this novel anti-SARS-CoV-2 agent on the Mpro could be extended to other replication enzymes like RdRp and ExoN, unveiling the possible universal use of the compound against the next versions of the virus (i.e., disclosing the nonspecific anticoronaviral properties of this compound against almost any coronavirus strain), e.g., SARS-CoV-3, and encouraging us to rapidly start the compound's vast clinical anti-COVID-19 evaluations.
Collapse
Affiliation(s)
- Wafa A. Eltayb
- Biotechnology
Department, Faculty of Science and Technology, Shendi University, Shendi 11111, River Nile State, Sudan
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012, P. R. China
| | - Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Drug
Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia
Governorate, Egypt
| |
Collapse
|
23
|
Plant Extracts and SARS-CoV-2: Research and Applications. Life (Basel) 2023; 13:life13020386. [PMID: 36836744 PMCID: PMC9965937 DOI: 10.3390/life13020386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.
Collapse
|
24
|
Rabie AM, Eltayb WA. Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/ In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage). ADVANCES IN REDOX RESEARCH 2023:100064. [PMID: 36776420 PMCID: PMC9907022 DOI: 10.1016/j.arres.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 μM for ChloViD2022, 0.22 and 0.72 μM for CoViTris2022, and 0.25 and 0.78 μM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.
Collapse
Affiliation(s)
- Amgad M Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate, Egypt
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt
| | - Wafa A Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi 11111, River Nile State, Sudan
| |
Collapse
|
25
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
26
|
Ibrahim MAA, Rady ASSM, Mohamed LA, Shawky AM, Hasanin THA, Sidhom PA, Moussa NAM. Adsorption of Molnupiravir anti-COVID-19 drug over B 12N 12 and Al 12N 12 nanocarriers: a DFT study. J Biomol Struct Dyn 2023; 41:12923-12937. [PMID: 36688358 DOI: 10.1080/07391102.2023.2169763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
The potentiality of B12N12 and Al12N12 nanocarriers to adsorb Molnupiravir anti-COVID-19 drug, for the first time, was herein elucidated using a series of quantum mechanical calculations. Density function theory (DFT) was systematically utilized. Interaction (Eint) and adsorption (Eads) energies showed higher negative values for Molnupiravir···Al12N12 complexes compared with Molnupiravir···B12N12 analogs. Symmetry-adapted perturbation theory (SAPT) results proclaimed that the adsorption process was predominated by electrostatic forces. Notably, the alterations in the distributions of the molecular orbitals ensured that the B12N12 and Al12N12 nanocarriers were efficient candidates for delivering the Molnupiravir drug. From the thermodynamic perspective, the adsorption process of Molnupiravir drug over B12N12 and Al12N12 nanocarriers had spontaneous and exothermic nature. The ESP, QTAIM, NCI, and DOS observations exposed the tendency of BN and Al12N12 to adsorb the Molnupiravir drug. Overall, these findings proposed that the B12N12 and Al12N12 nanocarriers are efficient aspirants for the development of the Molnupiravir anti-COVID-19 drug delivery process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Al-Shimaa S M Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Lamiaa A Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tamer H A Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
27
|
Cheng SL, Wang PH, Chang CY, Wang HH, Wang CJ, Chiu KM. The Benefits of Molnupiravir Treatment in Healthcare Facilities Patients with COVID-19. Drug Des Devel Ther 2023; 17:87-92. [PMID: 36698540 PMCID: PMC9869894 DOI: 10.2147/dddt.s392708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background Molnupiravir (MOL) is an oral antiviral medication that has recently been treated for COVID-19. Objectively We perform a prospective and observational study to elucidate the efficacy and safety of MOL in healthcare patients with COVID-19. Materials and Methods A observational, non-randomized study of patients diagnosed with COVID-19 in 46 healthcare facilities and treated with MOL started within 5 days after the onset of signs or symptoms. We recorded data for all patients, including demographic data, clinical features, and symptoms. Treatment response was classified into cure, stable, hospitalization and death. Multivariate analysis was performed with stepwise logistic regression for hospitalization and death risk factors. Results In total, 856 patients were diagnosed as having COVID-19 and treated with MOL during the study period. Of those, 496 patients (57.9%) were cured, 256 patients (29.9%) in stable condition, 104 patients (12.2%) hospitalized, and 22 patients (2.6%) died, respectively. There was significant effectiveness (87.8%) in COVID-19 patients using MOL. Multivariate analysis was performed to confirm the risk factors for hospitalization and death and included elder age (>80 years old) (odds ratio (OR) 2.2, 95% confidence interval (CI): 1.1-6.9), old cerebrovascular accident (CVA) (OR=4.1, 95% CI: 1.3-9.9), the presence of diabetes mellitus (DM) (OR=2.6, 95% CI: 1.2-9.1) and chronic respiratory diseases (OR=2.4, 95% (CI): 1.3-8.1). Limitations This is an observational study, neither randomized study nor control group study. Conclusion Initial treatment with MOL has the treatment benefits and is well tolerated for patients with COVID-19 in healthcare facilities. Older age, old CVA, DM, and chronic respiratory diseases were independent risk factors for hospitalization and mortality. The results demonstrate there are important clinical benefits of MOL beyond the reduction in hospitalization or death for these patients with more comorbidities in Taiwan.
Collapse
Affiliation(s)
- Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan,The Graduate Institute of Medicine, Yuan-Ze University, Taoyuan City, Taiwan
| | - Ping-Huai Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Cheng-Yu Chang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Hsu-Hui Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Chung-Jen Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Kuan-Ming Chiu
- The Graduate Institute of Medicine, Yuan-Ze University, Taoyuan City, Taiwan,Division of Cardiovascular Surgery, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan,Correspondence: Kuan-Ming Chiu, Division of Cardiovascular Surgery, Far Eastern Memorial Hospital, No. 21, Section 2, Nanya S. Road, Banqiao District, New Taipei City, 220, Taiwan, Tel +886-2-89667000, Email
| |
Collapse
|
28
|
Rabie AM, Abdalla M. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med Chem Res 2022; 32:326-341. [PMID: 36593869 PMCID: PMC9797896 DOI: 10.1007/s00044-022-02970-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2022] [Indexed: 12/30/2022]
Abstract
Mysterious evolution of a new strain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the Omicron variant, led to a new challenge in the persistent coronavirus disease 2019 (COVID-19) battle. Objecting the conserved SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) together using one ligand is a successful new tactic to stop SARS-CoV-2 multiplication and COVID-19 progression. The current comprehensive study investigated most nucleoside analogs (NAs) libraries, searching for the most ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration afforded six different promising NAs, riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir. Further biological assessment proved that riboprine and forodesine are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.21 and 0.45 μM for riboprine and about 0.23 and 0.70 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. These biochemical findings were supported by the prior in silico data. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading. These findings suggest that riboprine and forodesine could serve as prospective lead compounds against COVID-19. Graphical abstract.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City 35511, Mansoura, Dakahlia Governorate Egypt
- Head of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate Egypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province 250012 PR China
| |
Collapse
|
29
|
Guo S, Lei X, Chang Y, Zhao J, Wang J, Dong X, Liu Q, Zhang Z, Wang L, Yi D, Ma L, Li Q, Zhang Y, Ding J, Liang C, Li X, Guo F, Wang J, Cen S. SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis. Signal Transduct Target Ther 2022; 7:400. [PMID: 36575184 PMCID: PMC9793359 DOI: 10.1038/s41392-022-01239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/28/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has devastated global health. Identifying key host factors essential for SARS-CoV-2 RNA replication is expected to unravel cellular targets for the development of broad-spectrum antiviral drugs which have been quested for the preparedness of future viral outbreaks. Here, we have identified host proteins that associate with nonstructural protein 12 (nsp12), the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 using a mass spectrometry (MS)-based proteomic approach. Among the candidate factors, CDK2 (Cyclin-dependent kinase 2), a member of cyclin-dependent kinases, interacts with nsp12 and causes its phosphorylation at T20, thus facilitating the assembly of the RdRp complex consisting of nsp12, nsp7 and nsp8 and promoting efficient synthesis of viral RNA. The crucial role of CDK2 in viral RdRp function is further supported by our observation that CDK2 inhibitors potently impair viral RNA synthesis and SARS-CoV-2 infection. Taken together, we have discovered CDK2 as a key host factor of SARS-CoV-2 RdRp complex, thus serving a promising target for the development of SARS-CoV-2 RdRp inhibitors.
Collapse
Affiliation(s)
- Saisai Guo
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaobo Lei
- grid.506261.60000 0001 0706 7839NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Chang
- grid.411609.b0000 0004 1758 4735Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jianyuan Zhao
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Wang
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Dong
- grid.506261.60000 0001 0706 7839NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Liu
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixiong Zhang
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lidan Wang
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongrong Yi
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Ma
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quanjie Li
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongxin Zhang
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiwei Ding
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Liang
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC Canada
| | - Xiaoyu Li
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fei Guo
- grid.506261.60000 0001 0706 7839NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- grid.506261.60000 0001 0706 7839NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Cen
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China ,grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Antiviral Drug Research, Chinese Academy of Medical Sciences & Peking Union Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Rabie AM, Abdalla M. Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies. ACS BIO & MED CHEM AU 2022; 2:565-585. [PMID: 37582236 PMCID: PMC9631343 DOI: 10.1021/acsbiomedchemau.2c00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/07/2022]
Abstract
Lately, nucleos(t)ide antivirals topped the scene as top options for the treatment of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Targeting the two broadly conserved SARS-CoV-2 enzymes, RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN), together using only one shot is a very successful new tactic to stop SARS-CoV-2 multiplication irrespective of the SARS-CoV-2 variant type. Herein, the current studies investigated most nucleoside analogue (NA) libraries, searching for the ideal drug candidates expectedly able to act through this double tactic. Gradual computational filtration gave rise to six different promising NAs along with their corresponding triphosphate (TP) nucleotides. The subsequent biological assessment proved for the first time that, among the six NAs, riboprine and forodesine are able to hyperpotently inhibit the replication of the Omicron strain of SARS-CoV-2 with extremely low in vitro anti-RdRp, anti-ExoN, and anti-SARS-CoV-2 EC50 values of about 0.18, 0.28, and 0.40 μM for riboprine and about 0.20, 0.31, and 0.65 μM for forodesine, respectively, surpassing remdesivir and molnupiravir. The significant probability that both compounds may also act as prodrugs for their final TP nucleotides in vivo pushed us to examine the same activities for forodesine-TP and riboprine-TP. Both nucleotides similarly displayed very promising results, respectively, which are much better than those for the two reference TP nucleotides, GS-443902 and β-d-N4-hydroxycytidine 5'-TP (NHC-TP). The prior in silico data supported these biochemical findings, suggesting that riboprine and forodesine molecules and their expected active TP metabolites strongly hit the key catalytic pockets of the SARS-CoV-2 RdRp's and ExoN's main active sites. In brief, the current important results of this comprehensive study revealed the interesting repurposing potentials of, mainly, the two bioactive nucleosides forodesine and riboprine and their TP nucleotides to effectively shut down the polymerase/exoribonuclease-RNA nucleotide interactions of SARS-CoV-2 and consequently treat COVID-19 infections.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr.
Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura City35511,Mansoura, Dakahlia Governorate, Egypt
- Head
of Drug Discovery & Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City35744,Dikernis, Dakahlia Governorate, Egypt
| | - Mohnad Abdalla
- Key
Laboratory of Chemical Biology (Ministry of Education), Department
of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College
of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province250012, P. R. China
| |
Collapse
|
31
|
Rabie AM, Abdalla M. A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study. ChemistrySelect 2022; 7:e202201912. [PMID: 36718467 PMCID: PMC9877610 DOI: 10.1002/slct.202201912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Given the rapid progression of the coronavirus disease 2019 (COVID-19) pandemic, an ultrafast response was urgently required to handle this major public crisis. To contain the pandemic, investments are required to develop diagnostic tests, prophylactic vaccines, and novel therapies. Lately, nucleoside analog (NA) antivirals topped the scene as top options for the treatment of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Meanwhile, the continuous generation of new lineages of the SARS-CoV-2 Omicron variant caused a new challenge in the persistent COVID-19 battle. Hitting the two crucial SARS-CoV-2 enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) collectively together using only one single ligand is a very successful new approach to stop SARS-CoV-2 multiplication and combat COVID-19 irrespective of the SARS-CoV-2 variant type because RdRps and ExoNs are broadly conserved among all SARS-CoV-2 strains. Herein, the current comprehensive study investigated most NAs libraries, searching for the most ideal drug candidates expectedly able to perfectly act through this double tactic. Gradual computational filtration gave rise to six different promising NAs, which are riboprine, forodesine, tecadenoson, nelarabine, vidarabine, and maribavir, respectively. Further biological assessment proved for the first time, using the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that riboprine and forodesine, among all the six tested NAs, are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.22 and 0.49 μM for riboprine and about 0.25 and 0.73 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. The prior in silico data supported these biochemical findings, suggesting that riboprine and forodesine molecules strongly hit the key catalytic pockets of the SARS-CoV-2 (Omicron variant) RdRp's and ExoN's main active sites. Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures open for diverse types of chemical derivatization. In Brief, the current important results of this comprehensive study revealed the interesting repurposing potentials of, mainly, the two nucleosides riboprine and forodesine to effectively shut down the polymerase/exoribonuclease-RNA nucleotides interactions of the SARS-CoV-2 Omicron variant and consequently treat COVID-19 infections, motivating us to rapidly begin the two drugs' broad preclinical/clinical anti-COVID-19 bioevaluations, hoping to combine both drugs soon in the COVID-19 treatment protocols.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie's Research Lab. for Drug Discovery (DARLD)35511MansouraDakahlia GovernorateEgypt,Head of Drug Discovery & Clinical Research Department Dikernis General Hospital (DGH)Magliss El-Madina Street Dikernis35744DikernisDakahlia GovernorateEgypt
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education)Department of PharmaceuticsSchool of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Cultural West RoadShandong Province250012PR China
| |
Collapse
|
32
|
Wen W, Chen C, Tang J, Wang C, Zhou M, Cheng Y, Zhou X, Wu Q, Zhang X, Feng Z, Wang M, Mao Q. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19:a meta-analysis. Ann Med 2022; 54:516-523. [PMID: 35118917 PMCID: PMC8820829 DOI: 10.1080/07853890.2022.2034936] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The coronavirus disease (COVID-19) epidemic has not been completely controlled. Although great achievements have been made in COVID-19 research and many antiviral drugs have shown good therapeutic effects against COVID-19, a simple oral antiviral drug for COVID-19 has not yet been developed. We conducted a meta-analysis to investigate the improvement in mortality or hospitalization rates and adverse events among COVID-19 patients with three new oral antivirals (including molnupiravir, fluvoxamine and Paxlovid). METHODS We searched scientific and medical databases, such as PubMed, Web of Science, Embase and Cochrane Library for relevant articles and screened the references of retrieved studies on COVID-19. RESULTS A total of eight studies were included in this study. The drug group included 2440 COVID-19 patients, including 54 patients who died or were hospitalized. The control group included a total of 2348 COVID-19 patients, including 118 patients who died or were hospitalized. The overall odds ratio (OR) of mortality or hospitalization was 0.33 (95% confidence interval [CI], 0.22-0.49) for COVID-19 patients in the drug group and placebo group, indicating that oral antiviral drugs were effective for COVID-19 patients and reduced the mortality or hospitalization by approximately 67%. CONCLUSIONS This study showed that three novel oral antivirals (molnupiravir, fluvoxamine and Paxlovid) are effective in reducing the mortality and hospitalization rates in patients with COVID-19. In addition, the three oral drugs did not increase the occurrence of adverse events, thus exhibiting good overall safety. These three oral antiviral drugs are still being studied, and the available data suggest that they will bring new hope for COVID-19 recovery and have the potential to be a breakthrough and very promising treatment for COVID-19.KEY MESSAGESMany antiviral drugs have shown good therapeutic effects, and there is no simple oral antiviral drug for COVID-19 patients.Meta-analysis was conducted for three new oral antivirals to evaluate the improvement in mortality or hospitalization rates and adverse events among COVID-19 patients.We focussed on three new oral Coronavirus agents (molnupiravir, fluvoxamine and Paxlovid) and hope to provide guidance for the roll-out of oral antivirals.
Collapse
Affiliation(s)
- Wen Wen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Chen Chen
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Jiake Tang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Chunyi Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China.,Hangzhou Normal University, Hangzhou, PR China
| | - Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, PR China
| | - Xiang Zhou
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Qi Wu
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Xingwei Zhang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Mingwei Wang
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Qin Mao
- Hangzhou Institute of Cardiovascular Diseases, Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| |
Collapse
|
33
|
Discovery and structural characterization of chicoric acid as a SARS-CoV-2 nucleocapsid protein ligand and RNA binding disruptor. Sci Rep 2022; 12:18500. [PMID: 36323732 PMCID: PMC9628480 DOI: 10.1038/s41598-022-22576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.
Collapse
|
34
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
35
|
Vitiello A, La Porta R, Trama U, Ferrara F, Zovi A, Auti AM, Di Domenico M, Boccellino M. Pandemic COVID-19, an update of current status and new therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1159-1165. [PMID: 35779085 DOI: 10.1007/s00210-022-02265-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
The global COVID-19 pandemic is underway. In recent weeks, several countries throughout the globe, and particularly in Europe, have experienced an exponential increase in the number of individuals infected with COVID-19, probably induced by a new variant of SARS-CoV-2, called the "Omicron variant." Mass vaccination against COVID-19 continues worldwide. Are authorized mRNA vaccines effective against the new Omicron variant? Recently, several pharmaceutical companies have developed oral antiviral pills against SARS-CoV-2, i.e., molnupiravir and paxlovid, that inhibit SARS-CoV-2 viral replication by acting on the RNA polymerase of SARS-CoV. In pre-registration clinical trials, molnupiravir and paxlovid have shown excellent clinical efficacy results, but what impact will these new oral antiviral agents have against pandemic COVID-19? In what specific clinical situations are they preferred over other antivirals such as remdesivir? In this brief review, we explore these important aspects.
Collapse
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, Via XIV Settembre, 06132, Perugia, Italy
| | - Raffaele La Porta
- Clinical Pathologist, Pathology Department, ASUR Marche, Area Vasta 1, Urbino, Italy
| | - Ugo Trama
- Directorate General for Healthcare and Coordination of the Regional Healthcare System, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Via Dell'amicizia 22, 80035, Naples, Nola, Italy.
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Amogh Milind Auti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
36
|
Ghosh AK, Mishevich JL, Mesecar A, Mitsuya H. Recent Drug Development and Medicinal Chemistry Approaches for the Treatment of SARS-CoV-2 Infection and COVID-19. ChemMedChem 2022; 17:e202200440. [PMID: 36165855 PMCID: PMC9538661 DOI: 10.1002/cmdc.202200440] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Indexed: 01/14/2023]
Abstract
COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Arun K Ghosh
- Purdue UniversityDepartments of Chemistry and Medicinal Chemistry560 Oval Drive47907West LafayetteUNITED STATES
| | | | - Andrew Mesecar
- Purdue University College of ScienceBiochemistryUNITED STATES
| | - Hiroaki Mitsuya
- National Cancer InstituteHIV and AIDS Malignancy BranchUNITED STATES
| |
Collapse
|
37
|
Uppal T, Tuffo K, Khaiboullina S, Reganti S, Pandori M, Verma SC. Screening of SARS-CoV-2 antivirals through a cell-based RNA-dependent RNA polymerase (RdRp) reporter assay. CELL INSIGHT 2022; 1:100046. [PMID: 37192863 PMCID: PMC9239919 DOI: 10.1016/j.cellin.2022.100046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 (Coronavirus Disease 2019) caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus-2) continues to pose an international public health threat and thus far, has resulted in greater than 6.4 million deaths worldwide. Vaccines are critical tools to limit COVID-19 spread, but antiviral drug development is an ongoing global priority due to fast-spreading COVID-19 variants that may elude vaccine efficacies. The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is an essential enzyme of viral replication and transcription machinery complex. Therefore, the RdRp is an attractive target for the development of effective anti-COVID-19 therapeutics. In this study, we developed a cell-based assay to determine the enzymatic activity of SARS-CoV-2 RdRp through a luciferase reporter system. The SARS-CoV-2 RdRp reporter assay was validated using known inhibitors of RdRp polymerase, remdesivir along with other anti-virals including ribavirin, penciclovir, rhoifolin, 5′CT, and dasabuvir. Dasabuvir (an FDA-approved drug) exhibited promising RdRp inhibitory activity among these inhibitors. Anti-viral activity of dasabuvir was also tested on the replication of SARS-CoV-2 through infection of Vero E6 cells. Dasabuvir inhibited the replication of SARS-CoV-2, USA-WA1/2020 as well as B.1.617.2 (delta variant) in Vero E6 cells in a dose-dependent manner with EC50 values 9.47 μM and 10.48 μM, for USA-WA1/2020 and B.1.617.2 variants, respectively. Our results suggest that dasabuvir can be further evaluated as a therapeutic drug for COVID-19. Importantly, this system provides a robust, target-specific, and high-throughput screening compatible (z- and z’-factors of >0.5) platforms that will be a valuable tool for screening SARS-CoV-2 RdRp inhibitors.
Collapse
|
38
|
Melo-Filho CC, Bobrowski T, Martin HJ, Sessions Z, Popov KI, Moorman NJ, Baric RS, Muratov EN, Tropsha A. Conserved coronavirus proteins as targets of broad-spectrum antivirals. Antiviral Res 2022; 204:105360. [PMID: 35691424 PMCID: PMC9183392 DOI: 10.1016/j.antiviral.2022.105360] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Coronaviruses are a class of single-stranded, positive-sense RNA viruses that have caused three major outbreaks over the past two decades: Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All outbreaks have been associated with significant morbidity and mortality. In this study, we have identified and explored conserved binding sites in the key coronavirus proteins for the development of broad-spectrum direct acting anti-coronaviral compounds and validated the significance of this conservation for drug discovery with existing experimental data. We have identified four coronaviral proteins with highly conserved binding site sequence and 3D structure similarity: PLpro, Mpro, nsp10-nsp16 complex(methyltransferase), and nsp15 endoribonuclease. We have compiled all available experimental data for known antiviral medications inhibiting these targets and identified compounds active against multiple coronaviruses. The identified compounds representing potential broad-spectrum antivirals include: GC376, which is active against six viral Mpro (out of six tested, as described in research literature); mycophenolic acid, which is active against four viral PLpro (out of four); and emetine, which is active against four viral RdRp (out of four). The approach described in this study for coronaviruses, which combines the assessment of sequence and structure conservation across a viral family with the analysis of accessible chemical structure - antiviral activity data, can be explored for the development of broad-spectrum drugs for multiple viral families.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
40
|
Askari FS, Ebrahimi M, Parhiz J, Hassanpour M, Mohebbi A, Mirshafiey A. Digging for the discovery of SARS-CoV-2 nsp12 inhibitors: a pharmacophore-based and molecular dynamics simulation study. Future Virol 2022; 17:10.2217/fvl-2022-0054. [PMID: 35983350 PMCID: PMC9370102 DOI: 10.2217/fvl-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022]
Abstract
Aim: COVID-19 is a global health threat. Therapeutics are urgently needed to cure patients severely infected with COVID-19. Objective: to investigate potential candidates of nsp12 inhibitors by searching for druggable cavity pockets within the viral protein and drug discovery. Methods: A virtual screening of ZINC natural products on SARS-CoV-2 nsp12's druggable cavity was performed. A lead compound with the highest affinity to nsp12 was simulated dynamically for 10 ns. Results: ZINC03977803 was nominated as the lead compound. The results showed stable interaction between ZINC03977803 and nsp12 during 10 ns. Discussion: ZINC03977803 showed stable interaction with the catalytic subunit of SARS-CoV-2, nsp12. It could inhibit the SARS-CoV-2 life cycle by direct interaction with nsp12 and inhibit RdRp complex formation.
Collapse
Affiliation(s)
| | - Mohsen Ebrahimi
- Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Jabbar Parhiz
- Neonatal & Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, 4918936316, Iran
| | - Mina Hassanpour
- Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran
| | - Alireza Mohebbi
- Vista Aria Rena Gene Inc., Gorgan, 4918653885, Golestan Province, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
41
|
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has spread worldwide, leading the World Health Organization (WHO) to declare a pandemic, on 11 March 2020. Variants of concern have appeared at regular intervals-Alpha, Beta, Gamma, Delta, and now Omicron. Omicron variant, first identified in Botswana in November 2021, is rapidly becoming the dominant circulating variant. In this review, we provide an overview regarding the molecular profile of the Omicron variant, epidemiology, transmissibility, the impact on vaccines, as well as vaccine escape, and finally, we report the pharmacological agents able to block the endocellular entry of SARS-CoV-2 or to inhibit its viral replication. The Omicron has more than 50 mutations, of which the spike protein has 26-35 amino acids different from the original SARS-CoV-2 virus or the Delta, some of which are associated with humoral immune escape potential and greater transmissibility. Omicron has a significant growth advantage over Delta, leading to rapid spread with higher incidence levels. The disease so far has been mild compared to the Delta. The two vaccination doses offer little or no protection against Omicron infection while the booster doses provide significant protection against mild illness and likely offer even greater levels of protection against serious illness. Recently, new oral antiviral agents such as molnupiravir and paxlovid have been approved and represent important therapeutic alternatives to antiviral remdesivir. In addition, monoclonal antibodies such as casirivimab/imdevimab bind different epitopes of the spike protein receptor; is this class of drugs effective against the Omicron variant? However, more research is needed to define whether Omicron is indeed more infectious and whether the vaccines, monoclonal antibodies, and antivirals currently available are effective.
Collapse
Affiliation(s)
| | | | - Amogh M. Auti
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Marina Di Domenico
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
- Department of BiologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
42
|
Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022; 13:915565. [PMID: 35847031 PMCID: PMC9280161 DOI: 10.3389/fphar.2022.915565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune system is the first line of host's defense against invading pathogens. Multiple cellular sensors that detect viral components can induce innate antiviral immune responses. As a result, interferons and pro-inflammatory cytokines are produced which help in the elimination of invading viruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to Coronaviridae family, and has a single-stranded, positive-sense RNA genome. It can infect multiple hosts; in humans, it is responsible for the novel coronavirus disease 2019 (COVID-19). Successful, timely, and appropriate detection of SARS-CoV-2 can be very important for the early generation of the immune response. Several drugs that target the innate immune receptors as well as other signaling molecules generated during the innate immune response are currently being investigated in clinical trials. In this review, we summarized the current knowledge of the mechanisms underlying host sensing and innate immune responses against SARS-CoV-2 infection, as well as the role of innate immune receptors in terms of their therapeutic potential against SARS-CoV-2. Moreover, we discussed the drugs undergoing clinical trials and the FDA approved drugs against SARS-CoV-2. This review will help in understanding the interactions between SARS-CoV-2 and innate immune receptors and thus will point towards new dimensions for the development of new therapeutics, which can be beneficial in the current pandemic.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Ajou University, Suwon, South Korea
| |
Collapse
|
43
|
Rabie AM. Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease. ACS OMEGA 2022; 7:21385-21396. [PMID: 35785294 PMCID: PMC9244909 DOI: 10.1021/acsomega.1c07095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
Abstract
![]()
Analogues and derivatives
of natural nucleosides/nucleotides are
considered among the most successful bioactive species of drug-like
compounds in modern medicinal chemistry, as they are well recognized
for their diverse and efficient pharmacological activities in humans,
especially as antivirals and antitumors. Coronavirus disease 2019
(COVID-19) is still almost incurable, with its infectious viral microbe,
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
continuing to wreak devastation around the world. This global crisis
pushed all involved scientists, including drug discoverers and clinical
researchers, to try to find an effective and broad-spectrum anti-COVID-19
drug. Didanosine (2′,3′-dideoxyinosine, DDI) is a synthetic
inosine/adenosine/guanosine analogue and highly active antiretroviral
therapeutic agent used for the treatment of human immunodeficiency
virus infection and acquired immunodeficiency syndrome (HIV/AIDS).
This potent reverse-transcriptase inhibitor is characterized by proven
strong pharmacological effects against the viral genome, which may
successfully take part in the effective treatment of SARS-CoV-2/COVID-19.
Additionally, targeting the pivotal SARS-CoV-2 replication enzyme,
RNA-dependent RNA polymerase (RdRp), is a very successful tactic to
combat COVID-19 irrespective of the SARS-CoV-2 variant type because
RdRps are broadly conserved among all SARS-CoV-2 strains. Herein,
the current study proved for the first time, using the in
vitro antiviral evaluation, that DDI is capable of potently
inhibiting the replication of the novel virulent progenies of SARS-CoV-2
with quite tiny in vitro anti-SARS-CoV-2 and anti-RdRp
EC50 values of around 3.1 and 0.19 μM, respectively,
surpassing remdesivir together with its active metabolite (GS-441524).
Thereafter, the in silico computational interpretation
of the biological results supported that DDI strongly targets the
key pocket of the SARS-CoV-2 RdRp main catalytic active site. The
ideal pharmacophoric characteristics of the ligand DDI make it a typical
inhibiting agent of SARS-CoV-2 multiplication processes (including
high-fidelity proofreading), with its elastic structure open for many
kinds of derivatization. In brief, the present results further uphold
and propose the repurposing potentials of DDI against the different
types of COVID-19 and convincingly motivate us to quickly launch its
extensive preclinical/clinical pharmacological evaluations, hoping
to combine it in the COVID-19 therapeutic protocols soon.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura 35511, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
44
|
Darwish RS, El-Banna AA, Ghareeb DA, El-Hosseny MF, Seadawy MG, Dawood HM. Chemical profiling and unraveling of anti-COVID-19 biomarkers of red sage (Lantana camara L.) cultivars using UPLC-MS/MS coupled to chemometric analysis, in vitro study and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115038. [PMID: 35151836 PMCID: PMC8830149 DOI: 10.1016/j.jep.2022.115038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Red sage (Lantana camara L.) (Verbenaceae) is a widely spread plant that was traditionally used in Brazil, India, Kenya, Thailand, Mexico, Nigeria, Australia and Southeast Asia for treating several ailments including rheumatism and leprosy. Despite its historical role in relieving respiratory diseases, limited studies progressed to the plant's probable inhibition to respiratory viruses especially after the striking spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. AIM OF THE STUDY This study aimed to investigate the inhibitory activity of different L. camara cultivars to SARS-CoV-2, that was not previously inspected, and clarify their mechanisms of action in the metabolomics viewpoint, and to determine the biomarkers that are related to such activity using UPLC-MS/MS coupled to in vitro-studies and chemometric analysis. MATERIALS AND METHODS Chemical profiling of different cultivars was accomplished via UPLC-MS/MS. Principle component analysis (PCA) and orthogonal projection to latent structures (OPLS) models were built using SIMCA® (multivariate data analysis software). Cytotoxicity and COVID-19 inhibitory activity testing were done followed by TaqMan Real-time RT-PCR (Reverse transcription polymerase chain reaction) assay that aimed to study extracts' effects on RNA-dependent RNA polymerase (RdRp) and E-genes expression levels. Detected biomarkers from OPLS analysis were docked into potential targets pockets to investigate their possible interaction patterns using Schrodinger® suite. RESULTS UPLC-MS/MS analysis of different cultivars yielded 47 metabolites, most of them are triterpenoids and flavonoids. PCA plots revealed that inter-cultivar factor has no pronounced effect on the chemical profiles of extracts except for L. camara, cultivar Drap d'or flowers and leaves extracts as well as for L. camara cv Chelsea gem leaves extract. Among the tested extracts, flowers and leaves extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or showed the highest selectivity indices scoring 12.3, 10.1, 8.6 and 7.8, respectively, indicating their relative high safety and efficacy. Leaves and flowers extracts of L. camara cv Chelsea gem, flowers extracts of L. camara cv Spreading sunset and L. camara cv Drap d'or were the most promising inhibitors to viral plaques exhibiting IC50 values of 3.18, 3.67, 4.18 and 5.01 μg/mL, respectively. This was incremented by OPLS analysis that related their promising COVID-19 inhibitory activities to the presence of twelve biomarkers. Inhibiting the expression of RdRp gene is the major mechanism behind the antiviral activity of most extracts at almost all concentration levels. Molecular docking of the active biomarkers against RdRp revealed that isoverbascoside, luteolin-7,4'-O-diglucoside, camarolic acid and lantoic acid exhibited higher docking scores of -11.378, -10.64, -6.72 and -6.07 kcal/mol, respectively, when compared to remdesivir (-5.75 kcal/mol), thus these four compounds can serve as promising anti-COVID-19 candidates. CONCLUSION Flowers and leaves extracts of four L. camara cultivars were recognized as rich sources of phytoconstituents possessing anti-COVID-19 activity. Combination of UPLC-MS/MS and chemometrics is a promising approach to detect chemical composition differences among the cultivars and correlate them to COVID-19 inhibitory activities allowing to pinpoint possible biomarkers. Further in-vitro and in-vivo studies are required to verify their activity.
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | | | | | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
45
|
Kulkarni P, Padmanabhan S. A novel property of hexokinase inhibition by Favipiravir and proposed advantages over Molnupiravir and 2 Deoxy D glucose in treating COVID-19. Biotechnol Lett 2022; 44:831-843. [PMID: 35608787 PMCID: PMC9128636 DOI: 10.1007/s10529-022-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/02/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE In the wake of SARS-CoV-2's global spread, human activities from health to social life to education have been affected. Favipiravir and Molnupiravir exhibited novel hexokinase inhibition and we discuss advantages of this property in their COVID-19 inhibition potential. METHODS This paper describes molecular docking data of human hexokinase II with Favipiravir, Cyan 20, Remdesivir, 2DG, and Molnupiravir along with hexokinase inhibition assays. RESULTS Favipiravir, an antiviral drug previously cleared for treating the flu and ebola, has shown some promise in early trials to treat COVID-19. We observed potent human hexokinase inhibiting potential of Favipiravir (50%) as against 4% and merely 0.3% hexokinase inhibition with Molnupiravir and 2 Deoxy D glucose at 0.1 mM concentration supported by molecular docking studies. CONCLUSION Favipiravir could continue to be part of the COVID-19 treatment regimen due to its resistance to host esterases, hexokinase inhibition potential and proven safety through human trials.
Collapse
Affiliation(s)
- Prajakta Kulkarni
- Herbal Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune, 411019, India
| | - Sriram Padmanabhan
- Herbal Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune, 411019, India.
| |
Collapse
|
46
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
47
|
Tian L, Pang Z, Li M, Lou F, An X, Zhu S, Song L, Tong Y, Fan H, Fan J. Molnupiravir and Its Antiviral Activity Against COVID-19. Front Immunol 2022; 13:855496. [PMID: 35444647 PMCID: PMC9013824 DOI: 10.3389/fimmu.2022.855496] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (β-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.
Collapse
Affiliation(s)
- Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
48
|
Tanaka T, Saito A, Suzuki T, Miyamoto Y, Takayama K, Okamoto T, Moriishi K. Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening. Antiviral Res 2022; 199:105268. [PMID: 35271914 PMCID: PMC8900913 DOI: 10.1016/j.antiviral.2022.105268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-β but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-β. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.
Collapse
Affiliation(s)
- Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan; Center for Animal Disease Control, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan.
| |
Collapse
|
49
|
Chang KP, Reynolds JM, Liu Y, He JJ. Leishmaniac Quest for Developing a Novel Vaccine Platform. Is a Roadmap for Its Advances Provided by the Mad Dash to Produce Vaccines for COVID-19? Vaccines (Basel) 2022; 10:vaccines10020248. [PMID: 35214706 PMCID: PMC8874365 DOI: 10.3390/vaccines10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
“Bugs as drugs” in medicine encompasses the use of microbes to enhance the efficacy of vaccination, such as the delivery of vaccines by Leishmania—the protozoan etiological agent of leishmaniasis. This novel approach is appraised in light of the successful development of vaccines for Covid-19. All relevant aspects of this pandemic are summarized to provide the necessary framework in contrast to leishmaniasis. The presentation is in a side-by-side matching format with particular emphasis on vaccines. The comparative approach makes it possible to highlight the timeframe of the vaccine workflows condensed by the caveats of pandemic urgency and, at the same time, provides the background of Leishmania behind its use as a vaccine carrier. Previous studies in support of the latter are summarized as follows. Leishmaniasis confers life-long immunity on patients after cure, suggesting the effective vaccination is achievable with whole-cell Leishmania. A new strategy was developed to inactivate these cells in vitro, rendering them non-viable, hence non-disease causing, albeit retaining their immunogenicity and adjuvanticity. This was achieved by installing a dual suicidal mechanism in Leishmania for singlet oxygen (1O2)-initiated inactivation. In vitro cultured Leishmania were genetically engineered for cytosolic accumulation of UV-sensitive uroporphyrin I and further loaded endosomally with a red light-sensitive cationic phthalocyanine. Exposing these doubly dye-loaded Leishmania to light triggers intracellular production of highly reactive but extremely short-lived 1O2, resulting in their rapid and complete inactivation. Immunization of susceptible animals with such inactivated Leishmania elicited immunity to protect them against experimental leishmaniasis. Significantly, the inactivated Leishmania was shown to effectively deliver transgenically add-on ovalbumin (OVA) to antigen-presenting cells (APC), wherein OVA epitopes were processed appropriately for presentation with MHC molecules to activate epitope-specific CD8+ T cells. Application of this approach to deliver cancer vaccine candidates, e.g., enolase-1, was shown to suppress tumor development in mouse models. A similar approach is predicted to elicit lasting immunity against infectious diseases, including complementation of the spike protein-based vaccines in use for COVID-19. This pandemic is devastating, but brings to light the necessity of considering many facets of the disease in developing vaccination programs. Closer collaboration is essential among those in diverse disciplinary areas to provide the roadmap toward greater success in the future. Highlighted herein are several specific issues of vaccinology and new approaches worthy of consideration due to the pandemic.
Collapse
|
50
|
Gorshkov K, Morales Vasquez D, Chiem K, Ye C, Nguyen Tran B, Carlos de la Torre J, Moran T, Chen CZ, Martinez-Sobrido L, Zheng W. SARS-CoV-2 Nucleocapsid Protein TR-FRET Assay Amenable to High Throughput Screening. ACS Pharmacol Transl Sci 2022; 5:8-19. [PMID: 35036857 PMCID: PMC8751018 DOI: 10.1021/acsptsci.1c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/24/2022]
Abstract
![]()
Drug
development for specific antiviral agents against coronavirus
disease 2019 (COVID-19) is still an unmet medical need as the pandemic
continues to spread globally. Although huge efforts for drug repurposing
and compound screens have been put forth, only a few compounds are
in late-stage clinical trials. New approaches and assays are needed
to accelerate COVID-19 drug discovery and development. Here, we report
a time-resolved fluorescence resonance energy transfer-based assay
that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
nucleocapsid protein (NP) produced in infected cells. It uses two
specific anti-NP monoclonal antibodies conjugated to donor and acceptor
fluorophores that produce a robust ratiometric signal for high throughput
screening of large compound collections. Using this assay, we measured
a half maximal inhibitory concentration (IC50) for remdesivir
of 9.3 μM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1).
The assay also detected SARS-CoV-2 South African (Beta, β),
Brazilian/Japanese P.1 (Gamma, γ), and Californian (Epsilon,
ε) variants of concern (VoC). Therefore, this homogeneous SARS-CoV-2
NP detection assay can be used for accelerating lead compound discovery
for drug development and for evaluating drug efficacy against emerging
SARS-CoV-2 VoC.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Desarey Morales Vasquez
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Kevin Chiem
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, IMM6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas Moran
- Icahn School of Medicine, Mt. Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|