1
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
2
|
Eid RA, Abadi AM, Alghamdi MA, El-Kott AF, Mohamed G, Al-Shraim M, Alaa Eldeen M, Zaki MSA, Shalaby FM. Echinops Asteraceae extract guards against malathion-induced liver damage via minimizing oxidative stress, inflammation, and apoptosis. Toxicon 2024; 244:107750. [PMID: 38750940 DOI: 10.1016/j.toxicon.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Malathion (MAL) is one of the highly toxic organophosphorus (OP) compounds that induces hepatotoxicity. Echinops. ritro leaves extract (ERLE) is traditionally used in the treatment of bacterial/fungal infections. This study's goal was to investigate the potential of extracts from ERLE against hepatotoxicity induced by MAL in male albino rats. Four equal groups of forty mature male albino rats were created: The rats in the first group used as a control. The second group of rats received ERLE orally. The third group received MAL. ERLE and MAL were administered to the fourth group of rats. Six-week treatment groups were conducted. Using lipid peroxidation indicators [malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], apoptotic markers [Bcl-2 & caspase-3] and tumor necrosis factor alpha (TNF-α). Rats treated with MAL underwent a significant increase on MDA, ALT, AST, caspase-3 and TNF-α marker with a significant decrease in antioxidant markers [CAT, SOD, GPx] and Bcl-2. Histologically, MAL-treated group's liver sections displayed damaged hepatocytes with collapsed portions, pyknotic nuclei, vacuolated cytoplasm, and congested central veins. Ultra structurally, rat livers treated with MAL showed dilated cisternae of endoplasmic reticulum, swollen mitochondria with disrupted cristae, nuclei with disrupted chromatin content, multiple lysosomes, multiple vacuolations and a disrupted blood sinusoid. With rats treated with ERLE, these alterations were essentially non-existent. It is possible to conclude that ERLE protects against MAL hepatotoxicity, and that this protection is related, at least in part, to its antioxidant activities.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia; Department of Zoology, College of Science, Damanhur University, Damanhur 22511, Egypt.
| | - Gamal Mohamed
- Department of Human Anatomy, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department, Abha, Kingdom of Saudi Arabia; Mansoura University, Faculty of Sciences, Department of Zoology, Mansoura, Egypt.
| |
Collapse
|
3
|
Yoon KN, Cui Y, Quan QL, Lee DH, Oh JH, Chung JH. Tomato and lemon extracts synergistically improve cognitive function by increasing brain-derived neurotrophic factor levels in aged mice. Br J Nutr 2024; 131:1105-1114. [PMID: 38016800 PMCID: PMC10918522 DOI: 10.1017/s0007114523002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 11/30/2023]
Abstract
Brain ageing, the primary risk factor for cognitive impairment, occurs because of the accumulation of age-related neuropathologies. Identifying effective nutrients that increase cognitive function may help maintain brain health. Tomatoes and lemons have various bioactive functions and exert protective effects against oxidative stress, ageing and cancer. Moreover, they have been shown to enhance cognitive function. In the present study, we aimed to investigate the effects of tomato and lemon ethanolic extracts (TEE and LEE, respectively) and their possible synergistic effects on the enhancement of cognitive function and neurogenesis in aged mice. The molecular mechanisms underlying the synergistic effect of TEE and LEE were investigated. For the in vivo experiment, TEE, LEE or their mixture was orally administered to 12-month-old mice for 9 weeks. A single administration of either TEE or LEE improved cognitive function and neurogenesis in aged mice to some extent, as determined using the novel object recognition test and doublecortin immunohistochemical staining, respectively. However, a significant enhancement of cognitive function and neurogenesis in aged mice was observed after the administration of the TEE + LEE mixture, which had a synergistic effect. N-methyl-d-aspartate receptor 2B, postsynaptic density protein 95, and brain-derived neurotrophic factor (BDNF) levels and tropomyosin receptor kinase B (TrkB)/extracellular signal-regulated kinase (ERK) phosphorylation also synergistically increased after the administration of the mixture compared with those in the individual treatments. In conclusion, compared with their separate treatments, treatment with the TEE + LEE mixture synergistically improved the cognitive function, neurogenesis and synaptic plasticity in aged mice via the BDNF/TrkB/ERK signalling pathway.
Collapse
Affiliation(s)
- Kyeong-No Yoon
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yidan Cui
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing-Ling Quan
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hun Lee
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
García-Topete DA, Álvarez-Lee LA, Carballo-López GI, Uriostegui-Campos MA, Guzmán-Uribe C, Castro-Ceseña AB. Antifibrotic activity of carbon quantum dots in a human in vitro model of non-alcoholic steatohepatitis using hepatic stellate cells. Biomater Sci 2024; 12:1307-1319. [PMID: 38263852 DOI: 10.1039/d3bm01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Around 33% of the global population suffers from non-alcoholic fatty liver disease (NAFLD). From these patients, 30% of them progress into non-alcoholic steatohepatitis (NASH), the critical point where lack of treatment leads to cirrhosis and hepatic failure. Moreover, to date, there are no approved therapeutic options available for NASH. It is known that hepatic stellate cell (HSC) activation contributes the most to hepatic disfunction, leading to reactive oxygen species (ROS) accumulation and chronic inflammation, and that the use of nanomaterials to deliver antioxidants may have potential to reduce the activity of activated HSCs. Therefore, we implemented a human in vitro co-culture model in which we take into consideration two factors related to NASH and fibrosis: human hepatic stellate cells from a NASH diagnosed donor (HHSC-N) and peripheral blood mononuclear cells (PBMCs), particularly lymphocytes. The co-cultures were treated with: (1) carbon quantum dots (CD) or (2) lactoferrin conjugated CD (CD-LF) for 24 h or 72 h. CD and CD-LF treatments significantly downregulated profibrotic genes' expression levels of ACTA2, COL1A1, and TIMP1 in co-cultured HHSC-N at 72 h. Also, we assayed the inflammatory response by quantifying the concentrations of cytokines IL-22, IL-10, IFN-γ and IL-4 present in the co-culture's conditioned media whose concentrations may suggest a resolution-associated response in progress. Our findings may serve as a starting point for the development of a NASH treatment using bio-nanotechnology.
Collapse
Affiliation(s)
- David A García-Topete
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Laura A Álvarez-Lee
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| | - Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Marco A Uriostegui-Campos
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Carlos Guzmán-Uribe
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- Centro de Nanociencias y Nanotecnología, UNAM. Km 107, Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California, Mexico
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Zhou J, Hong H, Zhao J, Fang R, Chen S, Tang C. Metabolome analysis to investigate the effect of heavy metal exposure and chemoprevention agents on toxic injury caused by a multi-heavy metal mixture in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167513. [PMID: 37783434 DOI: 10.1016/j.scitotenv.2023.167513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Heavy metal pollution is a significant threat to both the environment and living organisms. This is especially vital considering the persistent and cumulative nature of heavy metal exposure, which can lead to severe and chronic health consequences for individuals. Therefore, implementing effective treatments is critical to addressing the serious public health issues posed by heavy metal pollution. In this study, nontargeted metabolomics was carried out to investigate the metabolic changes associated with long-term low-dose intake of mixed heavy metal pollutants (MHMPs) in liver, kidney, and plasma samples of Sprague-Dawley (SD) rats with and without treatment to reveal the underlying toxic effects of MHMPs and the effects of chemoprevention agents, including epigallocatechin-3-gallate (EGCG), trisodium citrate dihydrate (TCD), and glutathione (GSH). In the liver, kidney, and plasma, we observed a total of 21, 69, and 16 metabolites, respectively, exhibiting significant differences (P < 0.05, fold change >1.2 or <0.83, and VIP ≥ 1) between the control group and the mixture group. The findings demonstrated that exposure to MHMPs leads to the dysregulation of numerous metabolic pathways, with a particular emphasis on purine metabolism and aminoacyl-tRNA biosynthesis with upregulated renal purine metabolites and downregulated hepatic purine metabolites as well as renal aminoacyl-tRNA biosynthesis-related metabolites. However, the application of chemical protectants was shown to partially restore the metabolic alterations induced by MHMPs, particularly purine metabolism-related metabolites, including hepatic adenine and renal adenine, guanine, guanosine, adenosine monophosphate (AMP), and hypoxanthine. In addition, liver adenosine, kidney inosine and L-phenylalanine were considered the main regulated sites based on their significant correlations with multiple heavy metals. Our study provides crucial insights into the toxicological mechanisms of heavy metal pollution and has the potential to guide the development of effective preventive strategies.
Collapse
Affiliation(s)
- Jinyue Zhou
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hang Hong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinshun Zhao
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rui Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shushu Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chunlan Tang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
6
|
Huang T, Wu Y, Huang L, Lin R, Li Z, Wang X, Wu P, Huang L. Mechanism of the Effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid in Treating Alcoholic Rat Liver Injury by Metabolomics. Drug Des Devel Ther 2023; 17:3409-3428. [PMID: 38024538 PMCID: PMC10659148 DOI: 10.2147/dddt.s427837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Compound Anoectochilus roxburghii (Wall.) Lindl oral liquid (CAROL) is often as a hepatoprotective agent. The present study aimed to elucidate the protective mechanism of CAROL against alcoholic liver injury in rats by untargeted metabolomics combined with multivariate statistical analysis. Methods An alcoholic liver disease model was established in sprague-dawley (SD) rats by gavage of alcohol, and CAROL treatment was administered. The hepatoprotective effect of CAROL was evaluated by examining liver tissues changes and detecting biochemical index activities and cytokines in serum and liver homogenates. The metabolites in serum samples were examined using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) and multivariate statistical analysis to screen for differentially expressed metabolites and Kyoto Encyclopedia of Genes and Genomes (KEGG) to assess potential metabolic pathways. Results CAROL has the potential to downregulate inflammation levels and alleviate oxidative stress. The differential metabolites are mainly engaged in riboflavin metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis metabolism, phenylalanine metabolism, pyrimidine metabolism, and vitamin B6 metabolism to achieve hepatoprotective effects. Conclusion CAROL may exhibit beneficial hepatoprotective effects by reducing inflammation, mitigating oxidative stress, and modulating metabolites and their metabolic pathways.This study has important implications for advancing the clinical application of CAROL.
Collapse
Affiliation(s)
- Tingxuan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Zhenyue Li
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoxiao Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
7
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Orisakwe OE. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr Res Toxicol 2023; 5:100129. [PMID: 37841055 PMCID: PMC10569962 DOI: 10.1016/j.crtox.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.
Collapse
Affiliation(s)
- Chidinma P. Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N. Orish
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
8
|
Xiao Y, Yi H, Zhu J, Chen S, Wang G, Liao Y, Lei Y, Chen L, Zhang X, Ye F. Evaluation of DNA adduct damage using G-quadruplex-based DNAzyme. Bioact Mater 2023; 23:45-52. [DOI: 10.1016/j.bioactmat.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022] Open
|
9
|
Potential protective effects of Thyme ( Thymus vulgaris) essential oil on growth, hematology, immune responses, and antioxidant status of Oncorhynchus mykiss exposed to Malathion. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
As an abundant source of antioxidants and diet flavor enhancers, the plant essential oils can have positive effects on fish growth, and resistance against environmental stressors. In this study, garden thyme (Thymus vulgaris) essential oil (TEO) was used in the diet of rainbow trout, Oncorhynchus mykiss, to evaluate its protective effect against Malathion pesticide exposure. Tested fish (19.99 ± 0.01 g) were divided into six groups (three replicates), namely: T1: control diet; T2: control diet + 0.025 mg L−1 malathion; T3: control diet + 0.075 mg L−1 malathion; T4: control diet + 1% TEO; T5: control diet + 0.025 mg L−1 malathion + 1% TEO and T6: control diet + 0.075 mg L−1 malathion + 1% TEO. After 21 days, T4 fish had the highest final body weight (FW), weight gain (WG), specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among experimental treatments (P<0.05). The blood parameters including the red blood cells (RBC), white blood cell count (WBC), hematocrit (Hct), and hemoglobin (Hb) values were the highest in T4 treatment, displaying a significant difference with T1 treatment (P<0.05). Fish in the T4 groups had the highest total protein (TP) and albumin (ALB), while fish of T3 showed the lowest levels of these parameters (P<0.05) and also had the highest level of triglycerides (TRG), cholesterol (CHOL), lactate dehydrogenase (LDH), and urea (Ur). Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes recorded the lowest levels in T4 treatment, which showed a significant difference with T1 group. The catalase (CAT) and superoxide dismutase (SOD) showed the highest activities in T4 treatment, while the lowest SOD and the highest malondialdehyde (MDA) levels occurred in T3 group (P<0.05). Total immunoglobulin (total Ig) level, alternative complement (ACH50) and lysozyme in the serum and skin mucus of T4 treatment of rainbow trout showed the highest activities with a significant difference from groups (P<0.05). From the results of the present study, it can be concluded that 1% of T. vulgaris as a supplement to the diet of rainbow trout can stimulate and improve the immune system of the fish. TEO can have a protective effect against unfavorable effects of malathion and improves the growth of the fish.
Collapse
|
10
|
Feng Y, Gao S, Zhu T, Sun G, Zhang P, Huang Y, Qu S, Du X, Mou D. Hawthorn fruit acid consumption attenuates hyperlipidemia-associated oxidative damage in rats. Front Nutr 2022; 9:936229. [PMID: 35990322 PMCID: PMC9384962 DOI: 10.3389/fnut.2022.936229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Context Hyperlipidemia is a highly prevalent risk factor for atherosclerosis and stroke. The currently available medications used to treat Hyperlipidemia cannot improve its oxidative stress damage. Consumption of hawthorn can regulate blood sugar and blood lipids, and its rich fruit acid is a natural antioxidant that can improve oxidative stress damage. Objective The present research aimed to investigate the protective effect of hawthorn fruit acid (HFA) on hyperlipidemia and to determine its potential molecular mechanism. Materials and methods Sprague-Dawley rats were fed a high-fat diet (HFD) to induce hyperlipidemia and treated orally with hawthorn fruit acids (HFA). Serum and liver levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD), hydrogen peroxide (CAT), and malondialdehyde (MDA) were measured. Human hepatocellular carcinoma cell lines (HepG2) cells were treated with 0.1 mM oleic acid and HFA (0.125, 0.25 mg/mL), and intracellular TC, TG, HDL-C, SOD, CAT and MDA were measured. Changes in LDLR, HMGCR, Nrf2, HO-1, NQO1 protein and gene expression were analyzed by Western blot and qPCR. Results This study found that HFA treatment effectively reduced the level of triglyceride, cholesterol, and glucose, and attenuated hepatic steatosis in rats. Additionally, oxidative stress damage of rats was effectively reduced by treatment with HFA. Western blot and qPCR analysis indicated that HFA treatment inhibited fat accumulation in HepG2 cells by upregulating LDLR and downregulating HMGCR gene expression. HFA inhibits oleic acid (OA)-induced oxidative damage to HepG2 by activating the Nrf2/HO-1 signaling pathway. Conclusion HFA administration can provide health benefits by counteracting the effects of hyperlipidemia caused by an HFD in the body, and the underlying mechanism of this event is closely related to the activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Gao
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ting Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peisen Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Dehua Mou
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
11
|
Ginseng ® Alleviates Malathion-Induced Hepatorenal Injury through Modulation of the Biochemical, Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Markers in Male Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12050771. [PMID: 35629437 PMCID: PMC9144712 DOI: 10.3390/life12050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
This study aims to see if Ginseng® can reduce the hepatorenal damage caused by malathion. Four groups of forty male Wistar albino rats were alienated. Group 1 was a control group that got orally supplied corn oil (vehicle). Group 2 was intoxicated by malathion dissolved in corn oil orally at 135 mg/kg/day. Group 3 orally received both malathion + Panax Ginseng® (300 mg/kg/day). Group 4 was orally given Panax Ginseng® at a 300 mg/kg/day dose. Treatments were administered daily and continued for up to 30 consecutive days. Malathion's toxic effect on both hepatic and renal tissues was revealed by a considerable loss in body weight and biochemically by a marked increase in liver enzymes, LDH, ACP, cholesterol, and functional renal markers with a marked decrease in serum TP, albumin, and TG levels with decreased AchE and Paraoxonase activity. Additionally, malondialdehydes, nitric oxide (nitrite), 8-hydroxy-2-deoxyguanosine, and TNFα with a significant drop in the antioxidant activities were reported in the malathion group. Malathion upregulated the inflammatory cytokines and apoptotic genes, while Nrf2, Bcl2, and HO-1 were downregulated. Ginseng® and malathion co-treatment reduced malathion's harmful effects by restoring metabolic indicators, enhancing antioxidant pursuit, lowering the inflammatory reaction, and alleviating pathological alterations. So, Ginseng® may have protective effects against hepatic and renal malathion-induced toxicity on biochemical, antioxidant, molecular, and cell levels.
Collapse
|
12
|
Liu K, Wu X, Dai H. Citric acid cross-linked chitosan for inhibiting oxidative stress after nerve injury. J Biomed Mater Res B Appl Biomater 2022; 110:2231-2240. [PMID: 35474411 DOI: 10.1002/jbm.b.35072] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 11/07/2022]
Abstract
Scaffold design is particularly important and necessary for soft tissue repair such as nerve tissue repair. In this article, we designed and manufactured a macroporous chitosan-based hydrogel with excellent cell compatibility and antioxidant properties. Here, the chitosan (CS) based hydrogel is obtained by repeated freezing and thawing using citric acid (CA) as a cross-linking agent. We have evaluated the effects of citric acid content on the physical and chemical properties of hydrogels through mechanical properties and scanning electron microscopy. CA-CS hydrogel shows a macroporous structure, as the citric acid increases, the mechanical strength increases and the pore size decreases. In vitro cell experiments show that CA-CS hydrogel partakes positive effects on cell survival, adhesion and proliferation, as well as antioxidant properties. All results provide a basis for the construction of porous chitosan-based hydrogels, while demonstrating a promising approach to deal with oxidative stress in nerve injury.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, China
| |
Collapse
|
13
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|
14
|
Larrazábal-Fuentes MJ, Fernández-Galleguillos C, Palma-Ramírez J, Romero-Parra J, Sepúlveda K, Galetovic A, González J, Paredes A, Bórquez J, Simirgiotis MJ, Echeverría J. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia copa Phil. (Asteraceae). Front Pharmacol 2020; 11:594174. [PMID: 33343365 PMCID: PMC7746865 DOI: 10.3389/fphar.2020.594174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisia copa Phil. (Asteraceae) (known as copa-copa) is a native species of Chile used as an infusion in traditional medicine by Atacameños people in the Altiplano, highlands of northern Chile. In this research, we have investigated for the first time the cholinesterase inhibition potential against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the chemical profiling of the infusions prepared from the aerial parts of A. copa by high resolution spectrometry. In addition, total phenolic, total flavonoid content, antioxidant (DPPH, FRAP, and ORAC) and antiprozoal activity were tested. Artemisia copa showed good inhibitory activity against AChE and BChE (3.92 ± 0.08 µg/ml and 44.13 ± 0.10 µg/ml). The infusion displayed a total phenolics content of 155.6 ± 2.9 mg of gallic acid equivalents/g and total flavonoid content of 5.5 ± 0.2 mg quercetin equivalents/g. Additionally, trypanocidal activity against Trypanosoma cruzi was found (LD50 of 131.8 µg/ml). Forty-seven metabolites were detected in the infusion of A. copa including several phenolic acids and flavonoids which were rapidly identified using ultrahigh performance liquid chromatography orbitrap mass spectrometry analysis (UHPLC-Orbitrap-MS) for chemical profiling. The major compounds identified in the infusions were studied by molecular docking against AChE and BChE. The UHPLC-MS fingerprints generated can be also used for the authentication of these endemic species. These findings reveal that A. copa infusions can be used as beverages with protective effects.
Collapse
Affiliation(s)
- María José Larrazábal-Fuentes
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jenifer Palma-Ramírez
- Unidad Alimentos, Departamento de Ciencias de los Alimentos y Nutrición, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Kevin Sepúlveda
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | | | - Jorge González
- Unidad de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Adrián Paredes
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario J Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
15
|
Feng Y, Gao X, Meng M, Xue H, Qin X. Multi-omics reveals the mechanisms of antidepressant-like effects of the low polarity fraction of Bupleuri Radix. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112806. [PMID: 32234596 DOI: 10.1016/j.jep.2020.112806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri (Bupleurum chinense DC.) is a traditional Chinese medicine that has the effect of soothing the liver and relieving depression, and widely used in the field of antidepression. AIM OF THE STUDY The low polarity fraction of Bupleuri Radix (PBR) has proved to be effective for the treatment of depression based on the results of our previous study. However, mechanisms of definite antidepressant-like effects remained unclear. The purpose of this study is to reveal mechanisms of antidepressant-like effects of PBR with multi-dimensional omics. MATERIALS AND METHODS LC-MS metabolomics combined with 16S rRNA gene sequencing were used to investigate the effects of PBR on gut microbiota and metabolites in CUMS-induced depression, and Pearson correlation analysis was carried out on gut microbiota and metabolites. RESULTS PBR significantly improved depression-like behaviors in the CUMS model rats. Moreover, PBR significantly increased the levels of BDNF in the hippocampus. Cecum contents metabolomics revealed that 16 biomarkers associated with PBR antidepressant effect were screened, which were involved 3 metabolic pathways including primary bile acid biosynthesis, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism. Gut microbiota further analysis demonstrated that PBR increased the diversity of gut microbiota, and significantly inhibited the growth of [Prevotella] and Ochrobactrum. Furthermore, Pearson analysis revealed there was a strong correlation between cecum contents of metabolites and gut microbiota. CONCLUSIONS PBR improved depression-like behavior by regulating metabolic profiles and gut microbiota, and contributing to further understand the entailed antidepressant-like mechanisms of PBR.
Collapse
Affiliation(s)
- Yan Feng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China.
| | - Meidai Meng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Huanhuan Xue
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| |
Collapse
|
16
|
Gómez J, Simirgiotis MJ, Lima B, Gamarra-Luques C, Bórquez J, Caballero D, Feresin GE, Tapia A. UHPLC-Q/Orbitrap/MS/MS Fingerprinting, Free Radical Scavenging, and Antimicrobial Activity of Tessaria absinthiodes (Hook. & Arn.) DC. (Asteraceae) Lyophilized Decoction from Argentina and Chile. Antioxidants (Basel) 2019; 8:E593. [PMID: 31795145 PMCID: PMC6943634 DOI: 10.3390/antiox8120593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
The decoction of Tessaria absinthioides is used in traditional medicine of South America as hypocholesterolemic, balsamic, and expectorant; but it is also useful for the prevention of hepatitis, renal insufficiency, and diabetes, and is used as digestive. A lyophilized decoction from the aerial parts of this plant (TLD) collected in San Juan (TLDSJ) and Mendoza (TLDM) provinces (Argentina) and one collection from Antofagasta, Chile (TLDCH) were characterized regarding antioxidant and antibacterial activities, phenolics and flavonoids content, and ultrahigh resolution liquid chromatography Orbitrap MS analysis UHPLC-PDA-OT-MS/MS metabolite profiling. The antioxidant properties were carried out "in vitro" using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and trolox equivalent antioxidant activity (TEAC) methods, ferric-reducing antioxidant power (FRAP), and lipoperoxidation in erythrocytes (LP). The antibacterial activity was evaluated following the Clinical and Laboratory Standards Institute (CLSI) rules. TLDSJ, TLDM, and TLDCH displayed a strong DPPH scavenging activity (EC50 = 42, 41.6, and 43 µg/mL, respectively) and inhibition of lipoperoxidation in erythrocytes (86-88% at 250 µg TLD/mL), while a less effect in the FRAP and TEACantioxidant assays was found. Additionally, the decoctions showed a content of phenolics compounds of 94 mg gallic acid equivalents (GAE)/g, 185 GAE/g, and 64 GAE/g, for TLDSJ, TLDM, and TLDCH samples, respectively. Regarding the flavonoid content, the Chilean sample was highlighted with 19 mg quercetin equivalents (QE)/g. In this work, several phenolic compounds, including sesquiterpenes, flavonoids, and phenolic acids, were rapidly identified in TLDSJ, TLDM, and TLDCH extracts by means UHPLC-PDA-OT-MS/MS for the first time, which gave a first scientific support to consider this medicinal decoction from both countries as a valuable source of metabolites with antioxidant effects, some with outstanding potential to improve human health.
Collapse
Affiliation(s)
- Jessica Gómez
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina; (J.G.); (B.L.); (G.E.F.)
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Beatriz Lima
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina; (J.G.); (B.L.); (G.E.F.)
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina;
| | - Carlos Gamarra-Luques
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET-Universidad Nacional de Cuyo, Mendoza CP5500, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza CP5500, Argentina
| | - Jorge Bórquez
- Laboratorio de Productos Naturales Depto. de Química, Facultad de Ciencias, Universidad de Antofagasta, Av. Coloso S-N, Antofagasta 1240000, Chile;
| | - Duilio Caballero
- Laboratorio Hospital Marcial Quiroga, Av. Libertador General San Martín 5401 (O), Rivadavia, San Juan CP 5407, Argentina;
| | - Gabriela Egly Feresin
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina; (J.G.); (B.L.); (G.E.F.)
- CONICET (Consejo Nacional de Ciencia y Tecnología), CABA, Buenos Aires C1405DJR, Argentina;
| | - Alejandro Tapia
- Instituto de Biotecnología-Instituto de Ciencias Básicas, Universidad Nacional de San Juan, Av. Libertador General San Martín 1109 (O), San Juan CP 5400, Argentina; (J.G.); (B.L.); (G.E.F.)
| |
Collapse
|
17
|
Shan D, Ma C, Yang J. Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 2019; 148:219-238. [PMID: 31228483 PMCID: PMC6888967 DOI: 10.1016/j.addr.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of patients are being diagnosed with neurological diseases, but are rarely cured because of the lack of curative therapeutic approaches. This situation creates an urgent clinical need to develop effective diagnosis and treatment strategies for repair and regeneration of injured or diseased neural tissues. In this regard, biodegradable functional biomaterials provide promising solutions to meet this demand owing to their unique responsiveness to external stimulation fields, which enable neuro-imaging, neuro-sensing, specific targeting, hyperthermia treatment, controlled drug delivery, and nerve regeneration. This review discusses recent progress in the research and development of biodegradable functional biomaterials including electroactive biomaterials, magnetic materials and photoactive biomaterials for the management of neurological disorders with emphasis on their applications in bioimaging (photoacoustic imaging, MRI and fluorescence imaging), biosensing (electrochemical sensing, magnetic sensing and opical sensing), and therapy strategies (drug delivery, hyperthermia treatment, and tissue engineering). It is expected that this review will provide an insightful discussion on the roles of biodegradable functional biomaterials in the diagnosis and treatment of neurological diseases, and lead to innovations for the design and development of the next generation biodegradable functional biomaterials.
Collapse
Affiliation(s)
- Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology 2019; 417:1-14. [PMID: 30769050 DOI: 10.1016/j.tox.2019.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Malathion is one of the most widely used organophosphorus insecticides in agriculture. However, malathion may be involved in the etiology of human brain dysfunction. Induction of ROS has been proposed as a mechanism of malathion-induced poisoning cases, but there are few data regarding the effects of malathion on oxidative stress-associated neurotoxicity in human glial cells. The aim was to explore the mechanism underlying effects of malathion on neurotoxicity in Gibco® Human Astrocytes (GHA cells) and evaluate the protective effects of the antioxidant (N-acetylcysteine, NAC). Cell viability was measured by the cell proliferation reagent (WST-1). Antioxidant enzymes (glutathione peroxidase and catalase) were measured by an ELISA reader. Cell cycle distribution and ROS productions were detected by flow cytometry. Cell cycle-related protein levels (cyclin E1, CDK2, cyclin A2, CDK1/CDC2, or cyclin B1) and apoptotic protein levels (Bcl-2, Bax, and cleaved caspase-9/caspase-3) were analyzed by Western blotting. In GHA cells, treatment with malathion (10-25 μM) for 24 h concentration-dependently induced cytotoxicity and cell cycle arrest. In terms of oxidative stresses, malathion elevated intracellular ROS levels, but reduced glutathion and antioxidant enzyme levels. Treatment with NAC (5 μM) reversed malathion-induced oxidative stress responses, and prevented malathion-evoked apoptosis by regulating apoptotic protein expressions. Together, in GHA cells, NAC mediated inhibition of malathion-activated mitochondrial apoptotic pathways that involved cell cycle arrest and ROS responses. These data provide further insights into the molecular mechanisms behind malathion poisoning, and might suggest that NAC with its protective effects may be a potential compound for prevention of malathion-induced brain injury.
Collapse
Affiliation(s)
- Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Pharmacy, Tajen University, Pingtung, 90741, Taiwan, ROC.
| |
Collapse
|
19
|
Liu LC, Lin YH, Lin YC, Ho CT, Hung CM, Way TDER, Bau DAT. Banana Flower Extract Suppresses Benign Prostatic Hyperplasia by Regulating the Inflammatory Response and Inducing G 1 Cell-cycle Arrest. In Vivo 2019; 32:1373-1379. [PMID: 30348691 DOI: 10.21873/invivo.11389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM The banana flower is used for ameliorating urinary disturbance. However, there is limited evidence to support the efficacy or mechanism of action of banana flower against benign prostatic hyperplasia (BPH). In the present study, the anti-BPH activity and mechanisms of banana flower extracts were investigated in vitro and in vivo. MATERIALS AND METHODS The banana flower extract is a water-soluble extract obtained by sonication. MTT assay was used to examine whether banana flower extract exhibited cytotoxic effects on BPH-1 cells. The effect of banana flower extract on cell-cycle distribution was examined by flow cytometry. The expression of cell-cycle-regulatory molecules was determined by western blot analysis. Testosterone propionate (TP)-induced rat model of BPH was used to evaluate the anti-BPH activity of banana flower extract in vivo. RESULTS Banana flower extract reduced epithelial cell line BPH-1 cell viability through cell-cycle arrest at G1 phase. Moreover, banana flower extract reduced the expression of cyclin D1 and cyclin-dependent kinase 6, while it increased the expression of p53 and p27. Interestingly, banana flower extract suppressed BPH-related inflammatory responses through suppressing cyclo-oxygenase-2 expression and prostaglandin E2 production. Finally, banana flower extract administered orally to male rats reduced prostatic weight and serum dihydrotestosterone level, and improved prostate gland morphology. High-performance liquid chromatography revealed that banana flower extract contains citric acid, taurine, pantothenic acid and nicotinic acid components. In summary, banana flower extract may be used as a therapeutic agent for BPH via anti-proliferative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Liang-Chih Liu
- Department of Surgery, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | | | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taiwan, R.O.C.,School of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C.,Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, U.S.A
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan, R.O.C.,School of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C.
| | - DA-Tian Bau
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
20
|
Abdel-Salam OME, Youness ER, Mohammed NA, Yassen NN, Khadrawy YA, El-Toukhy SE, Sleem AA. Nitric oxide synthase inhibitors protect against brain and liver damage caused by acute malathion intoxication. ASIAN PAC J TROP MED 2017; 10:773-786. [PMID: 28942826 DOI: 10.1016/j.apjtm.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effect of NG-nitro-l-arginine methyl ester (l-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, and 7-nitroindazole (7-NI), a selective neuronal NOS inhibitor, on oxidative stress and tissue damage in brain and liver and on DNA damage of peripheral blood lymphocytes in malathion intoxicated rats. METHODS Malathion (150 mg/kg) was given intraperitoneally (i.p.) along with l-NAME or 7-NI (10 or 20 mg/kg, i.p.) and rats were euthanized 4 h later. The lipid peroxidation product malondialdehyde (MDA), nitric oxide (nitrite), reduced glutathione (GSH) concentrations and paraoxonase-1 (PON-1) activity were measured in both brain and liver. Moreover, the activities of glutathione peroxidase (GPx) acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), total antioxidant capacity (TAC), glucose concentrations were determined in brain. Liver enzyme determination, Comet assay, histopathological examination of brain and liver sections and inducible nitric oxide synthase (iNOS) immunohistochemistry were also performed. RESULTS (i) Rats treated with only malathion exhibited increased nitric oxide and lipid peroxidation (malondialdehyde) accompanied with a decrease in GSH content, and PON-1 activity in brain and liver. Glutathione peroxidase activity, TAC, glucose concentrations, AChE and BChE activities were decreased in brain. There were also raised liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and increased DNA damage of peripheral blood lymphocytes (Comet assay). Malathion caused marked histopathological changes and increased the expression of iNOS in brain and liver tissues. (ii) In brain of malathion-intoxicated rats, l-NAME or 7-NI resulted in decreased nitrite and MDA contents while increasing TAC and PON1 activity. Reduced GSH and GPx activity showed an increase by l-NAME. AChE activity increased by 20 mg/kg l-NAME and 10 mg/kg 7-NI. AChE activity decreased by the higher dose of 7-NI while either dose of 7-NI resulted in decreased BChE activity. (iii) In liver of malathion-intoxicated rats, decreased MDA content was observed after l-NAME or 7-NI. Nitrite level was unchanged by l-NAME but increased after 7-NI which also resulted in decreased GSH concentration and PON1 activity. Either inhibitor resulted in decreased liver ALT activity. (iv) DNA damage of peripheral blood lymphocytes was markedly inhibited by l-NAME or 7-NI treatment. (v) iNOS expression in brain and liver decreased by l-NAME or 7-NI. (vi) More marked improvement of the histopathological alterations induced by malathion in brain and liver was observed after 7-NI compared with l-NAME. CONCLUSIONS In malathion intoxicated rats, the neuronal NOS inhibitor 7-NI and to much less extent l-NAME were able to protect the brain and liver tissue integrity along with improvement in oxidative stress parameters. The decrease in DNA damage of peripheral blood lymphocytes by NOS inhibitors also suggests the involvement of nitric oxide in this process.
Collapse
Affiliation(s)
| | - Eman R Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nadia A Mohammed
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | | | | - Amany A Sleem
- Department of Pharmacology, National Research Centre, Cairo, Egypt
| |
Collapse
|