1
|
Langhans W, Watts AG, Spector AC. The elusive cephalic phase insulin response: triggers, mechanisms, and functions. Physiol Rev 2023; 103:1423-1485. [PMID: 36422994 PMCID: PMC9942918 DOI: 10.1152/physrev.00025.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The cephalic phase insulin response (CPIR) is classically defined as a head receptor-induced early release of insulin during eating that precedes a postabsorptive rise in blood glucose. Here we discuss, first, the various stimuli that elicit the CPIR and the sensory signaling pathways (sensory limb) involved; second, the efferent pathways that control the various endocrine events associated with eating (motor limb); and third, what is known about the central integrative processes linking the sensory and motor limbs. Fourth, in doing so, we identify open questions and problems with respect to the CPIR in general. Specifically, we consider test conditions that allow, or may not allow, the stimulus to reach the potentially relevant taste receptors and to trigger a CPIR. The possible significance of sweetness and palatability as crucial stimulus features and whether conditioning plays a role in the CPIR are also discussed. Moreover, we ponder the utility of the strict classical CPIR definition based on what is known about the effects of vagal motor neuron activation and thereby acetylcholine on the β-cells, together with the difficulties of the accurate assessment of insulin release. Finally, we weigh the evidence of the physiological and clinical relevance of the cephalic contribution to the release of insulin that occurs during and after a meal. These points are critical for the interpretation of the existing data, and they support a sharper focus on the role of head receptors in the overall insulin response to eating rather than relying solely on the classical CPIR definition.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
2
|
Almaski A, Coe S, Lightowler H, Clegg ME, Thondre PS. Finger millet-based muffin decreases insulin response in individuals with prediabetes in a randomised controlled trial. Br J Nutr 2022; 129:1-10. [PMID: 35603664 PMCID: PMC9899571 DOI: 10.1017/s0007114522001623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022]
Abstract
Millet is a grain high in polyphenols and antioxidants, which are bioactive compounds known to influence blood glucose response. The aim of this study was to compare the effect of finger millet muffin and wheat muffin on glycaemic response (GR), insulin response (IR), gastric emptying (GE) and satiety in healthy individuals and people with prediabetes. In a single-blind randomised controlled crossover trial at Oxford Brookes Centre for Nutrition and Health, fifteen healthy individuals and fourteen individuals with prediabetes were recruited between May and December 2017. The participants' GR (3 h), IR (3 h), GE (4 h) and satiety (4 h) were measured before and after the consumption of muffins. A mixed method ANOVA was used to compare GE and the incremental AUC (iAUC) for GR and IR between the participant groups and muffins. There was a significant interaction between participants and muffins on IR iAUC at 180 min (P = 0·042). A significant effect of muffins was found on the GR peak (P = 0·013). The millet muffin decreased the GR peak and IR iAUC compared with the wheat muffin in participants with prediabetes. A significant interaction between participants and muffins for GE ascension time Tasc (P = 0·017) was observed, with no effect of muffins on satiety AUC in the participant groups. This study suggested that polyphenol and fibre-rich finger millet may have the potential to influence the management of prediabetes.
Collapse
Affiliation(s)
- Ameerah Almaski
- Department of Nutrition and Food Science, Taibah University, Universities Road, PO Box: 344, KSA, Medina, Saudi Arabia
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helen Lightowler
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Miriam E Clegg
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, ReadingRG6 6AP, UK
| | - Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences & Social Work, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
3
|
Pullicin AJ, Glendinning JI, Lim J. Cephalic phase insulin release: A review of its mechanistic basis and variability in humans. Physiol Behav 2021; 239:113514. [PMID: 34252401 PMCID: PMC8440382 DOI: 10.1016/j.physbeh.2021.113514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Cephalic phase insulin release (CPIR) is a transient pulse of insulin that occurs within minutes of stimulation from foods or food-related stimuli. Despite decades of research on CPIR in humans, the body of literature surrounding this phenomenon is controversial due in part to contradictory findings . This has slowed progress towards understanding the sensory and neural basis of CPIR, as well as its overall relevance to health. This review examines up-to-date knowledge in CPIR research and identifies sources of CPIR variability in humans in an effort to guide future research. The review starts by defining CPIR and discussing its presumed functional roles in glucose homeostasis and feeding behavior. Next, the types of stimuli that have been reported to elicit CPIR, as well as the sensory and neural mechanisms underlying the response in rodents and humans are discussed, and areas where knowledge is limited are identified. Finally, factors that may contribute to the observed variability of CPIR in humans are examined, including experimental design, test procedure, and individual characteristics. Overall, oral stimulation appears to be important for eliciting CPIR, especially when combined with other sensory modalities (vision, olfaction, somatosensation). While differences in experimental design and testing procedure likely explain some of the observed inter- and intra-study variability, individual differences also appear to play an important role. Understanding sources of these individual differences in CPIR will be key for establishing its health relevance.
Collapse
Affiliation(s)
- Alexa J Pullicin
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA
| | - John I Glendinning
- Departments of Biology and Neuroscience & Behavior, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027 US
| | - Juyun Lim
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
4
|
Lasschuijt MP, Mars M, de Graaf C, Smeets PAM. Endocrine Cephalic Phase Responses to Food Cues: A Systematic Review. Adv Nutr 2020; 11:1364-1383. [PMID: 32516803 PMCID: PMC7490153 DOI: 10.1093/advances/nmaa059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Abstract
Cephalic phase responses (CPRs) are conditioned anticipatory physiological responses to food cues. They occur before nutrient absorption and are hypothesized to be important for satiation and glucose homeostasis. Cephalic phase insulin responses (CPIRs) and pancreatic polypeptide responses (CPPPRs) are found consistently in animals, but human literature is inconclusive. We performed a systematic review of human studies to determine the magnitude and onset time of these CPRs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to develop a search strategy. The terms included in the search strategy were cephalic or hormone response or endocrine response combined with insulin and pancreatic polypeptide (PP). The following databases were searched: Scopus (Elsevier), Science Direct, PubMed, Google Scholar, and The Cochrane Library. Initially, 582 original research articles were found, 50 were included for analysis. An insulin increase (≥1μIU/mL) was observed in 41% of the treatments (total n = 119). In 22% of all treatments the increase was significant from baseline. The median (IQR) insulin increase was 2.5 (1.6-4.5) μIU/mL, 30% above baseline at 5± 3 min after food cue onset (based on study treatments that induced ≥1 μIU/mL insulin increase). A PP increase (>10 pg/mL) was found in 48% of the treatments (total n = 42). In 21% of the treatments, the increase was significant from baseline. The median (IQR) PP increase was 99 (26-156) pg/mL, 68% above baseline at 9± 4 min after food cue onset (based on study treatments that induced ≥1 μIU/mL insulin increase). In conclusion, CPIRs are small compared with spontaneous fluctuations. Although CPPPRs are of a larger magnitude, both show substantial variation in magnitude and onset time. We found little evidence for CPIR or CPPPR affecting functional outcomes, that is, satiation and glucose homeostasis. Therefore, CPRs do not seem to be biologically meaningful in daily life.
Collapse
Affiliation(s)
- Marlou P Lasschuijt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Monica Mars
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Cees de Graaf
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Lasschuijt M, Mars M, de Graaf C, Smeets PAM. How oro-sensory exposure and eating rate affect satiation and associated endocrine responses-a randomized trial. Am J Clin Nutr 2020; 111:1137-1149. [PMID: 32320002 PMCID: PMC7266691 DOI: 10.1093/ajcn/nqaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Longer oral processing decreases food intake. This can be attributed to greater oro-sensory exposure (OSE) and a lower eating rate (ER). How these factors contribute to food intake, and the underlying physiological mechanisms, remain unclear. OBJECTIVES We aimed to determine the independent and simultaneous effects of OSE and ER on satiation and associated endocrine responses. METHODS Forty participants in study 1 [mean ± SD age: 24 ± 4 y; BMI (in kg/m2): 22 ± 2] and 20 in study 2 (mean ± SD age: 23 ± 3 y; BMI: 23 ± 2) participated in a 2 × 2 randomized trial. In both studies, participants ate chocolate custard with added caramel sauce (low OSE) or caramel fudge (high OSE) and with short (fast ER) or long breaks (slow ER) in between bites, until fullness. In study 2, endocrine responses were measured during the meal. RESULTS In study 1, participants ate (mean ± SEM) 42 ± 15 g less in the slow- than in the fast-ER condition, only within the high-OSE condition (P = 0.04). In study 2, participants ate 66 ± 21 g less in the high- than in the low-OSE condition and there were no intake differences between slow and fast ER (P = 0.35). Eight minutes after starting to eat, insulin concentrations increased by 42%-65% in all treatments compared with the control. At the end of the meal, insulin concentrations were 81% higher in the high-OSE, slow-ER than in the low-OSE, fast-ER condition (P = 0.049). Pancreatic polypeptide (PP) increased by 62%, 5 min after meal onset in the low-OSE, fast-ER condition (P = 0.005). Ghrelin concentrations did not change. CONCLUSIONS Greater OSE increases insulin responsiveness. In contrast, PP responses are stronger when OSE is reduced and ER is fast. Insulin and PP responses may mediate the independent effects of OSE and ER on food intake. These may be beneficial eating strategies, particularly for type 2 diabetic patients, to control food intake and maintain glucose homeostasis.This trial was registered at trialregister.nl as NL6544.
Collapse
Affiliation(s)
- Marlou Lasschuijt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands,Address correspondence to ML (e-mail: )
| | - Monica Mars
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Cees de Graaf
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Paul A M Smeets
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands,Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The care of critically ill patients has evolved over recent years, resulting in significant reductions in mortality in developed countries; sometimes with prolonged issues with recovery. Nutrition research has focused on the early, acute period of critical illness, until more recently, where the post-ICU hospitalization period in critical care survivors has become a focus for nutrition rehabilitation. In this period, nutrition rehabilitation may be a vital component of recovery. RECENT FINDINGS Overall, oral nutrition is the most common mode of nutrition provision in the post-ICU period. Compared with oral intake alone, calorie and protein requirements can be better met with the addition of oral supplements and/or enteral nutrition to oral intake. However, calorie and protein intake remains below predicted targets in the post-ICU hospitalization period. Achieving nutrition targets are complex and multifactorial, but can primarily be grouped into three main areas: patient factors; clinician factors; and system factors. SUMMARY A nutrition intervention in the post-ICU hospitalization period may provide an opportunity to improve survival and functional recovery. However, there are multiple barriers to the delivery of calculated nutrition requirements in this period, a limited understanding of how this can be improved and how this translates into clinical benefit.
Collapse
Affiliation(s)
- Emma J Ridley
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University
- Nutrition Department, Alfred Health, Melbourne
| | - Lee-Anne S Chapple
- Discipline of Acute Care Medicine, University of Adelaide
- Intensive Care Research, Royal Adelaide Hospital, Adelaide, Australia
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide
- Intensive Care Research, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
7
|
Lu K, Chen X, Yan J, Li X, Huang C, Wan Q, Deng X, Zou Q. The Effect of Feeding Behavior on Hypothalamus in Obese Type 2 Diabetic Rats with Glucagon-like Peptide-1 Receptor Agonist Intervention. Obes Facts 2018; 11:181-194. [PMID: 29788009 PMCID: PMC6103358 DOI: 10.1159/000486316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the utility of intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI) derived parameters in hypothalamus for monitoring the effect of Exendin-4 (Ex-4) intervention on the feeding behavior in obese diabetic rats within early feeding. METHODS 21 obese and 19 non-obese rats which were treated with streptozotocin injections were initially divided into an obese diabetes group (OD, n = 10), a non-obese diabetes group (D, n = 8), an obese group (O, n = 9) and a non-obese group (N, n = 9). Then, the rats in the 4 groups received subcutaneous injections of Ex-4, and feeding behavior was examined at 5, 35, 65, 95, and 125 min. The hypothalamic function was evaluated by IVIM-DWI. Finally, the relationship between the hypothalamic function and the amount of food intake was analyzed. RESULTS In comparison with the N group, the food intake significantly decreased in the O , OD, and D groups in response to Ex-4. Furthermore, a significant positive correlation was found between food intake and D values at different times from 5 to 125 min after Ex-4 intervention in all 4 groups. CONCLUSION A direct correlation between the change of hypothalamic function and feeding behavior was detected in OD rats with Ex-4 intervention in the early feeding period. The hypothalamic D value derived from IVIM-DWI is promising to reflect the dynamic change of hypothalamic function due to intervention.
Collapse
Affiliation(s)
- Ke Lu
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Chen
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Dr. Xiaoyan Chen, Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China,
| | - Jianhua Yan
- Department of Radiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinchun Li
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Huang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Qi Wan
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuelian Deng
- Department of Endocrinology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiao Zou
- Department of MRI, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Vuletic L, Klaic M, Spalj S, Peros K. The Effect of Chewing a Sugar-Free Gum After Oatmeal on the Postprandial Glycaemia – A Cross-Over Study. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2017. [DOI: 10.1515/rjdnmd-2017-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background and Aims: Gum chewing after a meal stimulates salivation and may affect the motility of the gastrointestinal tract and the release of hormones through neural mechanisms. This study was conducted to assess if chewing a sugar-free gum for 20 min following a meal, as recommended for dental caries prevention, influences the postprandial blood glucose levels in a period of one hour. Materials and Methods: For each of 18 participants blood glucose profile was made by measuring capillary glucose concentration in 10-min intervals within one hour following: a) chewing a sugar-free gum, b) the consumption of an oatmeal, c) chewing a sugar-free gum after the consumption of an oatmeal. Results: No statistically significant differences were found in the glycaemic response following complex carbohydrate ingestion when a gum was chewed after a meal. Conclusions: The possible influence of gum chewing on the postprandial gastrointestinal and metabolic ongoings was not reflected in the postprandial glycaemic response under the conditions of this study. A more comprehensive study which would include more variables related to vagal efferent activity, digestion and metabolism would be needed to assess if chewing sugar-free gums to exploit their caries-protective potential can influence metabolic adaptability to nutritional challenges.
Collapse
Affiliation(s)
- Lea Vuletic
- Department of Physiology, School of Dental Medicine, University of Zagreb, Salata 3, 10 000 Zagreb , Croatia
| | - Marija Klaic
- Student of the School of Dental Medicine, University of Zagreb, Zagreb , Croatia
| | - Stjepan Spalj
- Department of Orthodontics, School of Medicine, University of Rijeka, Rijeka , Croatia
| | - Kristina Peros
- Department of Pharmacology, School of Dental Medicine, University of Zagreb, Zagreb , Croatia
| |
Collapse
|
9
|
Kashima H, Eguchi K, Miyamoto K, Fujimoto M, Endo MY, Aso-Someya N, Kobayashi T, Hayashi N, Fukuba Y. Suppression of Oral Sweet Taste Sensation with Gymnema sylvestre Affects Postprandial Gastrointestinal Blood Flow and Gastric Emptying in Humans. Chem Senses 2017; 42:295-302. [DOI: 10.1093/chemse/bjw126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|