1
|
Lopes Soares L, Portes AMO, Costa SFF, Leite LB, Natali AJ. Autonomic Dysregulation in Pulmonary Hypertension: Role of Physical Exercise. Hypertension 2024; 81:2228-2236. [PMID: 39234679 DOI: 10.1161/hypertensionaha.124.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Pulmonary hypertension (PH) is a rare and severe condition characterized by increased pressure in the pulmonary circulation, often resulting in right ventricular failure and death. The autonomic nervous system (ANS) plays a crucial role in the cardiovascular and pulmonary controls. Dysfunction of ANS has been implicated in the pathogenesis of cardiopulmonary diseases. Conversely, dysfunctions in ANS can arise from these diseases, impacting cardiac and pulmonary autonomic functions and contributing to disease progression. The complex interaction between ANS dysfunction and PH plays a crucial role in the disease progression, making it essential to explore interventions that modulate ANS, such as physical exercise, to improve the treatment and prognosis of patients with PH. This review addresses autonomic dysfunctions found in PH and their implications for the cardiopulmonary system. Furthermore, we discuss how physical exercise, a significant modulator of ANS, may contribute to the prognosis of PH. Drawing from evidence of aerobic and resistance exercise training in patients and experimental models of PH, potential cardiovascular benefits of exercise are presented. Finally, we highlight emerging therapeutic targets and perspectives to better cope with the complex condition. A comprehensive understanding of the interaction between ANS and PH, coupled with targeted physical exercise interventions, may pave the way for innovative therapeutic strategies and significantly improve the treatment and prognosis of vulnerable patients.
Collapse
Affiliation(s)
- Leôncio Lopes Soares
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | | | | | - Luciano Bernardes Leite
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Minas Gerais, Brazil (L.L.S., S.F.F.C., L.B.L., A.J.N.)
| |
Collapse
|
2
|
Monfared V, Hashemi M, Kiani F, Javid R, Yousefi M, Hasani M, Jafari A, Vakili MA, Hasani M. The effect of physical activity intervention on blood pressure in 18 low and middle-income countries: a systematic review and meta-analysis of randomized controlled trials. Clin Hypertens 2024; 30:22. [PMID: 39085963 PMCID: PMC11293006 DOI: 10.1186/s40885-024-00281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND In especially, low and middle-income nations (LMICs), where healthcare access may be restricted, high blood pressure (BP) is a major risk factor for cardiovascular disease and stroke, both of which can even lead to death. Altering one's lifestyle, in conjunction with medical therapy, has been demonstrated to be effective in lowering BP. Recent research has shown that physical activity (PA), in a variety of guises and to varying degrees, can be an effective means of lowering BP. OBJECTIVE The purpose of this meta-analysis and systematic review was to evaluate the impact that PA plays in the development of hypertension in LMICs nations. METHODS An exhaustive search of the available research was carried out in order to locate studies that were pertinent. We searched a number of online databases, such as SCOPUS, Medline, and Web of Science, looking for clinical trials that were published before March of 2023. Studies were only considered for inclusion if they were randomized controlled trials (RCTs), reported on the association between PA and BP, and were carried out in LMICs countries. RESULTS This meta-analysis incorporated a comprehensive collection of 60 studies, encompassing a total of 11,002 people, consisting of 5,630 cases and 5372 controls. The findings indicate that engaging in PA had a notable impact on decreasing systolic blood pressure (SBP), as seen by a weighted mean difference (WMD) of -7.70 mmHg, with a 95% confidence interval (CI) ranging from -9.50 to -5.91 (p < 0.001). Additionally, PA was found to have a significant influence on reducing diastolic blood pressure (DBP), as indicated by a WMD of -3.60 mmHg, with a 95% CI ranging from -4.48to -2.73(p < 0.001). The findings from subgroup analysis indicate that the observed results remained statistically significant when considering individuals with baseline SBP of 120 mmHg or lower and DBP of 80 mmHg or lower. CONCLUSION The incorporation of PA can significantly contribute to the mitigation of high BP within LMICs nations. Additional investigation is required to ascertain the most effective form and amount of PA in order to mitigate BP levels within these specific individuals.
Collapse
Affiliation(s)
- Vahid Monfared
- Skeletal Biology Laboratory, College of Health, Oregon State University, Corvallis, OR, 97331, USA
| | - Mohtaram Hashemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Kiani
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Reyhane Javid
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahsa Yousefi
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdis Hasani
- Department of Physical Education, Farhangian University, Tehran, Iran
| | - Ali Jafari
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Vakili
- Department of Biostatistics and Epidemiology, Health Management and Social Development Research Center, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Motahareh Hasani
- Health Management and Social Development Research Center, Golestan University of Medical Sciences and Health Services, Hirkan Boulevard, Gorgan, 4918936316, Iran.
| |
Collapse
|
3
|
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, Kalbe E. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis. Cochrane Database Syst Rev 2024; 4:CD013856. [PMID: 38588457 PMCID: PMC11001292 DOI: 10.1002/14651858.cd013856.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS We included 154 RCTs with a total of 7837 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 60 (2721 participants), and 48 (3029 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson's Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (60 studies; 2721 participants) suggests that dance and gait/balance/functional training probably have a moderate beneficial effect on the severity of motor signs (dance: mean difference (MD) -10.18, 95% confidence interval (CI) -14.87 to -5.36; gait/balance/functional training: MD -7.50, 95% CI -11.39 to -3.48; moderate confidence), and multi-domain training probably has a small beneficial effect on the severity of motor signs (MD -5.90, 95% CI -9.11 to -2.68; moderate confidence). The evidence also suggests that endurance, aqua-based, strength/resistance, and mind-body training might have a small beneficial effect on the severity of motor signs (endurance training: MD -5.76, 95% CI -9.78 to -1.74; aqua-based training: MD -5.09, 95% CI -10.45 to 0.40; strength/resistance training: MD -4.96, 95% CI -9.51 to -0.40; mind-body training: MD -3.62, 95% CI -7.24 to 0.00; low confidence). The evidence is very uncertain about the effects of "Lee Silverman Voice training BIG" (LSVT BIG) and flexibility training on the severity of motor signs (LSVT BIG: MD -6.70, 95% CI -16.48 to 3.08; flexibility training: MD 4.20, 95% CI -1.61 to 9.92; very low confidence). Quality of life The evidence from the NMA (48 studies; 3029 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -15.15, 95% CI -23.43 to -6.87; moderate confidence). The evidence also suggests that mind-body, gait/balance/functional, and multi-domain training and dance might have a small beneficial effect on QoL (mind-body training: MD -7.22, 95% CI -13.57 to -0.70; gait/balance/functional training: MD -6.17, 95% CI -10.75 to -1.59; multi-domain training: MD -5.29, 95% CI -9.51 to -1.06; dance: MD -3.88, 95% CI -10.92 to 3.00; low confidence). The evidence is very uncertain about the effects of gaming, strength/resistance, endurance, and flexibility training on QoL (gaming: MD -8.99, 95% CI -23.43 to 5.46; strength/resistance training: MD -6.70, 95% CI -12.86 to -0.35; endurance training: MD -6.52, 95% CI -13.74 to 0.88; flexibility training: MD 1.94, 95% CI -10.40 to 14.27; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Romina Gollan
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emma Lieker
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nora Cryns
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Dresen
- Institute of Medical Sociology, Health Services Resarch, and Rehabilitation Science (IMVR), Faculty of Human Sciences and Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Ambulatory Assessment in Psychology, Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop GmbH, Bottrop, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Institute of Public Health, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Palma JA, Thijs RD. Non-Pharmacological Treatment of Autonomic Dysfunction in Parkinson's Disease and Other Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S81-S92. [PMID: 37694308 PMCID: PMC11380254 DOI: 10.3233/jpd-230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Symptoms of autonomic dysfunction are prevalent and can be very debilitating, reducing the quality of life in patients with Parkinson's disease (PD) and other synucleinopathies such as dementia with Lewy bodies and multiple system atrophy. Non-pharmacological therapies are key to effective management and are frequently used alone in patients with mild autonomic symptoms, or in combination with pharmacological therapies in patients with moderate and severe symptoms. This article focuses on non-pharmacological approaches. Our objective was to review the non-drug and non-surgical approaches to treating autonomic symptoms in patients with PD and other synucleinopathies, focusing on cardiovascular, gastrointestinal, and genitourinary autonomic dysfunction. Evidence supporting the effectiveness of non-pharmacological treatment for the management of neurogenic orthostatic hypotension, supine hypertension, constipation, and bladder and sexual dysfunction is available. High-quality prospective trials are scarce, yet some non-pharmacological interventions (e.g., physical counter maneuvers) can be evaluated relatively quickly on an individual basis and often seem effective. The emerging variety of clinical presentations advocates for a stepwise, individualized, and non-pharmacological approach for the management of autonomic symptoms. Often, the first step is to reduce or discontinue drugs that cause or aggravate autonomic symptoms followed by lifestyle measures. While non-pharmacological and non-surgical treatments are available and, in many cases, effective to improve symptoms of autonomic dysfunction in PD and other synucleinopathies, they are often overlooked. Large randomized trials testing and comparing non-pharmacological approaches are warranted.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Roland D Thijs
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
5
|
Tonkin PG, Miller TD, Hartmann TE, Skein M. The effects of exercise on non-motor experiences of daily living experienced in Parkinson's Disease: A systematic review and network meta-analysis. Clin Park Relat Disord 2023; 9:100203. [PMID: 37293547 PMCID: PMC10245098 DOI: 10.1016/j.prdoa.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Whilst non-motor experiences of daily living (NMeDL) reduce quality of life (QoL) in people with Parkinson's Disease (PD), research dedicated to NMeDL is lacking compared to motor symptoms. The aim of this Network Meta-Analysis (NMA) was to compare and determine the effects of exercise and dual-task training interventions on NMeDL for people with early-to-mid stage PD. Methods Eight electronic databases were systematically searched, identifying randomised control trials (RCTs) that assessed the effect of interventions on the Movement Disease Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS); Part I scores. A fixed-effect pairwise and NMA were completed and confidence in estimates were assessed using the Confidence in Network Meta-Analysis (CINeMA) framework. Results Five RCTs involving exercise were identified, involving 218 participants. No dual-tasking studies were suitable. Pairwise comparisons favoured tango and mixed-treadmill training (TT) when compared to control, however 95% Confidence Intervals (CI) crossed the line of no effect (MD = 0). Indirect comparisons revealed tango had clinically meaningful reductions in Part I scores compared to speed-TT and body-weight resistance training, (MD -4.47; 95% CI -8.50 to -0.44 and MD -4.38; 95% CI -7.86 to -0.90), indicating improved NMeDL. Compared to control, low confidence evidence suggests tango and mixed-TT improves NMeDL. Conclusions Tango and mixed-TT are the most effective exercise interventions for improving NMeDL. Adoption of an exercise program in the early stages of PD, irrespective of modality, may be effective and holds potential clinical importance immediately following a diagnosis of PD.Other: Prospero Registration Number; CRD42022322470.
Collapse
|
6
|
Ernst M, Folkerts AK, Gollan R, Lieker E, Caro-Valenzuela J, Adams A, Cryns N, Monsef I, Dresen A, Roheger M, Eggers C, Skoetz N, Kalbe E. Physical exercise for people with Parkinson's disease: a systematic review and network meta-analysis. Cochrane Database Syst Rev 2023; 1:CD013856. [PMID: 36602886 PMCID: PMC9815433 DOI: 10.1002/14651858.cd013856.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Physical exercise is effective in managing Parkinson's disease (PD), but the relative benefit of different exercise types remains unclear. OBJECTIVES To compare the effects of different types of physical exercise in adults with PD on the severity of motor signs, quality of life (QoL), and the occurrence of adverse events, and to generate a clinically meaningful treatment ranking using network meta-analyses (NMAs). SEARCH METHODS An experienced information specialist performed a systematic search for relevant articles in CENTRAL, MEDLINE, Embase, and five other databases to 17 May 2021. We also searched trial registries, conference proceedings, and reference lists of identified studies up to this date. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing one type of physical exercise for adults with PD to another type of exercise, a control group, or both. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data. A third author was involved in case of disagreements. We categorized the interventions and analyzed their effects on the severity of motor signs, QoL, freezing of gait, and functional mobility and balance up to six weeks after the intervention using NMAs. Two review authors independently assessed the risk of bias using the risk of bias 2 (RoB 2) tool and rated the confidence in the evidence using the CINeMA approach for results on the severity of motor signs and QoL. We consulted a third review author to resolve any disagreements. Due to heterogeneous reporting of adverse events, we summarized safety data narratively and rated our confidence in the evidence using the GRADE approach. MAIN RESULTS We included 156 RCTs with a total of 7939 participants with mostly mild to moderate disease and no major cognitive impairment. The number of participants per study was small (mean 51, range from 10 to 474). The NMAs on the severity of motor signs and QoL included data from 71 (3196 participants), and 55 (3283 participants) trials, respectively. Eighty-five studies (5192 participants) provided safety data. Here, we present the main results. We observed evidence of beneficial effects for most types of physical exercise included in our review compared to a passive control group. The effects on the severity of motor signs and QoL are expressed as scores on the motor scale of the Unified Parkinson Disease Rating Scale (UPDRS-M) and the Parkinson's Disease Questionnaire 39 (PDQ-39), respectively. For both scales, higher scores denote higher symptom burden. Therefore, negative estimates reflect improvement (minimum clinically important difference: -2.5 for UPDRS-M and -4.72 for PDQ-39). Severity of motor signs The evidence from the NMA (71 studies; 3196 participants) suggests that dance has a moderate beneficial effect on the severity of motor signs (mean difference (MD) -10.32, 95% confidence interval (CI) -15.54 to -4.96; high confidence), and aqua-based, gait/balance/functional, and multi-domain training might have a moderate beneficial effect on the severity of motor signs (aqua-based: MD -7.77, 95% CI -13.27 to -2.28; gait/balance/functional: MD -7.37, 95% CI -11.39 to -3.35; multi-domain: MD -6.97, 95% CI -10.32 to -3.62; low confidence). The evidence also suggests that mind-body training and endurance training might have a small beneficial effect on the severity of motor signs (mind-body: MD -6.57, 95% CI -10.18 to -2.81; endurance: MD -6.43, 95% CI -10.72 to -2.28; low confidence). Flexibility training might have a trivial or no effect on the severity of motor signs (MD 2.01, 95% CI -4.82 to 8.98; low confidence). The evidence is very uncertain about the effects of strength/resistance training and "Lee Silverman Voice training BIG" (LSVT BIG) on the severity of motor signs (strength/resistance: MD -6.97, 95% CI -11.93 to -2.01; LSVT BIG: MD -5.49, 95% CI -14.74 to 3.62; very low confidence). Quality of life The evidence from the NMA (55 studies; 3283 participants) suggests that aqua-based training probably has a large beneficial effect on QoL (MD -14.98, 95% CI -23.26 to -6.52; moderate confidence). The evidence also suggests that endurance training might have a moderate beneficial effect, and that gait/balance/functional and multi-domain training might have a small beneficial effect on QoL (endurance: MD -9.16, 95% CI -15.68 to -2.82; gait/balance/functional: MD -5.64, 95% CI -10.04 to -1.23; multi-domain: MD -5.29, 95% CI -9.34 to -1.06; low confidence). The evidence is very uncertain about the effects of mind-body training, gaming, strength/resistance training, dance, LSVT BIG, and flexibility training on QoL (mind-body: MD -8.81, 95% CI -14.62 to -3.00; gaming: MD -7.05, 95% CI -18.50 to 4.41; strength/resistance: MD -6.34, 95% CI -12.33 to -0.35; dance: MD -4.05, 95% CI -11.28 to 3.00; LSVT BIG: MD 2.29, 95% CI -16.03 to 20.44; flexibility: MD 1.23, 95% CI -11.45 to 13.92; very low confidence). Adverse events Only 85 studies (5192 participants) provided some kind of safety data, mostly only for the intervention groups. No adverse events (AEs) occurred in 40 studies and no serious AEs occurred in four studies. AEs occurred in 28 studies. The most frequently reported events were falls (18 studies) and pain (10 studies). The evidence is very uncertain about the effect of physical exercise on the risk of adverse events (very low confidence). Across outcomes, we observed little evidence of differences between exercise types. AUTHORS' CONCLUSIONS We found evidence of beneficial effects on the severity of motor signs and QoL for most types of physical exercise for people with PD included in this review, but little evidence of differences between these interventions. Thus, our review highlights the importance of physical exercise regarding our primary outcomes severity of motor signs and QoL, while the exact exercise type might be secondary. Notably, this conclusion is consistent with the possibility that specific motor symptoms may be treated most effectively by PD-specific programs. Although the evidence is very uncertain about the effect of exercise on the risk of adverse events, the interventions included in our review were described as relatively safe. Larger, well-conducted studies are needed to increase confidence in the evidence. Additional studies recruiting people with advanced disease severity and cognitive impairment might help extend the generalizability of our findings to a broader range of people with PD.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Romina Gollan
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emma Lieker
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anne Adams
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Dresen
- Institute of Medical Sociology, Health Services Resarch, and Rehabilitation Science (IMVR), Faculty of Human Sciences and Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Ambulatory Assessment in Psychology, Department of Psychology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop GmbH, Bottrop, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies and Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
van Wamelen DJ, Rukavina K, Podlewska AM, Chaudhuri KR. Advances in the Pharmacological and Non-pharmacological Management of Non-motor Symptoms in Parkinson's Disease: An Update Since 2017. Curr Neuropharmacol 2023; 21:1786-1805. [PMID: 35293295 PMCID: PMC10514535 DOI: 10.2174/1570159x20666220315163856] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-motor symptoms (NMS) are an important and ubiquitous determinant of quality of life in Parkinson's disease (PD). However, robust evidence for their treatment is still a major unmet need. OBJECTIVE This study aimed to provide an updated review on advances in pharmacological, nonpharmacological, and exercise-based interventions for NMS in PD, covering the period since the publication of the MDS Task Force Recommendations. METHODS We performed a literature search to identify pharmacological, non-pharmacological, and exercise-based interventions for NMS in PD. As there are recent reviews on the subject, we have only included studies from the 1st of January 2017 to the 1st of December 2021 and limited our search to randomised and non-randomised (including open-label) clinical trials. RESULTS We discuss new strategies to manage NMS based on data that have become available since 2017, for instance, on the treatment of orthostatic hypotension with droxidopa, several dopaminergic treatment options for insomnia, and a range of non-pharmacological and exercise-based interventions for cognitive and neuropsychiatric symptoms, pain, and insomnia and excessive sleepiness. CONCLUSION Recent evidence suggests that targeted non-pharmacological treatments, as well as some other NMS management options, may have a significant beneficial effect on the quality of life and need to be considered in the pathways of treatment of PD.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - Katarina Rukavina
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Aleksandra M. Podlewska
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Allen NE, Canning CG, Almeida LRS, Bloem BR, Keus SH, Löfgren N, Nieuwboer A, Verheyden GS, Yamato TP, Sherrington C. Interventions for preventing falls in Parkinson's disease. Cochrane Database Syst Rev 2022; 6:CD011574. [PMID: 35665915 PMCID: PMC9169540 DOI: 10.1002/14651858.cd011574.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Most people with Parkinson's disease (PD) experience at least one fall during the course of their disease. Several interventions designed to reduce falls have been studied. An up-to-date synthesis of evidence for interventions to reduce falls in people with PD will assist with informed decisions regarding fall-prevention interventions for people with PD. OBJECTIVES To assess the effects of interventions designed to reduce falls in people with PD. SEARCH METHODS CENTRAL, MEDLINE, Embase, four other databases and two trials registers were searched on 16 July 2020, together with reference checking, citation searching and contact with study authors to identify additional studies. We also conducted a top-up search on 13 October 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions that aimed to reduce falls in people with PD and reported the effect on falls. We excluded interventions that aimed to reduce falls due to syncope. DATA COLLECTION AND ANALYSIS We used standard Cochrane Review procedures. Primary outcomes were rate of falls and number of people who fell at least once. Secondary outcomes were the number of people sustaining one or more fall-related fractures, quality of life, adverse events and economic outcomes. The certainty of the evidence was assessed using GRADE. MAIN RESULTS This review includes 32 studies with 3370 participants randomised. We included 25 studies of exercise interventions (2700 participants), three studies of medication interventions (242 participants), one study of fall-prevention education (53 participants) and three studies of exercise plus education (375 participants). Overall, participants in the exercise trials and the exercise plus education trials had mild to moderate PD, while participants in the medication trials included those with more advanced disease. All studies had a high or unclear risk of bias in one or more items. Illustrative risks demonstrating the absolute impact of each intervention are presented in the summary of findings tables. Twelve studies compared exercise (all types) with a control intervention (an intervention not thought to reduce falls, such as usual care or sham exercise) in people with mild to moderate PD. Exercise probably reduces the rate of falls by 26% (rate ratio (RaR) 0.74, 95% confidence interval (CI) 0.63 to 0.87; 1456 participants, 12 studies; moderate-certainty evidence). Exercise probably slightly reduces the number of people experiencing one or more falls by 10% (risk ratio (RR) 0.90, 95% CI 0.80 to 1.00; 932 participants, 9 studies; moderate-certainty evidence). We are uncertain whether exercise makes little or no difference to the number of people experiencing one or more fall-related fractures (RR 0.57, 95% CI 0.28 to 1.17; 989 participants, 5 studies; very low-certainty evidence). Exercise may slightly improve health-related quality of life immediately following the intervention (standardised mean difference (SMD) -0.17, 95% CI -0.36 to 0.01; 951 participants, 5 studies; low-certainty evidence). We are uncertain whether exercise has an effect on adverse events or whether exercise is a cost-effective intervention for fall prevention. Three studies trialled a cholinesterase inhibitor (rivastigmine or donepezil). Cholinesterase inhibitors may reduce the rate of falls by 50% (RaR 0.50, 95% CI 0.44 to 0.58; 229 participants, 3 studies; low-certainty evidence). However, we are uncertain if this medication makes little or no difference to the number of people experiencing one or more falls (RR 1.01, 95% CI 0.90 to 1.14230 participants, 3 studies) and to health-related quality of life (EQ5D Thermometer mean difference (MD) 3.00, 95% CI -3.06 to 9.06; very low-certainty evidence). Cholinesterase inhibitors may increase the rate of non fall-related adverse events by 60% (RaR 1.60, 95% CI 1.28 to 2.01; 175 participants, 2 studies; low-certainty evidence). Most adverse events were mild and transient in nature. No data was available regarding the cost-effectiveness of medication for fall prevention. We are uncertain of the effect of education compared to a control intervention on the number of people who fell at least once (RR 10.89, 95% CI 1.26 to 94.03; 53 participants, 1 study; very low-certainty evidence), and no data were available for the other outcomes of interest for this comparisonWe are also uncertain (very low-certainty evidence) whether exercise combined with education makes little or no difference to the number of falls (RaR 0.46, 95% CI 0.12 to 1.85; 320 participants, 2 studies), the number of people sustaining fall-related fractures (RR 1.45, 95% CI 0.40 to 5.32,320 participants, 2 studies), or health-related quality of life (PDQ39 MD 0.05, 95% CI -3.12 to 3.23, 305 participants, 2 studies). Exercise plus education may make little or no difference to the number of people experiencing one or more falls (RR 0.89, 95% CI 0.75 to 1.07; 352 participants, 3 studies; low-certainty evidence). We are uncertain whether exercise combined with education has an effect on adverse events or is a cost-effective intervention for fall prevention. AUTHORS' CONCLUSIONS: Exercise interventions probably reduce the rate of falls, and probably slightly reduce the number of people falling in people with mild to moderate PD. Cholinesterase inhibitors may reduce the rate of falls, but we are uncertain if they have an effect on the number of people falling. The decision to use these medications needs to be balanced against the risk of non fall-related adverse events, though these adverse events were predominantly mild or transient in nature. Further research in the form of large, high-quality RCTs are required to determine the relative impact of different types of exercise and different levels of supervision on falls, and how this could be influenced by disease severity. Further work is also needed to increase the certainty of the effects of medication and further explore falls prevention education interventions both delivered alone and in combination with exercise.
Collapse
Affiliation(s)
- Natalie E Allen
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Colleen G Canning
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Lorena Rosa S Almeida
- Movement Disorders and Parkinson's Disease Clinic, Roberto Santos General Hospital, Salvador, Brazil
- Motor Behavior and Neurorehabilitation Research Group, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Bastiaan R Bloem
- Raboud University Medical Centre; Donders Institute for Brain, Cognition and Behaviour; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, Netherlands
| | - Samyra Hj Keus
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
- Quality and Improvement, OLVG, Amsterdam, Netherlands
| | - Niklas Löfgren
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- Department of Women's and Children's Health, Physiotherapy, Uppsala University, Uppsala, Sweden
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Tiê P Yamato
- Masters and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, Brazil
| | - Catherine Sherrington
- Institute for Musculoskeletal Health, School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
9
|
Hüsch S, Schauermann J, Fimm B, Haubrich C, Reetz K, Schulz JB, Maier A. Effect of strength training on orthostatic hypotension in Parkinson's disease-a pilot study. Clin Auton Res 2022; 32:213-217. [PMID: 35705801 PMCID: PMC9236997 DOI: 10.1007/s10286-022-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/21/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Svenja Hüsch
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Joana Schauermann
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Bruno Fimm
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Christina Haubrich
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Gamborg M, Hvid LG, Dalgas U, Langeskov‐Christensen M. Parkinson's disease and intensive exercise therapy - An updated systematic review and meta-analysis. Acta Neurol Scand 2022; 145:504-528. [PMID: 34997759 DOI: 10.1111/ane.13579] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023]
Abstract
In 2015, Uhrbrand et al. published the first review on Parkinson´s disease (PD) and exercise entirely based on randomized controlled trials (RCT) applying strict exercise definitions. The present review aimed to update the PD literature by assessing the effects of different intensive exercise modalities: resistance training (RT), endurance training (ET), and other intensive exercise modalities (OITM). An updated systematic literature search identified 33 new RCTs. Qualitative and quantitative analyses were performed. A total of 18 RT, 14 ET, and 1 OITM studies were identified (adding to the 8 RT, 6 ET, and 4 OITM studies identified by Uhrbrand et al. in 2015). RT, ET, and OITM were feasible, safe, and did not worsen PD symptoms. Furthermore, RT, ET, and OITM may positively affect functional outcomes (e.g., balance) and depressive symptoms in PD but inconsistencies across these findings warrant cautious conclusions. Meta-analyses showed that RT had a positive impact on muscle strength (standardized mean difference (SMD) = 0.83 [95% CI;0.54, 1.12]), functional capacity (Timed Up and Go Test (TUG): SMD = -0.62 [-1.01, -0.24]), and quality of life (SMD = -0.41 [-0.72, -0.09]), while ET had a positive impact on cardiorespiratory fitness (SMD = 0.27 [0.07, 0.47]) and functional capacity (TUG: SMD = -0.21 [-0.46, 0.04], 6-Min Walk Test: SMD = 0.89 [0.17, 1.62]), and a potentially positive impact on "on-medication" UPDRS-III (SMD = -0.15 [-0.38, 0.09]) and "off-medication" UPDRS-III (SMD = -0.19 [-0.41, 0.04]). In conclusion, RT, ET, and OITM all represent safe, feasible, and beneficial adjunct rehabilitation strategies in PD, with particularly RT and ET showing solid effects.
Collapse
Affiliation(s)
- Mads Gamborg
- Exercise Biology Department of Public Health Aarhus University Aarhus Denmark
| | - Lars G. Hvid
- Exercise Biology Department of Public Health Aarhus University Aarhus Denmark
- The Danish MS Hospitals, Ry and Haslev Denmark
| | - Ulrik Dalgas
- Exercise Biology Department of Public Health Aarhus University Aarhus Denmark
| | | |
Collapse
|
11
|
de Almeida FO, Santana V, Corcos DM, Ugrinowitsch C, Silva-Batista C. Effects of Endurance Training on Motor Signs of Parkinson's Disease: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1789-1815. [PMID: 35113386 DOI: 10.1007/s40279-022-01650-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Evidence has demonstrated that endurance training (ET) reduces the motor signs of Parkinson's disease (PD). However, there has not been a comprehensive meta-analysis of studies to date. OBJECTIVE The aim of this study was to compare the effect of ET versus nonactive and active control conditions on motor signs as assessed by either the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) or Movement Disorder Society-UPDRS-III (MDS-UPDRS-III). METHODS A random-effect meta-analysis model using standardized mean differences (Hedges' g) determined treatment effects. Moderators (e.g., combined endurance and physical therapy training [CEPTT]) and meta-regressors (e.g., number of sessions) were used for sub-analyses. Methodological quality was assessed by the Physiotherapy Evidence Database. RESULTS Twenty-seven randomized controlled trials (RCTs) met inclusion criteria (1152 participants). ET is effective in decreasing UPDRS-III scores when compared with nonactive and active control conditions (g = - 0.68 and g = - 0.33, respectively). This decrease was greater (within- and between-groups average of - 8.0 and - 6.8 point reduction on UPDRS-III scores, respectively) than the moderate range of clinically important changes to UPDRS-III scores (- 4.5 to - 6.7 points) suggested for PD. Although considerable heterogeneity was observed between RCTs (I2 = 74%), some moderators that increased the effect of ET on motor signs decreased the heterogeneity of the analyses, such as CEPTT (I2 = 21%), intensity based on treadmill speed (I2 = 0%), self-perceived exertion rate (I2 = 33%), and studies composed of individuals with PD and freezing of gait (I2 = 0%). Meta-regression did not produce significant relationships between ET dosage and UPDRS-III scores. CONCLUSIONS ET is effective in decreasing UPDRS-III scores. Questions remain about the dose-response relationship between ET and reduction in motor signs.
Collapse
Affiliation(s)
| | - Vagner Santana
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Carlos Ugrinowitsch
- Laboratory of Adaptations To Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Carla Silva-Batista
- Exercise Neuroscience Research Group, University of São Paulo, São Paulo, Brazil. .,School of Arts, Sciences and Humanities of University of São Paulo, St. Arlindo Béttio, 1000, 03828-000, Vila Guaraciaba, São Paulo, Brazil. .,Laboratory of Adaptations To Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Gollan R, Ernst M, Lieker E, Caro-Valenzuela J, Monsef I, Dresen A, Roheger M, Skoetz N, Kalbe E, Folkerts AK. Effects of Resistance Training on Motor- and Non-Motor Symptoms in Patients with Parkinson's Disease: A Systematic Review and Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1783-1806. [PMID: 35754291 DOI: 10.3233/jpd-223252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous reviews indicated positive effects of resistance training (RT) on motor outcomes in Parkinson's disease (PD). However, inconsistencies between the included studies exist, and non-motor outcomes have only scarcely been considered in a review on RT in PD. OBJECTIVE To analyze the RT effects on motor- and non-motor outcomes in PD patients compared to passive and physically active control groups (i.e., other structured physical interventions). METHODS We searched CENTRAL, MEDLINE, EMBASE, and CINAHL for randomized controlled trials of RT in PD. After identifying 18 studies, a meta-analysis was conducted for the outcomes muscle strength, motor impairment, freezing of gait (FoG), mobility and balance, quality of life (QoL), depression, cognition, and adverse events. Meta-analyses with random models were calculated using mean differences (MD) or standardized mean differences (SMD) with 95% confidence intervals (CI). RESULTS When comparing RT with passive control groups, the meta-analyses showed significant large effects on muscle strength (SMD = -0.84, 95% CI -1.29--0.39, p = 0.0003), motor impairment (SMD = -0.81, 95% CI -1.34--0.27, p = 0.003), mobility and balance (MD = -1.81, 95% CI -3.13--0.49, p = 0.007), and small significant effects on QoL (SMD = -0.48, 95% CI -0.86--0.10, p = 0.01). RT compared with physically active control groups reached no significant results for any outcome. CONCLUSIONS RT improves muscle strength, motor impairment, mobility and balance, QoL, and depression in PD patients. However, it is not superior to other physically active interventions. Therefore, exercise is important for PD patients but according to this analysis, its type is of secondary interest.
Collapse
Affiliation(s)
- Romina Gollan
- Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Moritz Ernst
- Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Emma Lieker
- Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ina Monsef
- Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Antje Dresen
- Institute of Medical Sociology, Health Services Research and Rehabilitation Science (IMVR), Faculty of Human Sciences and Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mandy Roheger
- Department of Neurology, Universitymedicine Greifswald, Greifswald, Germany
| | - Nicole Skoetz
- Evidence-based Oncology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ann-Kristin Folkerts
- Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Heart Rate Variability Analyses in Parkinson's Disease: A Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11080959. [PMID: 34439578 PMCID: PMC8394422 DOI: 10.3390/brainsci11080959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests that the vagus nerve and autonomic dysfunction play an important role in the pathogenesis of Parkinson's disease. Using heart rate variability analysis, the autonomic modulation of cardiac activity can be investigated. This meta-analysis aims to assess if analysis of heart rate variability may indicate decreased parasympathetic tone in patients with Parkinson's disease. The MEDLINE, EMBASE and Cochrane Central databases were searched on 31 December 2020. Studies were included if they: (1) were published in English, (2) analyzed idiopathic Parkinson's disease and healthy adult controls, and (3) reported at least one frequency- or time-domain heart rate variability analysis parameter, which represents parasympathetic regulation. We included 47 studies with 2772 subjects. Random-effects meta-analyses revealed significantly decreased effect sizes in Parkinson patients for the high-frequency spectral component (HFms2) and the short-term measurement of the root mean square of successive normal-to-normal interval differences (RMSSD). However, heterogeneity was high, and there was evidence for publication bias regarding HFms2. There is some evidence that a more advanced disease leads to an impaired parasympathetic regulation. In conclusion, short-term measurement of RMSSD is a reliable parameter to assess parasympathetically impaired cardiac modulation in Parkinson patients. The measurement should be performed with a predefined respiratory rate.
Collapse
|
14
|
Andreu-Caravaca L, Ramos-Campo DJ, Abellán-Aynés O, Ávila-Gandía V, Chung LH, Manonelles P, Rubio-Arias JÁ. 10-Weeks of resistance training improves sleep quality and cardiac autonomic control in persons with multiple sclerosis. Disabil Rehabil 2021; 44:5241-5249. [PMID: 34107841 DOI: 10.1080/09638288.2021.1934738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To examine the acute and chronic effects of 10-weeks of progressive resistance training on sleep quality and sleeping heart rate variability in persons with Multiple Sclerosis (pwMS). METHODS Eighteen pwMS (age = 44.8 ± 10.6 years; EDSS = 3.1 ± 1.7) completed a 10-week of resistance training, with three training sessions per week. Each session consisted of 4 lower body exercises, performing 2-4 sets of each exercise, with 8-15 repetitions each set, at an intensity ranging from 60 to 75% of 1-repetition maximum. Subjective and actigraphic sleep quality and sleeping heart rate variability were carried out at 4 different times: (1) Before the starting of the intervention on a rest day; (2) the night after training week 1 (3) the night after training week 10 and 4) after completing the resistance training program on a rest day. RESULTS Regarding subjective sleep quality, significant main effects were observed on the variables of sleep quality, sleep comfort, easy of falling sleep, easy of waking up and felling of rest. Sleep quality, sleep comfort and easy of falling sleep were greater in rest night in week 1 vs. rest night in week 10. Actigraphic sleep quality also improved after the training program (rest night in week 1 vs. rest night in week 10). In the pair-wise comparison showed an acute effect in the session after the training program (rest night in week 10< training night in week 10) on HF, pNN50 and RMMSD. CONCLUSIONS Resistance training is a non-pharmacological treatment that has the capacity to improve the regulation of autonomic system and, consequently, the sleep quality in pwMS.Implications for rehabilitation10 Weeks of resistance training improves the sleep quality of persons with multiple sclerosis.Resistance training can modulate autonomic cardiac control in this population.Improving the sleep quality is essential for persons with MS because of its close relationship to other variables, such as symptomatic fatigue.
Collapse
Affiliation(s)
- Luis Andreu-Caravaca
- International Chair of Sports Medicine, Catholic University of Murcia, Murcia, Spain.,Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | | | - Oriol Abellán-Aynés
- International Chair of Sports Medicine, Catholic University of Murcia, Murcia, Spain.,Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | | | - Linda H Chung
- Faculty of Sport, Catholic University of Murcia, Murcia, Spain.,UCAM Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain
| | - Pedro Manonelles
- International Chair of Sports Medicine, Catholic University of Murcia, Murcia, Spain
| | - Jacobo Á Rubio-Arias
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, LFE Research Group, Madrid, Spain.,Department of Education, University of Almería, Almería, Spain
| |
Collapse
|
15
|
Kanegusuku H, Peçanha T, Silva-Batista C, Miyasato RS, Silva Júnior NDD, Mello MTD, Piemonte MEP, Ugrinowitsch C, Forjaz CLDM. Effects of resistance training on metabolic and cardiovascular responses to a maximal cardiopulmonary exercise test in Parkinson`s disease. EINSTEIN-SAO PAULO 2021; 19:eAO5940. [PMID: 33886934 PMCID: PMC8051939 DOI: 10.31744/einstein_journal/2021ao5940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022] Open
Abstract
Objective: To evaluate the effects of resistance training on metabolic and cardiovascular responses during maximal cardiopulmonary exercise testing in patients with Parkinson’s disease. Methods: Twenty-four patients with Parkinson’s disease (modified Hoehn and Yahr stages 2 to 3) were randomly assigned to one of two groups: Control or Resistance Training. Patients in the Resistance Training Group completed an exercise program consisting of five resistance exercises (two to four sets of six to 12 repetitions maximum per set) twice a week. Patients in the Control Group maintained their usual lifestyle. Oxygen uptake, systolic blood pressure and heart rate were assessed at rest and during cycle ergometer-based maximal cardiopulmonary exercise testing at baseline and at 12 weeks. Assessments during exercise were conducted at absolute submaximal intensity (slope of the linear regression line between physiological variables and absolute workloads), at relative submaximal intensity (anaerobic threshold and respiratory compensation point) and at maximal intensity (maximal exercise). Muscle strength was also evaluated. Results: Both groups had similar increase in peak oxygen uptake after 12 weeks of training. Heart rate and systolic blood pressure measured at absolute and relative submaximal intensities and at maximal exercise intensity did not change in any of the groups. Muscle strength increased in the Resistance Training but not in the Control Group after 12 weeks. Conclusion: Resistance training increases muscle strength but does not change metabolic and cardiovascular responses during maximal cardiopulmonary exercise testing in patients with Parkinson’s disease without cardiovascular comorbidities.
Collapse
|
16
|
Logan A, Freeman J, Pooler J, Kent B, Gunn H, Billings S, Cork E, Marsden J. Effectiveness of non-pharmacological interventions to treat orthostatic hypotension in elderly people and people with a neurological condition: a systematic review. JBI Evid Synth 2021; 18:2556-2617. [PMID: 32773495 DOI: 10.11124/jbisrir-d-18-00005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of this review was to summarize the best available evidence regarding the effectiveness of non-pharmacological interventions to treat orthostatic hypotension (OH) in elderly people and people with a neurological condition. INTRODUCTION Orthostatic hypotension is common in elderly people and people with a neurological condition and can interfere with or limit rehabilitation. Non-pharmacological interventions to treat OH could allow for longer and earlier mobilization, which is recommended in national clinical guidelines for rehabilitation in the acute or sub-acute phase following stroke or other neurological conditions. INCLUSION CRITERIA The review considered people aged 50 years and older, and people aged 18 years and elderly people with a neurological condition. Non-pharmacological interventions to treat OH included compression garments, neuromuscular stimulation, physical counter-maneuvers, aerobic or resistance exercises, sleeping with head tilted up, increasing fluid and salt intake, and timing and size of meals. The comparator was usual care, no intervention, pharmacological interventions, or other non-pharmacological interventions. Outcome measures included systolic blood pressure, diastolic blood pressure, heart rate, cerebral blood flow, observed/perceived symptoms, duration of standing or sitting in minutes, tolerance of therapy, functional ability, and adverse events/effects. METHODS Databases for published and unpublished studies available in English up to April 2018 with no lower date limit were searched. Critical appraisal was conducted using standardized instruments from JBI. Data were extracted using standardized tools designed for quantitative studies. Where appropriate, studies were included in a meta-analysis; otherwise, data were presented in a narrative form due to heterogeneity. RESULTS Forty-three studies - a combination of randomized controlled trials (n = 13), quasi-experimental studies (n = 28), a case control study (n = 1), and a case report (n = 1) - with 1069 participants were included. Meta-analyses of three interventions (resistance exercise, electrical stimulation, and lower limb compression bandaging) showed no significant effect of these interventions. Results from individual studies indicated physical maneuvers such as leg crossing, leg muscle pumping/contractions, and bending forward improved orthostatic hypotension. Abdominal compression improved OH. Sleeping with head up in combination with pharmacological treatment was more effective than sleeping with head up alone. Eating smaller, more frequent meals was effective. Drinking 480 mL of water increased blood pressure. CONCLUSIONS The review found mixed results for the effectiveness of non-pharmacological interventions to treat OH in people aged 50 years and older, and people with a neurological condition. There are several non-pharmacological interventions that may be effective in treating OH, but not all have resulted in clinically meaningful changes in outcome. Some may not be suitable for people with moderate to severe disability; therefore, it is important for clinicians to consider the patient's abilities and impairments when considering which non-pharmacological interventions to implement.
Collapse
Affiliation(s)
- Angela Logan
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,Stroke and Neurology Therapy Team, Cornwall Partnership Foundation NHS Trust, Camborne Redruth Community Hospital, Cornwall, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| | - Jennifer Freeman
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| | - Jillian Pooler
- Faculty of Health, Peninsula Medical and Dentistry Schools, Plymouth, UK
| | - Bridie Kent
- The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence.,School of Nursing and Midwifery, Faculty of Health, Plymouth University, Plymouth, UK
| | - Hilary Gunn
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK
| | - Sarah Billings
- Stroke Rehabilitation Unit, Livewell Southwest, Mount Gould Hospital, Plymouth, UK
| | - Emma Cork
- Stroke Rehabilitation Department, Northern Devon Healthcare Trust, Northern Devon District Hospital, Barnstaple, UK
| | - Jonathan Marsden
- School of Health Professions, Faculty of Health, Peninsula Allied Health Centre, Plymouth University, Plymouth, UK.,The University of Plymouth Centre for Innovations in Health and Social Care: A JBI Centre of Excellence
| |
Collapse
|
17
|
Schaible F, Maier F, Buchwitz TM, Schwartz F, Hoock M, Schönau E, Libuda M, Hordt A, van Eimeren T, Timmermann L, Eggers C. Effects of Lee Silverman Voice Treatment BIG and conventional physiotherapy on non-motor and motor symptoms in Parkinson's disease: a randomized controlled study comparing three exercise models. Ther Adv Neurol Disord 2021; 14:1756286420986744. [PMID: 33680093 PMCID: PMC7897809 DOI: 10.1177/1756286420986744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Parkinson’s disease (PD) patients experience disabling motor dysfunctions as well as non-motor symptoms (NMSs) that can highly impact their perceived quality of life. Besides pharmacological treatment options, active intervention programs have set some attention in managing these symptoms. However, previous studies mainly assessed the effectiveness of active intervention programs on functional mobility and motor symptoms. Objective: This study aimed to investigate the effect of Lee Silverman Voice Treatment (LSVT) BIG, an intensified and personalized physiotherapy (INTENSIVE), and a conventional physiotherapy (NORMAL) on NMSs in PD. Method: Forty-four patients with mild to moderate PD were randomly assigned to one of the three treatment groups. LSVT BIG and INTENSIVE were delivered one-on-one in 16 1-hour sessions within 4 weeks (4×/week). Patients assigned to NORMAL received 16 individual 1-hour sessions within 8 weeks (2×/week). The primary outcome measure was the difference in change from baseline in the non-motor symptom assessment scale for Parkinson’s disease (NMSS) between treatment groups to follow up at week 8. Patients were blinded for the NMSS being the primary outcome, but not the different treatment groups. Results: ANCOVA (Analysis of Covariance) showed reduced NMSS scores for all groups, with INTENSIVE being superior to NORMAL (p = 0.033). For secondary outcome measures (stride length, gait velocity and chair rising test) LSVT BIG and INTENSIVE were both superior to NORMAL. Conclusions: The study provides evidence that all three exercise programs are effective techniques to improve NMSs as well as motor function in PD. DRKS registration number: DRKS00008732
Collapse
Affiliation(s)
- Fabian Schaible
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital of Cologne, Medical Faculty, Cologne, Germany
| | | | - Frank Schwartz
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Marius Hoock
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Eckhard Schönau
- Pediatric Endocrinology, University Hospital of Cologne, Cologne, Germany University of Cologne, Medical Faculty and University Hospital, Center of Prevention and Rehabilitation, UniReha, Germany
| | - Miriam Libuda
- University of Cologne, Medical Faculty and University Hospital, Center of Prevention and Rehabilitation, UniReha, Germany
| | - Anke Hordt
- University of Cologne, Medical Faculty and University Hospital, Center of Prevention and Rehabilitation, UniReha, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Marburg, Baldingerstr. 1, Marburg 35033, Germany Marburg Center of Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
18
|
Braz de Oliveira MP, Maria Dos Reis L, Pereira ND. Effect of Resistance Exercise on Body Structure and Function, Activity, and Participation in Individuals With Parkinson Disease: A Systematic Review. Arch Phys Med Rehabil 2021; 102:1998-2011. [PMID: 33587899 DOI: 10.1016/j.apmr.2021.01.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the effects of resistance exercise (RE) on body structure and function, activity, and participation in individuals with Parkinson Disease (PD) in the mild to moderate stages. DATA SOURCES Medline, Embase, Web of Science, The Cochrane Library, Lilacs, and PEDro were searched from inception until June 2020 using the terms "Parkinson Disease," "Exercise," "Resistance Training," "Muscle Strength," "Cardiorespiratory Fitness," "Postural Balance," "Gait," and "Quality of Life." STUDY SELECTION We included studies conducted in individuals with PD involving RE compared with a control group. Two independent reviewers performed the selection process based on titles, abstracts, and full-text reading. In total, 270 individuals with PD were included from 10 selected studies. DATA EXTRACTION Two reviewers independently extracted characteristics related to participants, intervention and control types, and results. The PEDro scale was used to assess the methodological quality, and the level of evidence was analyzed and synthesized using the Grading of Recommendation, Assessment, Development, and Evaluations approach. DATA SYNTHESIS The level of evidence for body structure and function was low and without effect for lower limb muscle strength; very low and with effect for upper limb muscle strength, cardiorespiratory fitness, and postural balance; and very low and without effect for flexibility after RE training. For activity, the evidence was very low and with effect for gait and very low and without effect for mobility. For participation (ie, quality of life) the evidence was very low and without effect. CONCLUSIONS Although the level of evidence was low to very low, RE was shown to promote improvements in body structure and function (upper limb muscle strength, cardiovascular function, postural balance) and activity (gait). In contrast, RE did not significantly improve participation (quality of life). However, based on the present findings, the practice of RE can be recommended for individuals with PD in the mild to moderate stages.
Collapse
Affiliation(s)
- Marcos Paulo Braz de Oliveira
- Physiotherapy Department, Healthy Aging Research Laboratory, Federal University of São Carlos, São Carlos, SP, Brazil.
| | - Luciana Maria Dos Reis
- Physiotherapy Department, Neurofunctional Physiotherapy Laboratory, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Natalia Duarte Pereira
- Physiotherapy Department, Research Group in Functionality and Technological Innovation in NeuroRehabilitation, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
19
|
Espinoza-Valdés Y, Córdova-Arellano R, Espinoza-Espinoza M, Méndez-Alfaro D, Bustamante-Aguirre JP, Maureira-Pareja HA, Zamunér AR. Association between Cardiac Autonomic Control and Postural Control in Patients with Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E249. [PMID: 33396272 PMCID: PMC7796175 DOI: 10.3390/ijerph18010249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects postural and cardiac autonomic control. However, since it is unknown whether these changes are associated, the objective of this study was to determine whether such a relationship exists. Twenty-three patients with PD participated. The RR intervals were recorded in different positions and heart rate variability (HRV) was analyzed. Postural sway was analyzed based on the center of pressure. No significant differences on HRV indices were induced by postural change. A correlation was found between these indices and postural control, high frequency (HF), and anterior-posterior (AP) root mean square (RMS-AP) (r = 0.422, p = 0.045), low frequency (LF)/HF, and AP mean velocity (r = 0.478, p = 0.021). A correlation was found between HRV induced by postural change and postural control, Δ LF/HF and RMS-AP (r = 0.448, p = 0.032), Δ LF/HF and ellipse area (r = 0.505, p = 0.014), Δ LF/HF and AP mean velocity (r = -0.531; p = 0.009), and Δ LF and AP mean velocity (r = -0.424, p = 0.044). There is an association between the autonomic and postural systems, such that PD patients with blunted cardiac autonomic function in both the supine and orthostatic positions have worse postural control.
Collapse
Affiliation(s)
- Yoan Espinoza-Valdés
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| | - Rocio Córdova-Arellano
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| | - Maiter Espinoza-Espinoza
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| | - Diego Méndez-Alfaro
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| | - Juan Pablo Bustamante-Aguirre
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| | - Hernán Antonio Maureira-Pareja
- Laboratorio de Biomecánica y Análisis de Movimiento Humano, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile;
| | - Antonio Roberto Zamunér
- Laboratorio de Investigación Clínica en Kinesiología, Department of Kinesiology, Universidad Católica del Maule, 3605 Talca, Chile; (Y.E.-V.); (R.C.-A.); (M.E.-E.); (D.M.-A.); (J.P.B.-A.)
| |
Collapse
|
20
|
Li X, He J, Yun J, Qin H. Lower Limb Resistance Training in Individuals With Parkinson's Disease: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2020; 11:591605. [PMID: 33281732 PMCID: PMC7691593 DOI: 10.3389/fneur.2020.591605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 01/20/2023] Open
Abstract
Objective: Initial randomized controlled trials (RCTs) and recently released systematic reviews have identified resistance training (RT) as a modality to manage motor symptoms and improve physical functioning in individuals with Parkinson's disease (PD), although the effects are inconsistent. Therefore, we conducted an updated meta-analysis to reassess the evidence of the relationship. Methods: We performed a systematic search of studies reporting the effects of RT in PD available through major electronic databases (PubMed, Medline, Embase, Ovid, Cochrane Library, CNKI, Wanfang) through 20 July 2020. Eligible RCTs were screened based on established inclusion criteria. We extracted data on the indicators of leg strength, balance, gait capacity, and quality of life (QoL) of lower limbs. Random and fixed effects models were used for the analysis of standard mean differences (SMD) or mean differences (MD) with their 95% confidence intervals (CI). Results: Thirty-one papers from 25 independent trials compromising 1,239 subjects were selected for eligibility in this systematic review and meta-analysis. Summarized data indicated that the leg strength increased statistically significant in PD patients (SMD = 0.79, 95% CI 0.3, 1.27, P = 0.001), the balance capability was improved statistically significant in PD patients (SMD = 0.34, 95% CI 0.01, 0.66, P = 0.04), and QoL statistically significantly improved (MD = −7.22, 95% CI −12.05, −2.39, P = 0.003). For gait performance, four indicators were measured, the results as follows: fast gait velocity (MD = 0.14, 95% CI 0.06, 0.23, P = 0.001), Timed-up-and-go-test (TUG, MD = −1.17, 95% CI −2.27, −0.08, P = 0.04) and Freezing of Gait Questionnaire (FOG-Q, MD = −1.74, 95% CI −3.18, −0.3, P = 0.02) were improved statistically significant across trials, while there were no statistically significant improvement in stride length (MD = −0.05, 95% CI −0.12, 0.02, P = 0.15) in PD patients. Conclusions: Lower limb RT has positive effects during rehabilitation in individuals with PD in leg strength, QoL, and improve gait performance to a certain extent. RT also could improve balance capacity of patients, although a wide variety of tools were used, and further study is needed to confirm these findings.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Endocrinology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie He
- Department of Respiratory and Critical Care Medicine, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Yun
- Nursing Department of Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Qin
- Department of Endocrinology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
21
|
Evidence of Rehabilitative Impact of Progressive Resistance Training (PRT) Programs in Parkinson Disease: An Umbrella Review. PARKINSONS DISEASE 2020; 2020:9748091. [PMID: 32566123 PMCID: PMC7270996 DOI: 10.1155/2020/9748091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/09/2020] [Indexed: 11/26/2022]
Abstract
Parkinson disease (PD) is a chronic neurodegenerative condition that leads to progressive disability. PD-related reductions in muscle strength have been reported to be associated with lower functional performance and balance confidence with an increased risk of falls. Progressive resistance training (PRT) improves strength, balance, and functional abilities. This umbrella review examines the efficacy of PRT regarding muscular strength in PD patients. The PubMed, PEDro, Scopus, and Cochrane Library databases were searched from January 2009 to August 2019 for systematic reviews and meta-analyses conducted in English. The populations included had diagnoses of PD and consisted of males and females aged >18 years old. Outcomes measured were muscle strength and enhanced physical function. Eight papers (six systematic reviews and meta-analyses and two systematic reviews) were considered relevant for qualitative analysis. In six of the eight studies, the reported severity of PD was mild to moderate. Each study analyzed how PRT elicited positive effects on muscle strength in PD patients, suggesting 10 weeks on average of progressive resistance exercises for the upper and lower limbs two to three times per week. However, none of the studies considered the postworkout follow-up, and there was no detailed evidence about the value of PRT in preventing falls. The possibility of PRT exercises being effective for increasing muscle strength in patients with PD, but without comorbidities or severe disability, is discussed. Overall, this review suggests that PRT should be included in rehabilitation programs for PD patients, in combination with balance training for postural control and other types of exercise, in order to preserve cardiorespiratory fitness and improve endurance in daily life activities.
Collapse
|
22
|
Crotty GF, Schwarzschild MA. Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression? Front Aging Neurosci 2020; 12:186. [PMID: 32636740 PMCID: PMC7318912 DOI: 10.3389/fnagi.2020.00186] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise may be the most commonly offered yet least consistently followed therapeutic advice for people with Parkinson's disease (PD). Epidemiological studies of prospectively followed cohorts have shown a lower risk for later developing PD in healthy people who report moderate to high levels of physical activity, and slower rates of motor and non-motor symptom progression in people with PD who report higher baseline physical activity. In animal models of PD, exercise can reduce inflammation, decrease α-synuclein expression, reduce mitochondrial dysfunction, and increase neurotrophic growth factor expression. Randomized controlled trials of exercise in PD have provided clear evidence for short-term benefits on many PD measurements scales, ranging from disease severity to quality of life. In this review, we present these convergent epidemiological and laboratory data with particular attention to translationally relevant features of exercise (e.g., intensity requirements, gender differences, and associated biomarkers). In the context of these findings we will discuss clinical trial experience, design challenges, and emerging opportunities for determining whether exercise can prevent PD or slow its long-term progression.
Collapse
Affiliation(s)
- Grace F. Crotty
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
23
|
Sabino-Carvalho JL, Vianna LC. Altered cardiorespiratory regulation during exercise in patients with Parkinson's disease: A challenging non-motor feature. SAGE Open Med 2020; 8:2050312120921603. [PMID: 32435491 PMCID: PMC7222646 DOI: 10.1177/2050312120921603] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The incidence of Parkinson’s disease is increasing worldwide. The motor dysfunctions are the hallmark of the disease, but patients also experience non-motor impairments, and over 40% of the patients experience coexistent abnormalities, such as orthostatic hypotension. Exercise training has been suggested as a coping resource to alleviate Parkinson’s disease symptoms and delay disease progression. However, the body of knowledge is showing that the cardiovascular response to exercise in patients with Parkinson’s disease is altered. Adequate cardiovascular and hemodynamic adjustments to exercise are necessary to meet the metabolic demands of working skeletal muscle properly. Therefore, since Parkinson’s disease affects parasympathetic and sympathetic branches of the autonomic nervous system and the latter are crucial in ensuring these adjustments are adequately made, the understanding of these responses during exercise in this population is necessary. Several neural control mechanisms are responsible for the autonomic changes in the cardiovascular and hemodynamic systems seen during exercise. In this sense, the purpose of the present work is to review the current knowledge regarding the cardiovascular responses to dynamic and isometric/resistance exercise as well as the mechanisms by which the body maintains appropriate perfusion pressure to all organs during exercise in patients with Parkinson’s disease. Results from patients with Parkinson’s disease and animal models of Parkinson’s disease provide the reader with a well-rounded knowledge base. Through this, we will highlight what is known and not known about how the neural control of circulation is responding during exercise and the adaptations that occur when individuals exercise regularly.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
24
|
What and How Can Physical Activity Prevention Function on Parkinson's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293071. [PMID: 32215173 PMCID: PMC7042542 DOI: 10.1155/2020/4293071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Aim This study was aimed at investigating the effects and molecular mechanisms of physical activity intervention on Parkinson's disease (PD) and providing theoretical guidance for the prevention and treatment of PD. Methods Four electronic databases up to December 2019 were searched (PubMed, Springer, Elsevier, and Wiley database), 176 articles were selected. Literature data were analyzed by the logic analysis method. Results (1) Risk factors of PD include dairy products, pesticides, traumatic brain injury, and obesity. Protective factors include alcohol, tobacco, coffee, black tea, and physical activity. (2) Physical activity can reduce the risk and improve symptoms of PD and the beneficial forms of physical activity, including running, dancing, traditional Chinese martial arts, yoga, and weight training. (3) Different forms of physical activity alleviate the symptoms of PD through different mechanisms, including reducing the accumulation of α-syn protein, inflammation, and oxidative stress, while enhancing BDNF activity, nerve regeneration, and mitochondrial function. Conclusion Physical activity has a positive impact on the prevention and treatment of PD. Illustrating the molecular mechanism of physical activity-induced protective effect on PD is an urgent need for improving the efficacy of PD therapy regimens in the future.
Collapse
|
25
|
Feng YS, Yang SD, Tan ZX, Wang MM, Xing Y, Dong F, Zhang F. The benefits and mechanisms of exercise training for Parkinson's disease. Life Sci 2020; 245:117345. [PMID: 31981631 DOI: 10.1016/j.lfs.2020.117345] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a significantly progressive neurodegenerative disease characterised by both motor and nonmotor disorders. The main pathological characteristics of PD consist of the loss of dopaminergic neurons and the formation of alpha-synuclein-containing Lewy bodies in the substantia nigra. Currently, the main therapeutic method for PD is anti-Parkinson medications, including levodopa, madopar, sirelin, and so on. However, the effect of pharmacological treatment has its own limitations, the most significant of which is that the therapeutic effect of dopaminergic treatments gradually diminishes with time. Exercise training, as an adjunctive treatment and complementary therapy, can improve the plasticity of cortical striatum and increase the release of dopamine. Exercise training has been proven to effectively improve motor disorders (including balance, gait, risk of falls and physical function) and nonmotor disorders (such as sleep impairments, cognitive function and quality of life) in PD patients. In recent years, various types of exercise training have been used to treat PD. In this review, we summarise the exercise therapy mechanisms and the protective effects of different types of exercise training on PD patients.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Si-Dong Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia; Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
26
|
Cammisuli DM, Cammisuli SM, Fusi J, Franzoni F, Pruneti C. Parkinson's Disease-Mild Cognitive Impairment (PD-MCI): A Useful Summary of Update Knowledge. Front Aging Neurosci 2019; 11:303. [PMID: 31780918 PMCID: PMC6856711 DOI: 10.3389/fnagi.2019.00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Mild cognitive impairment (MCI) is a common feature in Parkinson's Disease (PD), even at the time of diagnosis. Some levels of heterogeneity in nature and severity of cognitive impairment and risk of conversion to Parkinson's Disease Dementia (PDD) exist. This brief overview summarized the current understanding of MCI in PD, by considering the following major points: historical development of the clinical entity, evaluation, epidemiology, predictors and outcomes, neuroimaging findings, pathophysiology, treatment, and pharmacological and non-pharmacological intervention. MCI in PD represents a concept in evolution and plays a pivotal role in advancing our understanding of the disease mechanisms, with the ultimate goal of building effective strategies to prevent conversion into PDD. Challenges for future research are also discussed.
Collapse
Affiliation(s)
- Davide Maria Cammisuli
- Laboratories of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | | | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Pruneti
- Laboratories of Clinical Psychology, Clinical Psychophysiology and Clinical Neuropsychology, Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
27
|
Miyasato RS, Silva-Batista C, Peçanha T, Low DA, de Mello MT, Piemonte ME, Ugrinowitsch C, Forjaz CL, Kanegusuku H. Cardiovascular Responses During Resistance Exercise in Patients With Parkinson Disease. PM R 2018; 10:1145-1152. [DOI: 10.1016/j.pmrj.2018.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022]
|
28
|
Bhati P, Moiz JA, Menon GR, Hussain ME. Does resistance training modulate cardiac autonomic control? A systematic review and meta-analysis. Clin Auton Res 2018; 29:75-103. [PMID: 30141031 DOI: 10.1007/s10286-018-0558-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/13/2018] [Indexed: 02/01/2023]
Abstract
PURPOSE To systematically evaluate the literature on the effects of resistance training (RT) on cardiac autonomic control in healthy and diseased individuals. METHODS Electronic databases Pubmed, PEDro, and Scopus were systematically searched from their inception up to June 2018. Randomized controlled trials, quasi-experimental trials, and cross-over controlled trials investigating the effect of RT (of at least 4 weeks duration) on cardiac autonomic control assessed either by linear or non-linear measures of heart rate variability (HRV), baroreflex sensitivity, or post-exercise heart rate recovery were included. Of the studies retrieved, 28 were included in the systematic review. Meta-analysis was performed on 21 studies of the total 28 studies. RESULTS Quality and characteristic assessment revealed fair quality evidence. The majority of literature on healthy humans suggested no change in cardiac autonomic control following RT. Standardized mean differences (SMD) showed a significant effect of RT on root mean square of successive differences between adjacent inter-beat (R-R) intervals (RMSSD) [SMD 0.96, 95% confidence interval (CI) 0.20-1.73; p = 0.01], ratio of low- to high-frequency power of HRV (LF/HF ratio; SMD -0.72, 95% CI -1.03 to -0.42; p < 0.00001), standard deviation of the instantaneous beat-to-beat variability (SD1; SMD 1.78, 95% CI 1.07-2.49, p < 0.00001), and sample entropy (SMD 1.17, 95% CI 0.36-1.97, p = 0.005) in diseased individuals. CONCLUSION This rigorous systematic analysis revealed that RT has no or minimal effects on cardiac autonomic control of healthy individuals, but RT leads to improvement in cardiac autonomic control of diseased individuals.
Collapse
Affiliation(s)
- Pooja Bhati
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Jamal Ali Moiz
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Geetha R Menon
- National Institute of Medical Statistics, Indian Council of Medical Research, New Delhi, 110029, India
| | - M Ejaz Hussain
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
29
|
Amara AW, Memon AA. Effects of Exercise on Non-motor Symptoms in Parkinson's Disease. Clin Ther 2018; 40:8-15. [PMID: 29198450 PMCID: PMC5875718 DOI: 10.1016/j.clinthera.2017.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Patients with Parkinson's disease experience disabling non-motor symptoms, including autonomic dysfunction, cognitive decline, and sleep disorders. Pharmacologic treatments for these symptoms are often ineffective or have intolerable side effects. Therefore, non-pharmacologic interventions are an attractive alternative. Exercise in particular has the potential to alleviate the progressive impairment related to these non-motor symptoms. In this commentary, we explore available research that addresses the impact of exercise and physical activity on autonomic dysfunction, cognitive impairment, and sleep disorders in Parkinson's disease and suggest areas in need of further study. Many gaps remain in our understanding of the most effective exercise intervention for these symptoms, the mechanisms underlying exercise-induced changes, and the best way to monitor response to therapy. However, available research suggests that exercise is a promising approach to improve non-motor symptoms in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Amy W Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Adeel A Memon
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Mavrommati F, Collett J, Franssen M, Meaney A, Sexton C, Dennis-West A, Betts JF, Izadi H, Bogdanovic M, Tims M, Farmer A, Dawes H. Exercise response in Parkinson's disease: insights from a cross-sectional comparison with sedentary controls and a per-protocol analysis of a randomised controlled trial. BMJ Open 2017; 7:e017194. [PMID: 29282259 PMCID: PMC5770916 DOI: 10.1136/bmjopen-2017-017194] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the acute and adaptation cardiovascular and metabolic training responses in people with Parkinson's disease (pwP). DESIGN (1) A cross-sectional study of exercise response of pwP compared with sedentary controls and (2) an interventional study of exercise training in pwP. SETTING Community leisure facilities. PARTICIPANTS pwP (n=83) and sedentary controls (n=55). INTERVENTIONS Study 1 included participants from a two-arm-parallel single-blind phase II randomised controlled trial (RCT), that undertook a baseline maximal incremental exercise test and study 2 included those randomised to the exercise group in the RCT, who completed a 6-month weekly exercise programme (n=37). The intervention study 2 was a prescribed exercise program consisting of sessions lasting 60 min, two times a week over a 6-month period. The control group followed the same protocol which derived the same cardiorespiratory parameters, except that they were instructed to aim for a cadence of ~60 revolutions per minute and the unloaded phase lasted 3 min with an initial step of 25 W. PRIMARY AND SECONDARY OUTCOME MEASURES Stepwise incremental exercise test to volitional exhaustion was the primary outcome measure. RESULTS Study 1 showed higher maximum values for heart rate (HR), VO2 L/min, VCO2 L/min and ventilation L/min for the control group; respiratory exchange ratio (RER), perceived exertion and O2 pulse (VO2 L/min/HR) did not differ between groups. In study 2, for pwP who adhered to training (n=37), RER increased significantly and although there was no significant change in aerobic capacity or HR response, reduced blood pressure was found. CONCLUSIONS An abnormal cardiovascular response to exercise was observed in pwP compared to controls. After the exercise programme, metabolic deficiencies remained for pwP. These observations add to the pathogenic understanding of PD, acknowledge an underling metabolic contribution and support that certain cardiovascular symptoms may improve as a result of this type of exercise.
Collapse
Affiliation(s)
- Foteini Mavrommati
- Oxford University Hospitals Research and Development Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
- Movement Science Group, Oxford BrookesUniversity, Oxford, UK
| | - Johnny Collett
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
| | - Marloes Franssen
- Primary Care Clinical Trials Unit, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Andy Meaney
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
| | - Claire Sexton
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andrea Dennis-West
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jill F Betts
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hooshang Izadi
- Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Oxford, UK
| | | | - Martin Tims
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
| | - Andrew Farmer
- Primary Care Clinical Trials Unit, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Helen Dawes
- Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Oxford, UK
- Department of Clinical Neurology, Oxford Brookes University, University of Oxford, Oxford, UK
| |
Collapse
|