1
|
la Fleur SE, Blancas-Velazquez AS, Stenvers DJ, Kalsbeek A. Circadian influences on feeding behavior. Neuropharmacology 2024; 256:110007. [PMID: 38795953 DOI: 10.1016/j.neuropharm.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Feeding, like many other biological functions, displays a daily rhythm. This daily rhythmicity is controlled by the circadian timing system of which the central master clock is located in the hypothalamic suprachiasmatic nucleus (SCN). Other brain areas and tissues throughout the body also display rhythmic functions and contain the molecular clock mechanism known as peripheral oscillators. To generate the daily feeding rhythm, the SCN signals to different hypothalamic areas with the lateral hypothalamus, paraventricular nucleus and arcuate nucleus being the most prominent. With respect to the rewarding aspects of feeding behavior, the dopaminergic system is also under circadian influence. However the SCN projects only indirectly to the different reward regions, such as the ventral tegmental area where dopamine neurons are located. In addition, high palatable, high caloric diets have the potential to disturb the normal daily rhythms of physiology and have been shown to alter for example meal patterns. Around a meal several hormones and peptides are released that are also under circadian influence. For example, the release of postprandial insulin and glucagon-like peptide following a meal depend on the time of the day. Finally, we review the effect of deletion of different clock genes on feeding behavior. The most prominent effect on feeding behavior has been observed in Clock mutants, whereas deletion of Bmal1 and Per1/2 only disrupts the day-night rhythm, but not overall intake. Data presented here focus on the rodent literature as only limited data are available on the mechanisms underlying daily rhythms in human eating behavior.
Collapse
Affiliation(s)
- Susanne E la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands.
| | - Aurea S Blancas-Velazquez
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dirk Jan Stenvers
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Laboratory Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Verma K, Paliwal S, Sharma S. Therapeutic potential of reserpine in metabolic syndrome: An evidence-based study. Pharmacol Res 2023; 190:106728. [PMID: 36921912 DOI: 10.1016/j.phrs.2023.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023]
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| |
Collapse
|
3
|
Maric I, Krieger JP, van der Velden P, Börchers S, Asker M, Vujicic M, Wernstedt Asterholm I, Skibicka KP. Sex and Species Differences in the Development of Diet-Induced Obesity and Metabolic Disturbances in Rodents. Front Nutr 2022; 9:828522. [PMID: 35284452 PMCID: PMC8908889 DOI: 10.3389/fnut.2022.828522] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
Prevalence and health consequences of obesity differ between men and women. Yet, most preclinical studies investigating the etiology of obesity have, to date, been conducted in male rodents. Notably, diet is a major determinant of obesity, but sex differences in rodent models of diet-induced obesity, and the mechanisms that underlie such differences, are still understudied. Here, we aim to determine whether time course and characteristics of diet-induced obesity differ between sexes in rats and mice, and to investigate the potential causes of the observed divergence. To achieve this, we offered the most commonly tested rodents of both sexes, SD rats and C57BL/6 mice, a free choice of 60 % high-fat diet (HFD) and regular chow; body weight, food intake, fat mass, brown adipose responses, locomotor activity and glucose tolerance were assessed in a similar manner in both species. Our results indicate that overall diet-induced hyperphagia is greater in males but that females display a higher preference for the HFD, irrespective of species. Female rats, compared to males, showed a delay in diet-induced weight gain and less metabolic complications. Although male rats increased brown adipose tissue thermogenesis in response to the HFD challenge, this was not sufficient to counteract increased adiposity. In contrast to rats, female and male mice presented with a dramatic adiposity and impaired glucose tolerance, and a decreased energy expenditure. Female mice showed a 5-fold increase in visceral fat, compared to 2-fold increase seen in male mice. Overall, we found that male and female rodents responded very differently to HFD challenge, and engaged different compensatory energy expenditure mechanisms. In addition, these sex differences are divergent in rats and mice. We conclude that SD rats have a better face validity for the lower prevalence of overweight in women, while C57BL/6 mice may better model the increased prevalence of morbid obesity in women.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jean-Philippe Krieger
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Pauline van der Velden
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Milica Vujicic
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Karolina P Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
5
|
Ledezma C, Coria-Lucero C, Castro A, Leporatti J, Perez M, Delgado S, Anzulovich AC, Navigatore-Fonzo L. Day-night oscillations of cognitive functions, TNF alpha and clock -related factors expression are modified by an intracerebroventricular injection of amyloid beta peptide in rat. Neurochem Int 2022; 154:105277. [PMID: 35007657 DOI: 10.1016/j.neuint.2022.105277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by a gradual impairment in cognitive functions. Recent research have shown that TNF-α is a proinflammatory cytokine implicated in the pathogenesis of neurodegenerative diseases, such as AD. Besides cognitive deficit, AD patients show alterations in their circadian rhythms. The objective of this work was to investigate the effects of an intracerebroventricular injection of Aß aggregates on temporal patterns of cognitive functions and on daily rhythms of Aβ, TNFα, BMAL1 and RORα protein levels in the rat prefrontal cortex. Four-month-old males Holtzman rats were used in this study. Groups were defined as: control and Aβ-injected rats. Rats were maintained under 12h-light:12h-dark throughout the entire experimental period. Prefrontal cortex samples were isolated every 4 h during a 24h period. Our results demonstrated that an intracerebroventricular injection of Aß aggregates impaired learning and memory in rats at ZT 2 and ZT 14 and modified daily patterns of Aβ, TNFα, and clock-related factors in the rat prefrontal cortex. Our findings showed that the increase of Aß altered temporal patterns of TNFα, and, consequently, induced alterations in daily rhythms of clock-related factors, affecting the cognitive performance of animals with Alzheimer's.
Collapse
Affiliation(s)
- Carina Ledezma
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Cinthia Coria-Lucero
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Andrea Castro
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Jorge Leporatti
- Faculty of Economic, Legal and Social Sciences, National University of San Luis (UNSL), Campus Universitario: Ruta Prov. Nº 55 (Ex. 148) Extremo Norte, Argentina
| | - Mariela Perez
- Institute of Experimental Pharmacology of Cordoba (CONICET), 5700HHW, San Luis, Argentina
| | - Silvia Delgado
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena Navigatore-Fonzo
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
6
|
Salaberry NL, Mendoza J. The circadian clock in the mouse habenula is set by catecholamines. Cell Tissue Res 2021; 387:261-274. [PMID: 34816282 DOI: 10.1007/s00441-021-03557-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Circadian rhythms are those variations in behavioral and molecular processes of organisms that follow roughly 24 h cycles in the absence of any external cue. The hypothalamic suprachiasmatic nucleus (SCN) harbors the principal brain pacemaker driving circadian rhythms. The epithalamic habenula (Hb) contains a self-sustained circadian clock functionally coupled to the SCN. Anatomically, the Hb projects to the midbrain dopamine (DA) and serotonin (5-HT) systems, and it receives inputs from the forebrain, midbrain, and brainstem. The SCN is set by internal signals such as 5-HT or melatonin from the raphe nuclei and pineal gland, respectively. However, how the Hb clock is set by internal cues is not well characterized. Hence, in the present study, we determined whether DA, noradrenaline (NA), 5-HT, and the neuropeptides orexin (ORX) and vasopressin influence the Hb circadian clock. Using PER2::Luciferase transgenic mice, we found that the amplitude of the PER2 protein circadian oscillations from Hb explants was strongly affected by DA and NA. Importantly, these effects were dose-and region (rostral vs. caudal) dependent for NA, with a main effect in the caudal part of the Hb. Furthermore, ORX also induced a significant change in the amplitude of PER2 protein oscillations in the caudal Hb. In conclusion, catecholaminergic (DA, NA) and ORXergic transmission impacts the clock properties of the Hb clock likely contributing to the circadian regulation of motivated behaviors. Accordingly, pathological conditions that lead in alterations of catecholamine or ORX activity (drug intake, compulsive feeding) might affect the Hb clock and conduct to circadian disturbances.
Collapse
Affiliation(s)
- Nora L Salaberry
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, 8 Allée du Général Rouvillois, Strasbourg, 67000, France.
| |
Collapse
|
7
|
Yuan Y, Li C, Guo S, Sun C, Ning N, Hao H, Wang L, Bian Y, Liu H, Wang X. Adiponectin improves amyloid-β 31-35-induced circadian rhythm disorder in mice. J Cell Mol Med 2021; 25:9851-9862. [PMID: 34523794 PMCID: PMC8505833 DOI: 10.1111/jcmm.16932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipocyte‐derived hormone, which is closely associated with the development of Alzheimer's disease (AD) and has potential preventive and therapeutic significance. In the present study, we explored the relationship between adiponectin and circadian rhythm disorder in AD, the effect of adiponectin on the abnormal expression of Bmal1 mRNA/protein induced by amyloid‐β protein 31‐35 (Aβ31‐35), and the underlying mechanism of action. We found that adiponectin‐knockout mice exhibited amyloid‐β deposition, circadian rhythm disorders and abnormal expression of Bmal1. Adiponectin ameliorated the abnormal expression of the Bmal1 mRNA/protein caused by Aβ31‐35 by inhibiting the activity of glycogen synthase kinase 3β (GSK3β). These results suggest that adiponectin deficiency could induce circadian rhythm disorders and abnormal expression of the Bmal1 mRNA/protein, whilst exogenous administration of adiponectin may improve Aβ31‐35‐induced abnormal expression of Bmal1 by inhibiting the activity of GSK3β, thus providing a novel idea for the treatment of AD.
Collapse
Affiliation(s)
- Yuan Yuan
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Chen Li
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Shuai Guo
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Cong Sun
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Na Ning
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China
| | - Haihu Hao
- Department of Orthopedics, Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Li Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Martchenko A, Brubaker PL. Effects of Obesogenic Feeding and Free Fatty Acids on Circadian Secretion of Metabolic Hormones: Implications for the Development of Type 2 Diabetes. Cells 2021; 10:cells10092297. [PMID: 34571945 PMCID: PMC8466112 DOI: 10.3390/cells10092297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Circadian rhythms are 24-h internal biological rhythms within organisms that govern virtually all aspects of physiology. Interestingly, metabolic tissues have been found to express cell-autonomous clocks that govern their rhythmic activity throughout the day. Disruption of normal circadian rhythmicity, as induced by environmental factors such as shift work, significantly increases the risk for the development of metabolic diseases, including type 2 diabetes and obesity. More recently, obesogenic feeding and its fatty acid components have also been shown to be potent disruptors of normal circadian biology. Two key hormones that are released in response to nutrient intake are the anti-diabetic incretin hormone glucagon-like peptide-1, from intestinal L cells, and insulin secreted by pancreatic β cells, both of which are required for the maintenance of metabolic homeostasis. This review will focus on the circadian function of the L and β cells and how both obesogenic feeding and the saturated fatty acid, palmitate, affect their circadian clock and function. Following introduction of the core biological clock and the hierarchical organization of the mammalian circadian system, the circadian regulation of normal L and β cell function and the importance of GLP-1 and insulin in establishing metabolic control are discussed. The central focus of the review then considers the circadian-disrupting effects of obesogenic feeding and palmitate exposure in L and β cells, while providing insight into the potential causative role in the development of metabolic disease.
Collapse
Affiliation(s)
| | - Patricia Lee Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
9
|
de Moura E Dias M, Dos Reis SA, da Conceição LL, Sediyama CMNDO, Pereira SS, de Oliveira LL, Gouveia Peluzio MDC, Martinez JA, Milagro FI. Diet-induced obesity in animal models: points to consider and influence on metabolic markers. Diabetol Metab Syndr 2021; 13:32. [PMID: 33736684 PMCID: PMC7976703 DOI: 10.1186/s13098-021-00647-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Overweight and obesity are a worldwide public health problem. Obesity prevalence has increased considerably, which indicates the need for more studies to better understand these diseases and related complications. Diet induced-obesity (DIO) animal models can reproduce human overweight and obesity, and there are many protocols used to lead to excess fat deposition. So, the purpose of this review was to identify the key points for the induction of obesity through diet, as well as identifying which are the necessary endpoints to be achieved when inducing fat gain. For this, we reviewed the literature in the last 6 years, looking for original articles that aimed to induce obesity through the diet. All articles evaluated should have a control group, in order to verify the results found, and had worked with Sprague-Dawley and Wistar rats, or with C57BL-/-6 mice strain. Articles that induced obesity by other methods, such as genetic manipulation, surgery, or drugs were excluded, since our main objective was to identify key points for the induction of obesity through diet. Articles in humans, in cell culture, in non-rodent animals, as well as review articles, articles that did not have obesity induction and book chapters were also excluded. Body weight and fat gain, as well as determinants related to inflammation, hormonal concentration, blood glycemia, lipid profile, and liver health, must be evaluated together to better determination of the development of obesity. In addition, to select the best model in each circumstance, it should be considered that each breed and sex respond differently to diet-induced obesity. The composition of the diet and calorie overconsumption are also relevant to the development of obesity. Finally, it is important that a non-obese control group is included in the experimental design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Madrid Institute of Advanced Studies (IMDEA Food), Food Institute, Madrid, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de La Fisiopatología de La Obesidad Y Nutrición (CIBERobn), Carlos III Health Institute, Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
10
|
Daily oscillation of cognitive factors is modified in the temporal cortex of an amyloid β(1-42)-induced rat model of Alzheimer's disease. Brain Res Bull 2021; 170:106-114. [PMID: 33508401 DOI: 10.1016/j.brainresbull.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating disease characterized by loss of synapses and neurons in the elderly. Accumulation of the β-amyloid peptide (Aβ) in the brain is thought to be central to the pathogenesis of AD. ApoE plays a key role in normal and physiological clearance of Aß, since it facilitates the peptide intra- and extracellular proteolytic degradation. Besides the cognitive deficit, AD patients also show alterations in their circadian rhythms. The objective of this study was to investigate the effects of an i.c.v. injection of Aβ (1-42) peptide on the 24 h rhythms of Apo E, BMAL1, RORα, Bdnf and trkB mRNA and Aβ levels in the rat temporal cortex. We found that an i.c.v. injection of Aβ aggregates phase shifts daily Bdnf expression as well as Apo E, BMAL1, RORα, Aβ and decreased the mesor of TrkB rhythms. Thus, elevated Aβ peptide levels might modify the temporal patterns of cognition-related factors, probably; by affecting the clock factors rhythms as well as in the 24 h rhythms of Apo E.
Collapse
|
11
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
12
|
Masís-Vargas A, Hicks D, Kalsbeek A, Mendoza J. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner. Physiol Rep 2020; 7:e14257. [PMID: 31646762 PMCID: PMC6811685 DOI: 10.14814/phy2.14257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
In our modern society, the exposure to light at night (LAN) has increased considerably, which may impact human health negatively. Especially exposure to light at night containing short wavelength emissions (~450–500 nm) can disrupt the normal function of the biological clock, altering sleep‐wake cycles and inducing metabolic changes. Recently, we reported that light at night acutely impairs glucose tolerance in nocturnal rats. However, light at night in nocturnal rodents coincides with their activity period, in contrast to artificial light at night exposure in humans. The aim of this study was to evaluate the acute effects of blue (λ = 490 ± 20 nm) artificial light at night (bALAN) on glucose metabolism and food intake in both male and female diurnal Sudanian grass rats (Arvicanthis ansorgei) fed either regular chow or a free choice high‐fat high sucrose diet (HFHS). In both chow and HFHS fed male Arvicanthis, 1‐hour of bALAN exposure induced a higher glucose response in the oral glucose tolerance test (OGTT) accompanied by a significant decrease in plasma insulin. Furthermore, in HFHS fed animals, bALAN induced an increase in sucrose intake during the dark phase in males but not in females. Additionally, 1‐h of bALAN increased the nonfasted glucose levels together with plasma corticosterone in female grass rats. These results provide new and further evidence for the deleterious effects of exposure to short wavelength emission‐containing artificial light at night on glucose metabolism in a diurnal rodent in a sex‐dependent manner.
Collapse
Affiliation(s)
- Anayanci Masís-Vargas
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France.,Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - David Hicks
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences (INCI), UPR-3212 CNRS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Koch CE, Begemann K, Kiehn JT, Griewahn L, Mauer J, M E Hess, Moser A, Schmid SM, Brüning JC, Oster H. Circadian regulation of hedonic appetite in mice by clocks in dopaminergic neurons of the VTA. Nat Commun 2020; 11:3071. [PMID: 32555162 PMCID: PMC7299974 DOI: 10.1038/s41467-020-16882-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice. While homeostatic intake peaks in the active phase, conditioned place preference and choice experiments show an increased sensitivity to overeating on palatable food during the rest phase. This hedonic appetite rhythm is driven by endogenous circadian clocks in dopaminergic neurons of the ventral tegmental area (VTA). Mice with disrupted clock function in the VTA lose their hedonic overconsumption rhythms without affecting homeostatic intake. These findings assign a functional role of VTA clocks in modulating palatable feeding behaviors and identify a potential therapeutic route to counteract hyperphagy in an obesogenic environment. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, which further augments metabolic dysfunction. Here, the authors find that in mice, circadian clocks in dopaminergic neurons in the ventral tegmental area drive hedonic appetite rhythms.
Collapse
Affiliation(s)
- C E Koch
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - K Begemann
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J T Kiehn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - L Griewahn
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - J Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - M E Hess
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - A Moser
- Department of Neurology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany
| | - S M Schmid
- Institute of Endocrinology and Diabetes, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.,Deutsches Zentrum für Diabetesforschung e. V. (DZD), Neuherberg, Deutschland
| | - J C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Street 50, 50931, Cologne, Germany
| | - H Oster
- Institute of Neurobiology, University of Lübeck, CBBM, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
14
|
Clemenzi MN, Martchenko A, Loganathan N, Tse EK, Brubaker PL, Belsham DD. Analysis of Western diet, palmitate and BMAL1 regulation of neuropeptide Y expression in the murine hypothalamus and BMAL1 knockout cell models. Mol Cell Endocrinol 2020; 507:110773. [PMID: 32114021 DOI: 10.1016/j.mce.2020.110773] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
Western diets that are high in saturated fat and sugar disrupt circadian rhythms, induce weight gain, and lead to metabolic diseases including obesity. However, the mechanistic link between altered circadian rhythms and energy homeostasis remains poorly understood. In C57BL/6J mice, consuming a Western diet for 16 weeks significantly reduced food intake (at zeitgeber 12-16), in association with decreases in hypothalamic expression of the orexigenic neuropeptides, neuropeptide Y (Npy) and agouti-related peptide (AgRP). To examine the acute effects of the most prevalent saturated fatty acid in a Western diet, palmitate, and the role of the core clock gene, Bmal1, in the regulation of hypothalamic feeding neuropeptides, we used heterogeneous and clonal BMAL1 knockout (KO) immortalized hypothalamic cell lines, expressing specific neuropeptides, derived from male (M) and female (F) mice. Both mHypoA-BMAL1-KO/F and mHypoA-BMAL1-KO/M cells demonstrated a loss of circadian rhythmicity in expression of the clock gene, Per2, as compared to wild-type (control) cultures. Loss of BMAL1 also altered the time-dependent expression of Npy and proopiomelanocortin, and disrupted AgRP rhythmicity. Furthermore, palmitate increased BMAL1 binding to the Npy promotor region, and palmitate treatment (50 μM for 24 h) stimulated Npy expression in a BMAL1-dependent manner in both heterogeneous and clonal NPY-expressing female-derived cell models. The results of this study demonstrate that circadian expression of Bmal1 serves as a mechanistic link between Western diet- and palmitate-induced disruptions of the normal rhythmic patterns in hypothalamic feeding-related neuropeptides.
Collapse
Affiliation(s)
| | | | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Erika K Tse
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Begemann K, Neumann A, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain. Acta Physiol (Oxf) 2020; 229:e13446. [PMID: 31965726 DOI: 10.1111/apha.13446] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms evolved endogenous, so called circadian clocks as internal timekeeping mechanisms allowing them to adapt to recurring changes in environmental demands brought about by 24-hour rhythms such as the light-dark cycle, temperature variations or changes in humidity. The mammalian circadian clock system is based on cellular oscillators found in all tissues of the body that are organized in a hierarchical fashion. A master pacemaker located in the suprachiasmatic nucleus (SCN) synchronizes peripheral tissue clocks and extra-SCN oscillators in the brain with each other and with external time. Different time cues (so called Zeitgebers) such as light, food intake, activity and hormonal signals reset the clock system through the SCN or by direct action at the tissue clock level. While most studies on non-SCN clocks so far have focused on peripheral tissues, several extra-SCN central oscillators were characterized in terms of circadian rhythm regulation and output. Some of them are directly innervated by the SCN pacemaker, while others receive indirect input from the SCN via other neural circuits or extra-brain structures. The specific physiological function of these non-SCN brain oscillators as well as their role in the regulation of the circadian clock network remains understudied. In this review we summarize our current knowledge about the regulation and function of extra-SCN circadian oscillators in different brain regions and devise experimental approaches enabling us to unravel the organization of the circadian clock network in the central nervous system.
Collapse
Affiliation(s)
| | | | - Henrik Oster
- Institute of Neurobiology University of Lübeck Lübeck Germany
| |
Collapse
|
16
|
Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des 2020; 26:2416-2425. [PMID: 32156228 DOI: 10.2174/1381612826666200310145006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective. In this context, research carried out during the last two decades has evidenced the link between feeding behaviour/nutritional habits and cognitive processes, and has highlighted the impact of circadian disorders on cognitive decline. All that has allowed hypothesizing a tight relationship between nutritional factors, chronobiology, and cognition. In this connection, experimental diets containing elevated amounts of fat and sugar (high-fat diets; HFDs) have been shown to alter in rodents the circadian distribution of meals, and to have a negative impact on cognition and motivational aspects of behaviour that disappear when animals are forced to adhere to a standard temporal eating pattern. In this review, we will present relevant studies focussing on the effect of HFDs on cognitive aspects of behaviour, paying particular attention to the influence that chronobiological alterations caused by these diets may have on hippocampaldependent cognition.
Collapse
Affiliation(s)
- Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nuria D Olmo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
17
|
Mendoza J. Food intake and addictive-like eating behaviors: Time to think about the circadian clock(s). Neurosci Biobehav Rev 2019; 106:122-132. [DOI: 10.1016/j.neubiorev.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
|
18
|
Mendoza J. Eating Rewards the Gears of the Clock. Trends Endocrinol Metab 2019; 30:299-311. [PMID: 30935670 DOI: 10.1016/j.tem.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022]
Abstract
Eating behavior is regulated by metabolic and hedonic brain networks, which interact with each other to balance the physiological regulation of hunger and satiety. The daily balance of this regulation is controlled by the central circadian clock. Importantly, metabolic and reward properties of food impact the functioning of circadian clocks, altering the oscillatory activity of the molecular clockwork and circadian rhythms. However, when feeding (metabolic or reward) is timed, the whole circadian system is entrained. Furthermore, besides synchronizing the clock, the timing of both metabolic and reward eating might be crucial for health, to improve circadian physiology, as well as to treat metabolic (e.g., diabetes, obesity) and neurological diseases (e.g., mental, neurodegenerative).
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique, CNRS UPR-3212, 8 allée du Général Rouvillois, 67000 Strasbourg, France.
| |
Collapse
|
19
|
Slomp M, Belegri E, Blancas‐Velazquez AS, Diepenbroek C, Eggels L, Gumbs MC, Joshi A, Koekkoek LL, Lamuadni K, Ugur M, Unmehopa UA, la Fleur SE, Mul JD. Stressing the importance of choice: Validity of a preclinical free-choice high-caloric diet paradigm to model behavioural, physiological and molecular adaptations during human diet-induced obesity and metabolic dysfunction. J Neuroendocrinol 2019; 31:e12718. [PMID: 30958590 PMCID: PMC6593820 DOI: 10.1111/jne.12718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/06/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
Humans have engineered a dietary environment that has driven the global prevalence of obesity and several other chronic metabolic diseases to pandemic levels. To prevent or treat obesity and associated comorbidities, it is crucial that we understand how our dietary environment, especially in combination with a sedentary lifestyle and/or daily-life stress, can dysregulate energy balance and promote the development of an obese state. Substantial mechanistic insight into the maladaptive adaptations underlying caloric overconsumption and excessive weight gain has been gained by analysing brains from rodents that were eating prefabricated nutritionally-complete pellets of high-fat diet (HFD). Although long-term consumption of HFDs induces chronic metabolic diseases, including obesity, they do not model several important characteristics of the modern-day human diet. For example, prefabricated HFDs ignore the (effects of) caloric consumption from a fluid source, do not appear to model the complex interplay in humans between stress and preference for palatable foods, and, importantly, lack any aspect of choice. Therefore, our laboratory uses an obesogenic free-choice high-fat high-sucrose (fc-HFHS) diet paradigm that provides rodents with the opportunity to choose from several diet components, varying in palatability, fluidity, texture, form and nutritive content. Here, we review recent advances in our understanding how the fc-HFHS diet disrupts peripheral metabolic processes and produces adaptations in brain circuitries that govern homeostatic and hedonic components of energy balance. Current insight suggests that the fc-HFHS diet has good construct and face validity to model human diet-induced chronic metabolic diseases, including obesity, because it combines the effects of food palatability and energy density with the stimulating effects of variety and choice. We also highlight how behavioural, physiological and molecular adaptations might differ from those induced by prefabricated HFDs that lack an element of choice. Finally, the advantages and disadvantages of using the fc-HFHS diet for preclinical studies are discussed.
Collapse
Affiliation(s)
- Margo Slomp
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Evita Belegri
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Aurea S. Blancas‐Velazquez
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Charlene Diepenbroek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Myrtille C.R. Gumbs
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Anil Joshi
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Khalid Lamuadni
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Muzeyyen Ugur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Joram D. Mul
- Department of Endocrinology and Metabolism, Laboratory of EndocrinologyDepartment of Clinical ChemistryAmsterdam Neuroscience, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Metabolism and Reward GroupNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| |
Collapse
|
20
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Yu M, Wang X, Deng M, Zhai X, Li R, Liu J. Dietary Genistein Could Modulate Hypothalamic Circadian Entrainment, Reduce Body Weight, and Improve Glucose and Lipid Metabolism in Female Mice. Int J Endocrinol 2019; 2019:2163838. [PMID: 31139215 PMCID: PMC6500629 DOI: 10.1155/2019/2163838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Genistein has beneficial effects on metabolic disorders. However, the specific mechanism is not clearly understood. In light of the significant role of the hypothalamus in energy and metabolic homeostasis, this study was designed to explore whether dietary genistein intake could mitigate the harmful effects of a high-fat diet on glucose and lipid metabolism and whether any alterations caused by dietary genistein were associated with hypothalamic gene expression profiles. C57BL/6 female mice were fed a high-fat diet without genistein (HF), a high-fat diet with genistein (HFG), or a normal control diet (CON) for 8 weeks. Body weight and energy intake were assessed. At the end of the study, glucose tolerance and serum levels of insulin and lipids were analyzed. Hypothalamic tissue was collected for whole transcriptome sequencing and reverse transcription quantitative PCR (RT-qPCR) validation. Energy intake and body weight were significantly reduced in the mice of the HFG group compared with those of the HF group. Mice fed the HFG diet had improved glucose tolerance and decreased serum triacylglycerol, free fatty acids, and low-density lipoprotein cholesterol compared with those fed the HF diet. The HFG diet also modulated gene expression in the hypothalamus; the most abundant genes were enriched in the circadian entrainment pathway. Dietary genistein intake could reduce body weight, improve glucose and lipid metabolism, and regulate hypothalamic circadian entrainment. The ability of genistein intake to influence regulation of the hypothalamic circadian rhythm is important since this could provide a novel target for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqun Deng
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongrong Li
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Blancas-Velazquez AS, Unmehopa UA, Eggels L, Koekkoek L, Kalsbeek A, Mendoza J, la Fleur SE. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats. Front Endocrinol (Lausanne) 2018; 9:154. [PMID: 29686649 PMCID: PMC5900023 DOI: 10.3389/fendo.2018.00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.
Collapse
Affiliation(s)
- Aurea Susana Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, Strasbourg, France
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Unga A. Unmehopa
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leslie Eggels
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Koekkoek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| | - Susanne E. la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute of Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands
- *Correspondence: Susanne E. la Fleur,
| |
Collapse
|
23
|
Coborn JE, Houser MM, Perez-Leighton CE, Teske JA. Role of Sex and the Environment in Moderating Weight Gain Due to Inadequate Sleep. Curr Obes Rep 2017; 6:397-404. [PMID: 29181707 PMCID: PMC6886373 DOI: 10.1007/s13679-017-0290-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The growing prevalence of obesity, inadequate sleep and sleep disorders together with the negative impact of lack of sleep on overall health highlights the need for therapies targeted towards weight gain due to sleep loss. RECENT FINDINGS Sex disparities in obesity and sleep disorders are present; yet, the role of sex is inadequately addressed and thus it is unclear whether sensitivity to sleep disruption differs between men and women. Like sex, environmental factors contribute to the development of obesity and poor sleep. The obesogenic environment is characterized by easy access to palatable foods and a low demand for energy expenditure in daily activities. These and other environmental factors are discussed, as they drive altered sleep or their interaction with food choice and intake can promote obesity. We discuss data that suggest differences in sleep patterns and responses to sleep disruption influence sex disparities in weight gain, and that enviromental disturbances alter sleep and interact with features of the obesogenic environment that together promote obesity.
Collapse
Affiliation(s)
- Jamie E Coborn
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA.
| | - Monica M Houser
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA
| | - Claudio E Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, 8370071, Santiago, Región Metropolitana, Chile
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer A Teske
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, 1177 E 4th Street Shantz building room 330A, Tucson, AZ, 85721, USA.
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.
- Minnesota Obesity Center, University of Minnesota, Saint Paul, MN, USA.
- Department of Nutritional Sciences, University of Arizona, 1177 E 4th Street, Shantz building room 332, Tucson, AZ, 85721, USA.
| |
Collapse
|
24
|
Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast 2017; 2017:5720842. [PMID: 29359051 PMCID: PMC5735684 DOI: 10.1155/2017/5720842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food) and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.
Collapse
|