1
|
Kazanovich I, Itzhak S, Resnik J. Experience-driven development of decision-related representations in the auditory cortex. EMBO Rep 2024:10.1038/s44319-024-00309-0. [PMID: 39528730 DOI: 10.1038/s44319-024-00309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Associating sensory stimuli with behavioral significance induces substantial changes in stimulus representations. Recent studies suggest that primary sensory cortices not only adjust representations of task-relevant stimuli, but actively participate in encoding features of the decision-making process. We sought to determine whether this trait is innate in sensory cortices or if choice representation develops with time and experience. To trace choice representation development, we perform chronic two-photon calcium imaging in the primary auditory cortex of head-fixed mice while they gain experience in a tone detection task with a delayed decision window. Our results reveal a progressive increase in choice-dependent activity within a specific subpopulation of neurons, aligning with growing task familiarity and adapting to changing task rules. Furthermore, task experience correlates with heightened synchronized activity in these populations and the ability to differentiate between different types of behavioral decisions. Notably, the activity of this subpopulation accurately decodes the same action at different task phases. Our findings establish a dynamic restructuring of population activity in the auditory cortex to encode features of the decision-making process that develop over time and refines with experience.
Collapse
Affiliation(s)
- Itay Kazanovich
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Shir Itzhak
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jennifer Resnik
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
2
|
Martin JC, Reeves KC, Carter KA, Davis M, Schneider A, Meade E, Lebonville CL, Nimitvilai S, Hoffman M, Woodward JJ, Mulholland PJ, Rinker JA. Genetic and functional adaptations and alcohol-biased signaling in the mediodorsal thalamus of alcohol dependent mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620696. [PMID: 39553931 PMCID: PMC11565778 DOI: 10.1101/2024.10.28.620696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Alcohol Use Disorder (AUD) is a significant health concern characterized by an individual's inability to control alcohol intake. With alcohol misuse increasing and abstinence rates declining, leading to severe social and health consequences, it is crucial to uncover effective treatment strategies for AUD by focusing on understanding neuroadaptations and cellular mechanisms. The mediodorsal thalamus (MD) is a brain region essential for cognitive functioning and reward-guided choices. However, the effects of alcohol (ethanol) dependence on MD neuroadaptations and how dependence alters MD activity during choice behaviors for alcohol and a natural reward (sucrose) are not well understood. Adult C57BL/6J mice treated with chronic intermittent ethanol (CIE) exposure were used to assess genetic and functional adaptations in the MD. Fiber photometry-based recordings of GCaMP6f expressed in the MD of C57BL/6J mice were acquired to investigate in vivo neural adaptations during choice drinking sessions for alcohol (15%) and either water or sucrose (3%). There were time-dependent changes in cFos and transcript expression during acute withdrawal and early abstinence. Differentially expressed genes were identified in control mice across different circadian time points and when comparing control and alcohol dependent mice. Gene Ontology enrichment analysis of the alcohol-sensitive genes revealed disruption of genes that control glial function, axonal myelination, and protein binding. CIE exposure also increased evoked firing in MD cells at 72 hours of withdrawal. In alcohol-dependent male and female mice that show increased alcohol drinking and preference for alcohol over water, we observed an increase in alcohol intake and preference for alcohol when mice were given a choice between alcohol and sucrose. Fiber photometry recordings demonstrated that MD activity is elevated during and after licking bouts for alcohol, water, and sucrose, and the signal for alcohol is significantly higher than that for water or sucrose during drinking. The elevated signal during alcohol bouts persisted in alcohol dependent mice. These findings demonstrate that CIE causes genetic and functional neuroadaptations in the MD and that alcohol dependence enhances alcohol-biased behaviors, with the MD uniquely responsive to alcohol, even in dependent mice.
Collapse
|
3
|
Monfared MS, Mascret Q, Marroquin-Rivera A, Blanc-Árabe L, Lebouleux Q, Lévesque J, Gosselin B, Labonté B. High-throughput low-cost digital lickometer system for the assessment of licking behaviours in mice. J Neurosci Methods 2024; 410:110221. [PMID: 39053773 DOI: 10.1016/j.jneumeth.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Proper hydration is essential for maintaining health and supports various biological processes, including temperature regulation, immune function, nutrient delivery, and organ function. Visual assessment has traditionally been used to quantify liquid intake, although technological advances in optical and electrical sensors now offer higher accuracy and larger potential for automatic operation with millisecond precision and individual lick resolution. NEW METHOD We describe an inexpensive electronic sensor board to monitor mouse licking behavior. The system is equipped with integrated filtering and data preprocessing steps. It measures lick count, frequency, width and interlick intervals with high resolution, allowing the real-time monitoring of complex licking patterns in several mice in their respective home cages over prolonged periods. RESULTS Our lickometer provides two-millisecond resolution, efficiently detecting variations in licking behaviors in mice. The system is adapted to monitor licking behaviors in up to 12 mice simultaneously. Lick count, duration and interlick intervals, along with preference for sweet water were monitored over two days, revealing variations in licking patterns across light and dark phases extended over prolonged periods. COMPARISON WITH EXISTING METHODS Our lickometer allows for monitoring licking behaviors and dynamics. It can be adapted to conventional mouse cages using electrical circuits. It is open-source, cost-effective, efficient, and can be utilized in real-time for large cohorts, representing an ideal tool for studying ingestive dynamics in different environmental and pathological contexts. CONCLUSION We have developed a novel, cost-effective, and efficient device to monitor ingestive behaviors in mice. The throughput of our device allows for monitoring several mice simultaneously while it can be applied directly to a conventional mouse cage, simplifying its implementation into pre-existing experimental setups.
Collapse
Affiliation(s)
- M S Monfared
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Mascret
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - A Marroquin-Rivera
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - L Blanc-Árabe
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Q Lebouleux
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - J Lévesque
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Gosselin
- Université Laval, Department of Electrical and Computer Engineering, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - B Labonté
- Université Laval, Department of Psychiatry and Neuroscience, Quebec, Canada; CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Wulff AB, Cooper P, Kodjo E, Abel E, Thompson SM. How Sucrose Preference Is Gained and Lost: An In-Depth Analysis of Drinking Behavior during the Sucrose Preference Test in Mice. eNeuro 2023; 10:ENEURO.0195-23.2023. [PMID: 37699705 PMCID: PMC10540674 DOI: 10.1523/eneuro.0195-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
The sucrose preference test (SPT) is a widely used preclinical assay for studying stress-sensitive reward behaviors and antidepressant treatments in rodents, with some face, construct, and predictive validity. However, while stress-induced loss of sucrose preference is presumed to reflect an anhedonic-like state, little detail is known about what behavioral components may influence performance in the SPT in stress-naive or stressed rodents. We analyzed the licking microstructure of mice during the SPT to evaluate how preference is expressed and lost following chronic stress. In stress-naive mice, preference is expressed as both longer and more numerous drinking bouts at the sucrose bottle, compared with the water bottle. We also found evidence that memory of the sucrose bottle location supports preference. Through manipulations of the caloric content of the sweetener or caloric need of the mouse, we found that energy demands and satiety signals do not affect either preference or the underlying drinking behavior. Both acute and chronic stress impaired sucrose location memory and reduced the number of drinking bouts at the sucrose bottle, the latter of which explained the loss of sucrose preference in stress susceptible mice compared with stress resilient mice. Female mice generally exhibited similar drinking behavior to male mice but may be less susceptible to chronic stress and display better memory performance than male mice, both before and after chronic stress. Our data suggest that chronic stress inhibits a sucrose preference by reducing reward seeking behavior without affecting palatability.
Collapse
Affiliation(s)
- Andreas B Wulff
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD 21201
| | - Phylicia Cooper
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Program in Neuroscience, Graduate Program in Life Sciences, University of Maryland Baltimore, Baltimore, MD 21201
- ASCEND Scholars Program, Morgan State University, Baltimore, MD 21251
| | - Emmanuela Kodjo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- ASCEND Scholars Program, Morgan State University, Baltimore, MD 21251
| | - Eliana Abel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
6
|
Petersen N, Adank DN, Raghavan R, Winder DG, Doyle MA. LIQ HD (Lick Instance Quantifier Home Cage Device): An Open-Source Tool for Recording Undisturbed Two-Bottle Drinking Behavior in a Home Cage Environment. eNeuro 2023; 10:ENEURO.0506-22.2023. [PMID: 36997312 PMCID: PMC10112549 DOI: 10.1523/eneuro.0506-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Investigation of rodent drinking behavior has provided insight into drivers of thirst, circadian rhythms, anhedonia, and drug and ethanol consumption. Traditional methods of recording fluid intake involve weighing bottles, which is cumbersome and lacks temporal resolution. Several open-source devices have been designed to improve drink monitoring, particularly for two-bottle choice tasks. However, beam-break sensors lack the ability to detect individual licks for bout microstructure analysis. Thus, we designed LIQ HD (Lick Instance Quantifier Home cage Device) with the goal of using capacitive sensors to increase accuracy and analyze lick microstructure, building a device compatible with ventilated home cages, increasing scale with prolonged undisturbed recordings, and creating a design that is easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. The data are logged to a single SD card, allowing for efficient downstream analysis. LIQ HD accuracy was validated with sucrose, quinine, and ethanol two-bottle choice tasks. The system measures preference over time and changes in bout microstructure, with undisturbed recordings tested up to 7 d. All designs and software are open-source to allow other researchers to build on the system and adapt LIQ HD to their animal home cages.
Collapse
Affiliation(s)
- Nicholas Petersen
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ritika Raghavan
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
C57bl/6 Mice Show Equivalent Taste Preferences toward Ruminant and Industrial Trans Fatty Acids. Nutrients 2023; 15:nu15030610. [PMID: 36771316 PMCID: PMC9918975 DOI: 10.3390/nu15030610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Two distinct types of trans fatty acids (TFA) are found in the diet. Industrial TFA such as elaidic acid (EA) have deleterious effects on metabolic risk factors, and oppositely ruminant TFA including trans-palmitoleic acid (TPA) may have beneficial effects. The objective is to evaluate the taste preference between EA, TPA, lecithin or water. In this study, 24 female C57BL/6 mice were microchipped and placed in two separate IntelliCages®. Nano encapsulated TFA or lecithin were added to drinking water in different corners of the cage with normal diet. The study was carried out over 5 weeks, during which mice were exposed to water only (weeks 1 and 3), TFA or lecithin (week 2), and EA or TPA (weeks 4 and 5). Mice weights, corner visits, nose pokes (NP), and lick number were measured each week. The results demonstrated that mice consume more TFA, either EA or TPA, compared with lecithin. In addition, the mice licked more EA compared with TPA in one cage; conversely, in the other cage they licked more TPA compared with EA. However, when TFA positions were swapped, mice had equal licks for EA and TPA. In sum, mice preferred TFA, in equal matter compared with controls; therefore, the results demonstrate the potential for TFA-type substitution in diet.
Collapse
|
8
|
Moore S, Kuchibhotla KV. Slow or sudden: Re-interpreting the learning curve for modern systems neuroscience. IBRO Neurosci Rep 2022; 13:9-14. [PMID: 35669385 PMCID: PMC9163689 DOI: 10.1016/j.ibneur.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/27/2022] Open
|
9
|
Fry BR, Roberts D, Thakkar KN, Johnson AW. Variables influencing conditioning-evoked hallucinations: overview and future applications. Psychol Med 2022; 52:2937-2949. [PMID: 36138518 PMCID: PMC9693682 DOI: 10.1017/s0033291722002100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Hallucinations occur in the absence of sensory stimulation and result in vivid perceptual experiences of nonexistent events that manifest across a range of sensory modalities. Approaches from the field of experimental and cognitive psychology have leveraged the idea that associative learning experiences can evoke conditioning-induced hallucinations in both animals and humans. In this review, we describe classical and contemporary findings and highlight the variables eliciting these experiences. We also provide an overview of the neurobiological mechanisms, along with the associative and computational factors that may explain hallucinations that are generated by representation-mediated conditioning phenomena. Through the integration of animal and human research, significant advances into the psychobiology of hallucinations are possible, which may ultimately translate to more effective clinical applications.
Collapse
Affiliation(s)
- Benjamin R. Fry
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Katharine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexander W. Johnson
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
A Glucokinase-linked Sensor in the Taste System Contributes to Glucose Appetite. Mol Metab 2022; 64:101554. [PMID: 35870707 PMCID: PMC9399534 DOI: 10.1016/j.molmet.2022.101554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objectives Dietary glucose is a robust elicitor of central reward responses and ingestion, but the key peripheral sensors triggering these orexigenic mechanisms are not entirely known. The objective of this study was to determine whether glucokinase, a phosphorylating enzyme with known glucosensory roles, is also expressed in taste bud cells and contributes to the immediate hedonic appeal of glucose-containing substances. Methods and results Glucokinase (GCK) gene transcripts were localized in murine taste bud cells with RNAScope®, and GCK mRNA was found to be upregulated in the circumvallate taste papillae in response to fasting and after a period of dietary access to added simple sugars in mice, as determined with real time-qPCR. Pharmacological activation of glucokinase with Compound A increased primary taste nerve and licking responses for glucose but did not impact responsivity to fructose in naïve mice. Virogenetic silencing of glucokinase in the major taste fields attenuated glucose-stimulated licking, especially in mice that also lacked sweet receptors, but did not disrupt consummatory behaviors for fructose or the low-calorie sweetener, sucralose in sugar naïve mice. Knockdown of lingual glucokinase weakened the acquired preference for glucose over fructose in sugar-experienced mice in brief access taste tests. Conclusions Collectively, our data establish that glucokinase contributes to glucose appetition at the very first site of nutrient detection, in the oral cavity. The findings expand our understanding of orosensory inputs underlying nutrition, metabolism, and food reward. Glucokinase is expressed in the taste bud cells. Gustatory glucokinase is upregulated by energy deficit and regular consumption of simple sugars. Gustatory glucokinase is required for normal glucose taste detection and contributes to the hedonic appeal of this nutrient.
Collapse
|
11
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
12
|
Casaril AM, Vichaya EG, Rishi MR, Ford BG, Dantzer R. Lipopolysaccharide does not alter behavioral response to successive negative contrast in mice. Psychopharmacology (Berl) 2021; 238:691-697. [PMID: 33410982 PMCID: PMC8075575 DOI: 10.1007/s00213-020-05721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reduced motivation is one of the main symptomatic features of inflammation-induced depression. However, the exact nature of inflammation-induced alterations in motivation remains to be fully defined. As inflammation has been shown to increase sensitivity to negative stimuli, the present series of experiments was initiated to determine whether systemic inflammation induced by infra-septic doses of lipopolysaccharide (LPS) in mice influences consummatory and instrumental responding to successive negative contrast. METHODS Successive negative contrast was operationally defined by a shift to a lower value reward than the one mice were trained with. Mice were trained to drink a high sucrose concentration solution and exposed to an acute shift to a lower concentration of sucrose. In another series of experiments, mice were trained to nose poke for chocolate pellets according to a fixed reinforcement schedule 10 (10 nose pokes for the food reinforcement) and exposed to a shift to a lower reward value (decreased number of chocolate pellets or replacement of chocolate pellets by less preferred grain pellets). Lipopolysaccharide (LPS) was administered at the dose of 0.33 1 mg/kg 24 h before the shift. RESULTS Mice trained to drink a high sucrose concentration responded to the shift in reward value by a reduction in the volume of sucrose consumed and a decrease in lick numbers and bout durations. Mice trained to nose poke for chocolate pellets responded to the shift by alterations in their total number of nose pokes. In both conditions, LPS had no consistent effect on the response to the shift in reward value. CONCLUSIONS These findings indicate a high variability in the effects of LPS on successive negative contrast and fail to provide evidence in favor of the hypothesis that LPS increases sensitivity to decreases in expected rewards.
Collapse
Affiliation(s)
- Angela M Casaril
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, Rio Grande do Sul, 96160-000, Brazil
| | - Elisabeth G Vichaya
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
- Department of Psychology & Neuroscience, Baylor University, Waco, TX, 76798, USA
| | - M Raafay Rishi
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Bianca G Ford
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
14
|
Pittman DW, Dong G, Brantly AM, He L, Nelson TS, Kogan S, Powell J, McCluskey LP. Behavioral and neurophysiological taste responses to sweet and salt are diminished in a model of subclinical intestinal inflammation. Sci Rep 2020; 10:17611. [PMID: 33077838 PMCID: PMC7573616 DOI: 10.1038/s41598-020-74632-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
There is strong evidence for gut-taste bud interactions that influence taste function, behavior and feeding. However, the effect of gut inflammation on this axis is unknown despite reports of taste changes in gastrointestinal (GI) inflammatory conditions. Lipopolysaccharide (LPS), an inflammatory stimulus derived from gram-negative bacteria, is present in the normal GI tract and levels increase during high-fat feeding and gut infection and inflammation. Recordings from the chorda tympani nerve (CT), which transmits taste information from taste buds on the anterior tongue to the brain, previously revealed a transient decrease in sucrose responses in mice that ingest LPS during a single overnight period. Here we test the effect of acute or chronic, weekly LPS gavage on licking behavior and CT responses. Using brief-access testing, rats treated with acute LPS and mice receiving acute or chronic LPS decreased licking responses to sucrose and saccharin and to NaCl in mice. In long-term (23 h) tests chronic LPS also reduced licking responses to saccharin, sucrose, and NaCl in mice. Neurophysiological recordings from the CT supported behavioral changes, demonstrating reduced responses to sucrose, saccharin, acesulfame potassium, glucose and NaCl in acute and chronic LPS groups compared to controls. Chronic LPS significantly elevated neutrophils in the small intestine and colon, but LPS was not detected in serum and mice did not display sickness behavior or lose weight. These results indicate that sweet and salt taste sensitivity could be reduced even in asymptomatic or mild localized gut inflammatory conditions such as inflammatory bowel disease.
Collapse
Affiliation(s)
- David W Pittman
- Department of Psychology, Wofford College, Spartanburg, SC, USA
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | | | - Lianying He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tyler S Nelson
- Department of Psychology, Wofford College, Spartanburg, SC, USA
| | - Schuyler Kogan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Julia Powell
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, 1120 15th Street/CA-3016, Augusta, GA, 30912, USA.
| |
Collapse
|
15
|
Hindbrain Double-Negative Feedback Mediates Palatability-Guided Food and Water Consumption. Cell 2020; 182:1589-1605.e22. [PMID: 32841600 DOI: 10.1016/j.cell.2020.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022]
Abstract
Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLCVGLUT2 neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLCVGLUT2 neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLCVGLUT2 neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLCVGLUT2 neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLCVGLUT2 neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.
Collapse
|
16
|
Gero D. Challenges in the interpretation and therapeutic manipulation of human ingestive microstructure. Am J Physiol Regul Integr Comp Physiol 2020; 318:R886-R893. [DOI: 10.1152/ajpregu.00356.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This minireview focuses on the interpretative value of ingestive microstructure by summarizing observations from both rodent and human studies. Preliminary data on the therapeutic manipulation of distinct microstructural components of eating are also outlined. In rodents, the interpretative framework of ingestive microstructure mainly concentrates on deprivation state, palatability, satiation, and the role of learning from previous experiences. In humans, however, the control of eating is further influenced by genetic, psychosocial, cultural, and environmental factors, which add complexity and challenges to the interpretation of the microstructure of meal intake. Nevertheless, the presented findings stress the importance of microstructural analyses of ingestion, as a method to investigate specific behavioral variables that underlie the regulation of appetite control.
Collapse
Affiliation(s)
- Daniel Gero
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Harrison DJ, Creeth HDJ, Tyson HR, Boque-Sastre R, Isles AR, Palme R, Touma C, John RM. Unified Behavioral Scoring for Preclinical Models. Front Neurosci 2020; 14:313. [PMID: 32317926 PMCID: PMC7154181 DOI: 10.3389/fnins.2020.00313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Preclinical mental health research relies upon animal models, and whilst many encouraging advances are being made, reproducibility and translational relevance may be limited by sub-optimal testing or model choices. Animal behaviors are complex and test batteries should be designed to include their multifaceted nature. However, multiple behavioral testing is often avoided due to cost, availability or statistical rigor. Additionally, despite the disparity in the incidence of mental health problems between the sexes, a move toward reducing animal numbers could be a deterrent to including both male and female animals. The current study introduces a unified scoring system for specific behavioral traits with the aim of maximizing the use of all data generated whilst reducing the incidence of statistical errors. Female and male mice from two common background strains were tested on behavior batteries designed to probe multiple aspects of anxiety-related and social behavioral traits. Results for every outcome measure were normalized to generate scores for each test and combined to give each mouse a single unified score for each behavioral trait. The unified behavioral scores revealed clear differences in the anxiety and stress-related, and sociability traits of mice. Principle component analysis of data demonstrated significant clustering of animals into their experimental groups. In contrast, individual tests returned an ambiguous mixture of non-significant trends and significant effects for various outcome measures. Utilizing a range of behavioral measures and combining all outcome measure data to produce unified scores provides a useful tool for detecting subtle behavioral traits in preclinical models.
Collapse
Affiliation(s)
- David J. Harrison
- Preg Lab, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hugo D. J. Creeth
- Preg Lab, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hannah R. Tyson
- Preg Lab, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Raquel Boque-Sastre
- Preg Lab, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Rosalind M. John
- Preg Lab, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Fry BR, Russell N, Gifford R, Robles CF, Manning CE, Sawa A, Niwa M, Johnson AW. Assessing Reality Testing in Mice Through Dopamine-Dependent Associatively Evoked Processing of Absent Gustatory Stimuli. Schizophr Bull 2020; 46:54-67. [PMID: 31150554 PMCID: PMC6942166 DOI: 10.1093/schbul/sbz043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Impairments in reality testing are core features of numerous neuropsychiatric conditions. However, relatively few animal models have been developed to assess this critical facet of neuropsychiatric illness, thus impeding our understanding of the underlying central systems and circuits. Using mice in which dominant-negative Disrupted-in-Schizophrenia-1 is expressed throughout central nervous system circuitry (DN-DISC1-PrP), the capacity for an auditory conditioned stimulus (CS) to evoke perceptual processing of an absent sucrose solution was examined. At test, during CS presentations, DN-DISC1-PrP mice consumed more water and displayed a licking profile that is more typically revealed while ingesting a sweet-tasting solution. DN-DISC1-PrP mice also displayed greater c-fos expression in the insular (gustatory) cortex when consuming water in the presence of the CS. This capacity for the CS to more readily substitute for the taste features of the absent sucrose solution in DN-DISC1-PrP mice was attenuated following systemic treatment with the antipsychotic haloperidol. Conversely, social isolation during adolescence promoted the manifestation of these effects. These results provide strong validation for using associative learning procedures to examine dopamine-mediated reality testing associated with insular cortex activation.
Collapse
Affiliation(s)
- Benjamin R Fry
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Nicollette Russell
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI
| | - Ryan Gifford
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Cindee F Robles
- Department of Psychology, Michigan State University, East Lansing, MI
| | - Claire E Manning
- Neuroscience Program, Michigan State University, East Lansing, MI
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University School of Medicine. Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Present address: Department of Psychiatry and Behavioral Neurobiology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, MI,Neuroscience Program, Michigan State University, East Lansing, MI,To whom correspondence should be addressed; tel: +1-517-432-8446; fax: +1-517-432-4744, e-mail:
| |
Collapse
|
19
|
Naneix F, Peters KZ, McCutcheon JE. Investigating the Effect of Physiological Need States on Palatability and Motivation Using Microstructural Analysis of Licking. Neuroscience 2019; 447:155-166. [PMID: 31682949 DOI: 10.1016/j.neuroscience.2019.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
The study of consummatory responses during food intake represents a unique opportunity to investigate the physiological, psychological and neurobiological processes that control ingestive behavior. Recording the occurrence and temporal organization of individual licks across consumption, also called lickometry, yields a rich data set that can be analyzed to dissect consummatory responses into different licking patterns. These patterns, divided into trains of licks separated by pauses, have been used to deconstruct the many influences on consumption, such as palatability evaluation, incentive properties, and post-ingestive processes. In this review, we describe commonly used definitions of licking patterns and how various studies have defined and measured these. We then discuss how licking patterns can be used to investigate the impact of different physiological need states on processes governing ingestive behavior. We also present new data showing how licking patterns are changed in an animal model of protein appetite and how this may guide food choice in different protein-associated hedonic and homeostatic states. Thus, recording lick microstructure can be achieved relatively easily and represents a useful tool to provide insights, beyond the measurement of total intake, into the multiple factors influencing ingestive behavior.
Collapse
Affiliation(s)
- Fabien Naneix
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK
| | - Kate Z Peters
- Dept. of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James E McCutcheon
- Dept. of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; Dept. of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
20
|
Kao KC, Hisatsune T. Differential effects of dopamine D1-like and D2-like receptor agonists on water drinking behaviour under thirsty conditions in mice with reduced dopamine secretion. Eur J Neurosci 2019; 51:584-597. [PMID: 31472080 DOI: 10.1111/ejn.14568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
Abstract
The mesolimbic dopamine system is important for reward-oriented behaviours, such as drinking and eating. However, the precise involvement of dopaminergic neurons and dopamine receptors in water drinking behaviour remains unclear. Here, we generated triple transgenic mice harbouring Slc6a3(DAT)-icre/ERT2, Camk2a-loxP-STOP-loxP-tetracycline transactivator and tetO-tetanus toxin constructs, in which the release of dopamine is blocked by tetanus toxin. These mice, referred to as dopamine secretion interference mice, had reduced dopamine secretion in the striatum (61.4%) and the nucleus accumbens (54.5%). They showed adequate limb strength and food consumption, similarly to control mice, but exhibited motor control impairment in a challenging rotarod test. Dopamine secretion interference mice made fewer licks and had fewer bursts than control mice during a licking test under thirsty conditions. To elucidate the influence of dopamine receptors in the altered drinking behaviour, a dopamine D1 or D2/D3 receptor agonist (A68930 or ropinirole, respectively) was administered prior to the licking microstructure analysis. Treatment with the D1 agonist restored the total number of licks but not the burst number in dopamine secretion interference mice. By contrast, the D2/3 agonist impeded water drinking behaviour in both transgenic and control mice. The present findings indicate that D1 receptor activation partially ameliorates the altered drinking behaviour of the dopamine secretion interference mice and suggest that D1 receptor activity impacts drinking under thirsty conditions.
Collapse
Affiliation(s)
- Kung-Chun Kao
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
21
|
Levitan D, Lin JY, Wachutka J, Mukherjee N, Nelson SB, Katz DB. Single and population coding of taste in the gustatory cortex of awake mice. J Neurophysiol 2019; 122:1342-1356. [PMID: 31339800 DOI: 10.1152/jn.00357.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological analysis has revealed much about the broad coding and neural ensemble dynamics that characterize gustatory cortical (GC) taste processing in awake rats and about how these dynamics relate to behavior. With regard to mice, however, data concerning cortical taste coding have largely been restricted to imaging, a technique that reveals average levels of neural responsiveness but that (currently) lacks the temporal sensitivity necessary for evaluation of fast response dynamics; furthermore, the few extant studies have thus far failed to provide consensus on basic features of coding. We have recorded the spiking activity of ensembles of GC neurons while presenting representatives of the basic taste modalities (sweet, salty, sour, and bitter) to awake mice. Our first central result is the identification of similarities between rat and mouse taste processing: most mouse GC neurons (~66%) responded distinctly to multiple (3-4) tastes; temporal coding analyses further reveal, for the first time, that single mouse GC neurons sequentially code taste identity and palatability, the latter responses emerging ~0.5 s after the former, with whole GC ensembles transitioning suddenly and coherently from coding taste identity to coding taste palatability. The second finding is that spatial location plays very little role in any aspect of taste responses: neither between- (anterior-posterior) nor within-mouse (dorsal-ventral) mapping revealed anatomic regions with narrow or temporally simple taste responses. These data confirm recent results showing that mouse cortical taste responses are not "gustotopic" but also go beyond these imaging results to show that mice process tastes through time.NEW & NOTEWORTHY Here, we analyzed taste-related spiking activity in awake mouse gustatory cortical (GC) neural ensembles, revealing deep similarities between mouse cortical taste processing and that repeatedly demonstrated in rat: mouse GC ensembles code multiple aspects of taste in a coarse-coded, time-varying manner that is essentially invariant across the spatial extent of GC. These data demonstrate that, contrary to some reports, cortical network processing is distributed, rather than being separated out into spatial subregion.
Collapse
Affiliation(s)
- David Levitan
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | - Jian-You Lin
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Joseph Wachutka
- Department of Psychology, Brandeis University, Waltham, Massachusetts
| | | | - Sacha B Nelson
- Department of Biology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Donald B Katz
- Department of Psychology, Brandeis University, Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
22
|
Dastugue A, Merlin JF, Maquart G, Bernard A, Besnard P. A New Method for Studying Licking Behavior Determinants in Rodents: Application to Diet-Induced Obese Mice. Obesity (Silver Spring) 2018; 26:1905-1914. [PMID: 30369067 DOI: 10.1002/oby.22342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE An original device for exploring taste-guided reward behavior in rodents using a newly designed computer-controlled liquid delivery system equipped with "lickometers" is described. METHODS This octagonal shaped "gustometer" is composed of eight shutters that give random access during a few seconds to eight bottles delivering different liquid stimuli. This original design, which forces the animal to move for access to the drinking source, allows a simultaneous analysis of the licking behavior and motivation to drink. Determination of the sucrose licking behavior in diet-induced obese mice was used to validate this method because nutritional obesity disturbs the sweet taste perception in rodents. RESULTS A rise in sucrose response threshold and a decrease in the motivation to drink sweet solutions were found in mice fed the obesogenic diet. These data were highly reproducible among independent studies and corroborated the existence of functional links between diet-induced obesity and gustation in rodents. CONCLUSIONS The FRM-8 gustometer appears to be especially suitable for exploring determinants of behavioral outputs in response to oro-sensory stimuli in the mouse. It also provides substantial information on the taste-reward relationship, useful for better understanding the origin of gustatory efficiency or, conversely, dysfunction, as reported in nutritional obesity.
Collapse
Affiliation(s)
- Aurélie Dastugue
- Physiologie de la Nutrition et Toxicologie (NUTox), UMRU1231 Lipids, Nutrition, Cancer, INSERM Research Group, University of Burgundy Franche-Comté, Dijon, France
| | - Jean-François Merlin
- Physiologie de la Nutrition et Toxicologie (NUTox), UMRU1231 Lipids, Nutrition, Cancer, INSERM Research Group, University of Burgundy Franche-Comté, Dijon, France
| | - Guillaume Maquart
- Physiologie de la Nutrition et Toxicologie (NUTox), UMRU1231 Lipids, Nutrition, Cancer, INSERM Research Group, University of Burgundy Franche-Comté, Dijon, France
| | - Arnaud Bernard
- Physiologie de la Nutrition et Toxicologie (NUTox), UMRU1231 Lipids, Nutrition, Cancer, INSERM Research Group, University of Burgundy Franche-Comté, Dijon, France
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), UMRU1231 Lipids, Nutrition, Cancer, INSERM Research Group, University of Burgundy Franche-Comté, Dijon, France
| |
Collapse
|
23
|
Gupta A, Li X, DiCicco-Bloom E, Bello NT. Altered salt taste response and increased tongue epithelium Scnna1 expression in adult Engrailed-2 null mice. Physiol Behav 2018; 194:410-419. [PMID: 29953887 DOI: 10.1016/j.physbeh.2018.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
Sensory impairments are critical for diagnosing and characterizing neurodevelopmental disorders. Taste is a sensory modality often not well characterized. Engrailed-2 (En2) is a transcription factor critical for neural development, and mice lacking En2 (En2-/-) display signs of impaired social interaction, cognitive processes (e.g., learning and memory, conditioned fear), and neurodevelopmental alterations. As such, En2-/- mice display the behavioral deficits and neural impairments characteristic of the core symptoms associated with autism spectrum disorder (ASD). The objective of this study was to characterize the taste function in En2-/- compared with En2+/+ in adult male mice. Measuring taste responsiveness by an automated gustometer, En2 null mice had decreased lick responses for 1.6 M fructose, whereas they demonstrated an increased taste responsivity (i.e., relative to water) at 0.3 M sodium chloride and 1 M monosodium glutamate. In a separate cohort of mice, En2-/- mice had an increased preference for sodium chloride over a range of concentrations (0.032-0.3 M) compared with En2+/+ mice. Regional gene expression of the tongue epithelium demonstrated an increase in Scnn1a, T2R140, T1R3, and Trpm5 and a decrease in Pkd1l3 in En2 null mice. Taken together, such data indicate that deficits in En2 can produce sensory impairments that can have a measurable impact on taste, particularly salt taste.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xinyi Li
- Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
24
|
Johnson AW. Examining the influence of CS duration and US density on cue-potentiated feeding through analyses of licking microstructure. LEARNING AND MOTIVATION 2018; 61:85-96. [PMID: 30082927 PMCID: PMC6075650 DOI: 10.1016/j.lmot.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the current study, groups of mice were trained with either short (20 s) or long (120 s) conditioned stimulus (CS) durations associated with different rates of sucrose unconditioned stimulus (US) delivery, to examine whether different behavioral forms of cue-potentiated feeding in sated mice would be evoked. In training mice received presentations of an auditory CS for 20 s during which a sucrose US was delivered at a density of 1/9 s (Group-20-s). A second group of mice received an auditory CS for 120 s and a US density of 1/49 s (Group-120-s). During training, a shorter CS duration and higher rate of US delivery resulted in greater acquisition of food cup responding, and during the test stage Group-20-s mice also displayed higher CS evoked lick rates, though all mice showed cue-potentiated feeding. An analysis of licking microstructure also revealed that Group-120-s mice displayed CS evoked licking behavior that reflected an increase in the perceived palatability of the sucrose US. These findings are discussed with respect to the influence of CS interval and US density on associatively activated sensory and affective representations of a US, and contrast mediated effects resulting from presentation of excitatory and inhibitory conditioned stimuli.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48864, USA
| |
Collapse
|
25
|
Johnson AW. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models. Int J Dev Neurosci 2018; 64:38-47. [PMID: 28684308 PMCID: PMC6063358 DOI: 10.1016/j.ijdevneu.2017.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/24/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022] Open
Abstract
Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI, 48864, USA.
| |
Collapse
|
26
|
Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice. Physiol Behav 2017; 177:34-43. [PMID: 28411104 DOI: 10.1016/j.physbeh.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
In order to examine genetic influences on fluid ingestion, 20-min intake of either water or 0.1M sucrose was measured in a lickometer in 18 isogenic strains of mice, including 15 inbred strains and 3 F1 hybrid crosses. Intake and licking data were examined at a number of levels, including lick rate as defined by mean or median interlick interval, as well as several microstructural parameters (i.e. burst-pause structure). In general, strain variation for ingestive phenotypes were correlated across water and sucrose in all strains, indicating fundamental, rather than stimulus-specific, mechanisms of intake. Strain variation was substantial and robust, with heritabilities for phenotypes ranging from 0.22 to 0.73. For mean interlick interval (MPI; a measure of lick rate) strains varied continuously from 94.3 to 127.0ms, a range consistent with previous studies. Furthermore, variation among strains for microstructural traits such as burst size and number suggested that strains possess different overall ingestive strategies, with some favoring more short bursts, and others favoring fewer, long bursts. Strains also varied in cumulative intake functions, exhibiting both linear and decelerated rates of intake across the session.
Collapse
|
27
|
Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res 2016; 320:431-439. [PMID: 27984049 DOI: 10.1016/j.bbr.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023]
Abstract
Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome.
Collapse
Affiliation(s)
- Cindee F Robles
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
28
|
Austen JM, Strickland JA, Sanderson DJ. Memory-dependent effects on palatability in mice. Physiol Behav 2016; 167:92-99. [PMID: 27614065 PMCID: PMC5105885 DOI: 10.1016/j.physbeh.2016.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 11/24/2022]
Abstract
While palatability depends on the properties of particular foods, it is also determined by prior experience, suggesting that memory affects the hedonic value of a substance. Here, we report two procedures that affect palatability in mice: negative contrast and flavour habituation. A microstructure analysis of licking behaviour was employed, with the lick cluster size (the number of licks made in quick succession before a pause) used as a measure of palatability. It was first confirmed that lick cluster size increased monotonically as a function of sucrose concentration, whereas consumption followed an inverted U-shaped function. In a successive negative contrast procedure it was found that when shifted from a high sucrose concentration (32%) to a low sucrose concentration (4%), mice made smaller lick clusters than a group that only received the low concentration. Mice exposed to flavours (cherry or grape Kool Aid) mixed with sucrose (16%) made larger lick clusters for familiar flavours compared to novel flavours. This habituation effect was evident after short (5 min) and long (24 h) test intervals. Both successive negative contrast and flavour habituation failed to affect levels of consumption. Collectively, the results show that prior experience can have effects on lick cluster size that are equivalent to increasing or decreasing the sweetness of a solution. Thus, palatability is not a fixed property of a substance but is dependent on expectation or familiarity that occurs as a result of memory. Consumption in mice is maximal with intermediate concentrations of sucrose. Lick cluster size increases monotonically as a function of sucrose concentration. A successive negative contrast procedure reduced lick cluster size. Flavour habituation led to an increase in lick cluster size. Memory has effects on palatability similar to altering the sweetness of a solution.
Collapse
Affiliation(s)
- Joseph M Austen
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK.
| | - Jasmin A Strickland
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK
| | - David J Sanderson
- Department of Psychology, Durham University, Science Site, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
29
|
Dailey MJ, Moran TH, Holland PC, Johnson AW. The antagonism of ghrelin alters the appetitive response to learned cues associated with food. Behav Brain Res 2016; 303:191-200. [PMID: 26802728 DOI: 10.1016/j.bbr.2016.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 12/17/2022]
Abstract
The rapid increase in obesity may be partly mediated by an increase in the exposure to cues for food. Food-paired cues play a role in food procurement and intake under conditions of satiety. The mechanism by which this occurs requires characterization, but may involve ghrelin. This orexigenic peptide alters the response to food-paired conditioned stimuli, and neural responses to food images in reward nuclei. Therefore, we tested whether a ghrelin receptor antagonist alters the influence of food-paired cues on the performance of instrumental responses that earn food and the consumption of food itself using tests of Pavlovian-to-instrumental transfer (PIT) and cue potentiated feeding (CPF), respectively. Food-deprived rats received Pavlovian conditioning where an auditory cue was paired with delivery of sucrose solution followed by instrumental conditioning to lever press for sucrose. Following training, rats were given ad libitum access to chow. On test day, rats were injected with the ghrelin receptor antagonist GHRP-6 [D-Lys3] and then tested for PIT or CPF. Disrupting ghrelin signaling enhanced expression of PIT. In addition, GHRP-6 [D-Lys3] impaired the initiation of feeding behavior in CPF without influencing overall intake of sucrose. Finally, in PIT tested rats, enhanced FOS immunoreactivity was revealed following the antagonist in regions thought to underlie PIT; however, the antagonist had no effect on FOS immunoreactivity in CPF tested rats.
Collapse
Affiliation(s)
- Megan J Dailey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
30
|
Stratford JM, Thompson JA. MSG-Evoked c-Fos Activity in the Nucleus of the Solitary Tract Is Dependent upon Fluid Delivery and Stimulation Parameters. Chem Senses 2016; 41:211-20. [PMID: 26762887 DOI: 10.1093/chemse/bjv082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 01/20/2023] Open
Abstract
The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow.
Collapse
Affiliation(s)
- Jennifer M Stratford
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA and
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
31
|
Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues. Physiol Behav 2015; 152:402-7. [DOI: 10.1016/j.physbeh.2015.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
|
32
|
Poole RL, Aleman TR, Ellis HT, Tordoff MG. Maltodextrin Acceptance and Preference in Eight Mouse Strains. Chem Senses 2015; 41:45-52. [PMID: 26464499 DOI: 10.1093/chemse/bjv056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.
Collapse
Affiliation(s)
- Rachel L Poole
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Tiffany R Aleman
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Hillary T Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Laurent V, Morse AK, Balleine BW. The role of opioid processes in reward and decision-making. Br J Pharmacol 2015; 172:449-59. [PMID: 24930675 DOI: 10.1111/bph.12818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Contemporary theories emphasize the involvement of the endogenous opioid system in assigning hedonic values to rewards. Although earlier research supports this view, recent findings suggest that opioids play a larger and more complex role in reward processes than these theories suggest. For example, opioid activity in the basolateral amygdala is required for encoding incentive learning, a process by which the value of goal-directed actions is updated. Outside the amygdala, opioid receptors in the ventral striatum have been found to promote choice between different courses of action. Specifically, μ opioid receptors in the nucleus accumbens core and δ opioid receptors in the nucleus accumbens shell have been reported to mediate distinct aspects of incentive motivation; the core regulating the effect of experienced reward and the shell of predicted reward on choice. In both cases, the involvement of opioid receptors was restricted to the time of choice, although changes in their expression pattern could be observed prior to that point. This time-restricted involvement of opioid receptor-related processes is consistent with the view that opioids in the nucleus accumbens are central components of the limbic-motor interface, integrating reward-related information with instrumental learning to guide decision-making, particularly the selection and execution of goal-directed actions. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Vincent Laurent
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Rossi MA, Yin HH. Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning. Front Integr Neurosci 2015; 9:37. [PMID: 26029064 PMCID: PMC4432675 DOI: 10.3389/fnint.2015.00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
The role of dopamine in controlling behavior remains poorly understood. In this study we examined licking behavior in an established hyperdopaminergic mouse model—dopamine transporter knockout (DAT KO) mice. DAT KO mice showed higher rates of licking, which is due to increased perseveration of licking in a bout. By contrast, they showed increased individual lick durations, and reduced inter-lick intervals. During extinction, both KO and control mice transiently increased variability in lick pattern generation while reducing licking rate, yet they showed very different behavioral patterns. Control mice gradually increased lick duration as well as variability. By contrast, DAT KO mice exhibited more immediate (within 10 licks) adjustments—an immediate increase in lick duration variability, as well as more rapid extinction. These results suggest that the level of dopamine can modulate the persistence and pattern generation of a highly stereotyped consummatory behavior like licking, as well as new learning in response to changes in environmental feedback. Increased dopamine in DAT KO mice not only increased perseveration of bouts and individual lick duration, but also increased the behavioral variability in response to the extinction contingency and the rate of extinction.
Collapse
Affiliation(s)
- Mark A Rossi
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA ; Department of Neurobiology, Duke University Durham, NC, USA ; Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| |
Collapse
|
35
|
Abstract
Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system.
Collapse
|
36
|
Ostlund SB, Kosheleff A, Maidment NT, Murphy NP. Decreased consumption of sweet fluids in μ opioid receptor knockout mice: a microstructural analysis of licking behavior. Psychopharmacology (Berl) 2013; 229:105-13. [PMID: 23568577 PMCID: PMC3742650 DOI: 10.1007/s00213-013-3077-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
RATIONALE Evidence suggests that the palatability of food (i.e., the hedonic impact produced by its sensory features) can promote feeding and may underlie compulsive eating, leading to obesity. Pharmacological studies implicate opioid transmission in the hedonic control of feeding, though these studies often rely on agents lacking specificity for particular opioid receptors. OBJECTIVES Here, we investigated the role of mu opioid receptors (MORs) specifically in determining hedonic responses to palatable sweet stimuli. METHODS In Experiment 1, licking microstructure when consuming sucrose solution (2 to 20 %) was compared in MOR knockout and wildtype mice as a function of sucrose concentration and level of food deprivation. In Experiment 2, a similar examination was conducted using the palatable but calorie-free stimulus sucralose (0.001 to 1 %), allowing study of licking behavior independent of homeostatic variables. RESULTS In Experiment 1, MOR knockout mice exhibited several alterations in sucrose licking. Although wildtype mice exhibited a twofold increase in the burst length when food deprived, relative to the nondeprived test, this aspect of sucrose licking was generally insensitive to manipulations of food deprivation for MOR knockout mice. Furthermore, during concentration testing, their rate of sucrose licking was less than half that of wildtype mice. During sucralose testing (Experiment 2), MOR knockout mice licked at approximately half the wildtype rate, providing more direct evidence that MOR knockout mice were impaired in processing stimulus palatability. CONCLUSIONS These results suggest that transmission through MORs mediates hedonic responses to palatable stimuli, and therefore likely contributes to normal and pathological eating.
Collapse
|
37
|
Barkley-Levenson AM, Crabbe JC. Ethanol drinking microstructure of a high drinking in the dark selected mouse line. Alcohol Clin Exp Res 2012; 36:1330-9. [PMID: 22524154 DOI: 10.1111/j.1530-0277.2012.01749.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/13/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND The High Drinking in the Dark (HDID) selected mouse line was bred for high blood ethanol (EtOH) concentration (BEC) following the limited access drinking in the dark (DID) test and is a genetic animal model of binge-like drinking. This study examines the microstructure of EtOH drinking in these mice and their control line during 3 versions of the DID test to determine how drinking structure differences might relate to overall intake and BEC. METHODS Male mice from the HDID-1 replicate line and HS/Npt progenitor stock were tested in separate experiments on 2- and 4-day versions of the DID test, and on a 2-day 2-bottle choice DID test with 20% EtOH and water. Testing took place in home cages connected to a continuous fluid intake monitoring system, and drinking during the DID test was analyzed for drinking microstructure. RESULTS HDID-1 mice had more drinking bouts, shorter interbout interval, larger bout size, greater total EtOH intake, and higher BECs than HS/Npt mice on the second day of the 2-day DID test. The 4-day DID test showed greater bout size, total EtOH intake, and BEC in the HDID-1 mice than the HS/Npt mice. Total EtOH intake and BECs for the HDID-1 mice in the DID tests averaged 2.6 to 3.0 g/kg and 0.4 to 0.5 mg/ml, respectively. The 2-bottle choice test showed no genotype differences in drinking microstructure or total consumption but did show greater preference for the EtOH solution in HDID-1 mice than HS/Npt. CONCLUSIONS These results suggest that inherent differences in EtOH drinking structure between the HDID-1 and HS/Npt mice, especially the larger bout size in the HDID-1 mice, contribute to the difference in intake during the standard DID test.
Collapse
|
38
|
Lensu S, Tiittanen P, Pohjanvirta R. Circadian differences between two rat strains in their feeding and drinking micro- and macrostructures. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.525381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Dietary manipulations influence sucrose acceptance in diet induced obese mice. Appetite 2011; 58:215-21. [PMID: 21983046 DOI: 10.1016/j.appet.2011.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/30/2011] [Accepted: 09/14/2011] [Indexed: 11/20/2022]
Abstract
The current studies examined the influence of a high fat diet on sucrose acceptance in diet induced obese (DIO) mice. C57BL/6J mice were placed on either a 45 kcal% fat diet (group DIO), or a control 10% kcal fat diet (group control) for 12 weeks followed by sucrose consumption tests and dietary manipulations. After 12 weeks exposure, body weights of DIO mice significantly exceeded those of the control mice. During subsequent sucrose consumption tests, DIO mice showed suppression in the total number of licks relative to controls. In a second experiment, consumption tests with water and a variety of sucrose concentrations revealed a hypophagic phenotype in naïve DIO mice. Licking microstructure analyses were conducted on the licking behavior of all mice, which revealed a reduction in burst size and number for DIO mice. Subsequently, we examined whether 10 days exposure to regular lab chow would alter sucrose consumption and taste evaluation in DIO mice. As a result of this dietary switch, all mice showed comparable licking behavior suggesting that exposure to the high-fat diet and diet-induced obesity may reduce preferences for other tastants in C57BL/6J mice.
Collapse
|
40
|
Lensu S, Tiittanen P, Lindén J, Tuomisto J, Pohjanvirta R. Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacol Biochem Behav 2011; 99:487-99. [DOI: 10.1016/j.pbb.2011.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
41
|
Johnson AW, Gallagher M. Greater effort boosts the affective taste properties of food. Proc Biol Sci 2010; 278:1450-6. [PMID: 21047860 DOI: 10.1098/rspb.2010.1581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Actions can create preferences, increasing the value ascribed to commodities acquired at greater cost. This behavioural finding has been observed in a variety of species; however, the causal factors underlying the phenomenon are relatively unknown. We sought to develop a behavioural platform to examine the relationship between effort and reinforcer value in mice trained under demanding or lenient schedules of reinforcement to obtain food. In the initial experiment, expenditure of effort enhanced the value of the associated food via relatively lasting changes in its hedonic attributes, promoting an acquired preference for these reinforcers when tested outside of the training environment. Moreover, otherwise neutral cues associated with those reinforcers during training similarly acquired greater reinforcing value, as assessed under conditioned reinforcement. In a separate experiment, expenditure of effort was also capable of enhancing the value of less-preferred low-caloric reinforcers. Analysis of licking microstructure revealed the basis for this increased valuation was, in part, due to increased palatability of the associated reinforcer. This change in the hedonic taste properties of the food can not only serve as a basis for preference, but also guide decision-making and foraging behaviour by coordinating a potentially adaptive repertoire of incentive motivation, goal-directed action and consumption.
Collapse
Affiliation(s)
- Alexander W Johnson
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|