1
|
Allam RM, El Kerdawy AM, Gouda AE, Ahmed KA, Abdel-Mohsen HT. Benzimidazole-oxindole hybrids as multi-kinase inhibitors targeting melanoma. Bioorg Chem 2024; 146:107243. [PMID: 38457953 DOI: 10.1016/j.bioorg.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/10/2024]
Abstract
In the current study, a series of benzimidazole-oxindole conjugates 8a-t were designed and synthesized as type II multi-kinase inhibitors. They exhibited moderate to potent inhibitory activity against BRAFWT up to 99.61 % at 10 µM. Notably, compounds 8e, 8k, 8n and 8s demonstrated the most promising activity, with 99.44 to 99.61 % inhibition. Further evaluation revealed that 8e, 8k, 8n and 8s exhibit moderate to potent inhibitory effects on the kinases BRAFV600E, VEGFR-2, and FGFR-1. Additionally, compounds 8a-t were screened for their cytotoxicity by the NCI, and several compounds showed significant growth inhibition in diverse cancer cell lines. Compound 8e stood out with a GI50 range of 1.23 - 3.38 µM on melanoma cell lines. Encouraged by its efficacy, it was further investigated for its antitumor activity and mechanism of action, using sorafenib as a reference standard. The hybrid compound 8e exhibited potent cellular-level suppression of BRAFWT, VEGFR-2, and FGFR-1 in A375 cell line, surpassing the effects of sorafenib. In vivo studies demonstrate that 8e significantly inhibits the growth of B16F10 tumors in mice, leading to increased survival rates and histopathological tumor regression. Furthermore, 8e reduces angiogenesis markers, mRNA expression levels of VEGFR-2 and FGFR-1, and production of growth factors. It also downregulated Notch1 protein expression and decreased TGF-β1 production. Molecular docking simulations suggest that 8e binds as a promising type II kinase inhibitor in the target kinases interacting with the key regions in their kinase domain.
Collapse
Affiliation(s)
- Rasha M Allam
- Department of Pharmacology, Medical and Clinical Research Institute, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Ahmed E Gouda
- Pharmaceutical Research Department, Nawah Scientific, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt.
| |
Collapse
|
2
|
Ergul M, Kilic-Kurt Z, Aka Y, Kutuk O, Sahin-Inan ZD. The mechanism of anticancer effects of some pyrrolopyrimidine derivatives on HT-29 human colon cancer cells. Toxicol In Vitro 2024; 95:105757. [PMID: 38061602 DOI: 10.1016/j.tiv.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
In the present work, the mechanism of anticancer activity of some pyrrolopyrimidine derivatives was evaluated. Compounds 5 and 8 exhibiting significant antiproliferative activity against HT-29 cells with IC50 values of 4.17 μM and 2.96, arrested the cells at the G2/M phase and significantly induced apoptosis. The apoptotic potential of the compounds has been verified via ELISA assay, which resulted in increased BAX, PUMA, BIM, and cleaved caspase 3 expression and decreased BCL-XL and MCL-1 protein levels in HT-29 cells. Moreover, the immunofluorescence technique showing that compounds 5 and 8-treatment reduced Ki67 immunolocalization and increased the caspase 3 and p53 immunolocalization confirmed the apoptotic activity. While treatment of HT-29 cells to compounds 5 and 8 inhibited Akt and ERK1/2, there are no alterations in JNK and p38 signaling pathways. According to molecular docking results, compounds 5 and 8 occupied the active site of Akt kinase and showed important hydrogen bonding interactions with key amino acids. Also, siRNA-mediated depletion of BIM, PUMA, and BAX/BAK expression decreased apoptotic response in HT-29 cells upon exposure to compound 5 and compound 8. Compounds 5 and 8 trigger the activation of mitochondrial apoptosis in HT-29 cells. Additionally, we found that proapoptotic BH3-only proteins BIM and PUMA are required for the full engagement of mitochondrial apoptosis signaling. However, p53 was dispensable for compound 5- or compound 8-induced apoptosis in HT-29 cells.
Collapse
Affiliation(s)
- Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Zuhal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Yeliz Aka
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Department of Immunology, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Zeynep Deniz Sahin-Inan
- Department of Histology and Embryology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Abdel-Mohsen HT, Ibrahim MA, Nageeb AM, El Kerdawy AM. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors. BMC Chem 2024; 18:42. [PMID: 38395926 PMCID: PMC10893631 DOI: 10.1186/s13065-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
A receptor-based pharmacophore model describing the binding features required for the multi-kinase inhibition of the target kinases (VEGFR-2, FGFR-1, and BRAF) were constructed and validated. It showed a good overall quality in discriminating between the active and the inactive in a compiled test set compounds with F1 score of 0.502 and Mathew's correlation coefficient of 0.513. It described the ligand binding to the hinge region Cys or Ala, the glutamate residue of the Glu-Lys αC helix conserved pair, the DFG motif Asp at the activation loop, and the allosteric back pocket next to the ATP binding site. Moreover, excluded volumes were used to define the steric extent of the binding sites. The application of the developed pharmacophore model in virtual screening of an in-house scaffold dataset resulted in the identification of a benzimidazole-based scaffold as a promising hit within the dataset. Compounds 8a-u were designed through structural optimization of the hit benzimidazole-based scaffold through (un)substituted aryl substitution on 2 and 5 positions of the benzimidazole ring. Molecular docking simulations and ADME properties predictions confirmed the promising characteristics of the designed compounds in terms of binding affinity and pharmacokinetic properties, respectively. The designed compounds 8a-u were synthesized, and they demonstrated moderate to potent VEGFR-2 inhibitory activity at 10 µM. Compound 8u exhibited a potent inhibitory activity against the target kinases (VEGFR-2, FGFR-1, and BRAF) with IC50 values of 0.93, 3.74, 0.25 µM, respectively. The benzimidazole derivatives 8a-u were all selected by the NCI (USA) to conduct their anti-proliferation screening. Compounds 8a and 8d resulted in a potent mean growth inhibition % (GI%) of 97.73% and 92.51%, respectively. Whereas compounds 8h, 8j, 8k, 8o, 8q, 8r, and 8u showed a mean GI% > 100% (lethal effect). The most potent compounds on the NCI panel of 60 different cancer cell lines were progressed further to NCI five-dose testing. The benzimidazole derivatives 8a, 8d, 8h, 8j, 8k, 8o, 8q, 8r and 8u exhibited potent anticancer activity on the tested cell lines reaching sub-micromolar range. Moreover, 8u was found to induce cell cycle arrest of MCF-7 cell line at the G2/M phase and accumulating cells at the sub-G1 phase as a result of cell apoptosis.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt.
| | - Marwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
| | - Amira M Nageeb
- High Throughput Molecular and Genetic Technology Lab, Center of Excellence for Advanced Sciences, Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. 11562, Cairo, Egypt
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
4
|
El-Hazek RMM, Zaher NH, El-Gazzar MGM, Fadel NA, El-Sabbagh WA. Novel VEGFR2 inhibitors with thiazoloquinoxaline scaffold targeting hepatocellular carcinoma with lower cardiotoxic impact. Sci Rep 2023; 13:13907. [PMID: 37626064 PMCID: PMC10457369 DOI: 10.1038/s41598-023-40832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal tumor which is usually diagnosed at advanced stage. Molecular targeted drugs were used recently to treat HCC, however, due to serious side effects, mainly cardiotoxicity and emergence of resistance, there is demanding to explore new chemotherapeutics. 10 novel thiazoloquinoxaline derivatives coupled with different sulfonamide moieties 4(a-j) were designed and synthesized fulfilling pharmacophoric features of VEGFR-2 inhibition. Structures of all new compounds were verified via spectral and microanalytical data. After carrying in-vitro VEGFR-2 assay for compounds 4(a-j); sulfapyridine and sulfamethoxazole derivatives 4d and 4f showed potential inhibitory effect [61.04 and 83.35 nM], respectively, comparable to standard sorafenib [51.41 nM]. Both were then further evaluated for their cytocidal activity against HepG2 cell-line and against myocardium cells using H9C2 cell-line. As a result, only sulfapyridine derivative 4d exhibited a significant inhibition of HepG2 cells viability [IC50 = 4.31 μM]. Furthermore, it showed relatively lower cytotoxic impact against normal H9C2 myocardium cells [IC50, 33.47 μM] compared to that of sorafenib [IC50, 98.07 μM]. In-vivo study was carried out to determine myocardium safety of compound 4d on irradiated mice (8 Gy). In-vivo results of sulfapyridine derivative 4d showed normal cardiac enzyme function (CK) and serum catalase activity with significant reductions in LDH, cardiac TNF-α and caspase-9 levels, alongside with its efficacy in suppressing the expression of hepatic VEGF. In conclusion, sulfapyridine derivative 4d could be considered a promising candidate as VEGFR-2 inhibitor with less myocardium side effect.
Collapse
Affiliation(s)
- Reham M M El-Hazek
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Nashwa H Zaher
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Mostafa G M El-Gazzar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Noha A Fadel
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| |
Collapse
|
5
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
6
|
Novel benzo[4,5]thiazolo[2,3-C][1,2,4]triazoles: Design, synthesis, anticancer evaluation, kinase profiling and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Rahamathulla M, Alshahrani SM, Al Saqr A, Alshetaili A, Shakeel F. Effervescent floating matrix tablets of a novel anti-cancer drug neratinib for breast cancer treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Liu M, Gao S, Elhassan RM, Hou X, Fang H. Strategies to overcome drug resistance using SHP2 inhibitors. Acta Pharm Sin B 2021; 11:3908-3924. [PMID: 35024315 PMCID: PMC8727779 DOI: 10.1016/j.apsb.2021.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Encoded by PTPN11, the SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is widely recognized as a carcinogenic phosphatase. As a promising anti-cancer drug target, SHP2 regulates many signaling pathways such as RAS-RAF-ERK, PI3K-AKT and JAK-STAT. Meanwhile, SHP2 plays a significant role in regulating immune cell function in the tumor microenvironment. Heretofore, five SHP2 allosteric inhibitors have been recruited in clinical studies for the treatment of cancer. Most recently, studies have proved the therapeutic potential of SHP2 inhibitor in overcoming drug resistance of kinase inhibitors and programmed cell death-1 (PD-1) blockade. Herein, we review the structure, function and small molecular inhibitors of SHP2, and highlight recent progress in overcoming drug resistance using SHP2 inhibitor. We hope this review would facilitate the future clinical development of SHP2 inhibitors.
Collapse
Affiliation(s)
| | | | | | - Xuben Hou
- Corresponding author. Tel./fax: +86 531 88381168.
| | - Hao Fang
- Corresponding author. Tel./fax: +86 531 88381168.
| |
Collapse
|
9
|
Hosseini A, Hamblin MR, Mirzaei H, Mirzaei HR. Role of the bone marrow microenvironment in drug resistance of hematological malignances. Curr Med Chem 2021; 29:2290-2305. [PMID: 34514979 DOI: 10.2174/0929867328666210910124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger invasion, and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. In this review we summarize the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis are covered in relation to the TME.
Collapse
Affiliation(s)
- Alireza Hosseini
- Laboratory Hematology and Blood Banking, Tehran University of Medical Sciences, Tehran. Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028. South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan. Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
10
|
Borrero-García LD, Del Mar Maldonado M, Medina-Velázquez J, Troche-Torres AL, Velazquez L, Grafals-Ruiz N, Dharmawardhane S. Rac inhibition as a novel therapeutic strategy for EGFR/HER2 targeted therapy resistant breast cancer. BMC Cancer 2021; 21:652. [PMID: 34074257 PMCID: PMC8170972 DOI: 10.1186/s12885-021-08366-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background Even though targeted therapies are available for cancers expressing oncogenic epidermal growth receptor (EGFR) and (or) human EGFR2 (HER2), acquired or intrinsic resistance often confounds therapy success. Common mechanisms of therapy resistance involve activating receptor point mutations and (or) upregulation of signaling downstream of EGFR/HER2 to Akt and (or) mitogen activated protein kinase (MAPK) pathways. However, additional pathways of resistance may exist thus, confounding successful therapy. Methods To determine novel mechanisms of EGFR/HER2 therapy resistance in breast cancer, gefitinib or lapatinib resistant variants were created from SKBR3 breast cancer cells. Syngenic therapy sensitive and resistant SKBR3 variants were characterized for mechanisms of resistance by mammosphere assays, viability assays, and western blotting for total and phospho proteins. Results Gefitinib and lapatinib treatments reduced mammosphere formation in the sensitive cells, but not in the therapy resistant variants, indicating enhanced mesenchymal and cancer stem cell-like characteristics in therapy resistant cells. The therapy resistant variants did not show significant changes in known therapy resistant pathways of AKT and MAPK activities downstream of EGFR/HER2. However, these cells exhibited elevated expression and activation of the small GTPase Rac, which is a pivotal intermediate of GFR signaling in EMT and metastasis. Therefore, the potential of the Rac inhibitors EHop-016 and MBQ-167 to overcome therapy resistance was tested, and found to inhibit viability and induce apoptosis of therapy resistant cells. Conclusions Rac inhibition may represent a viable strategy for treatment of EGFR/HER2 targeted therapy resistant breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08366-7.
Collapse
Affiliation(s)
- Luis D Borrero-García
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Medina-Velázquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Angel L Troche-Torres
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
11
|
Medulloblastoma recurrence and metastatic spread are independent of colony-stimulating factor 1 receptor signaling and macrophage survival. J Neurooncol 2021; 153:225-237. [PMID: 33963961 DOI: 10.1007/s11060-021-03767-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear. Patients with medulloblastoma often present with distant metastases and tumor recurrence is largely incurable, making them prime candidates for the study of novel approaches to prevent neuroaxis dissemination and recurrence. METHODS Macrophage depletion was achieved using CSF-1 receptor inhibitors (CSF-1Ri), BLZ945 and AFS98, with or without whole brain radiation in a variety of medulloblastoma models, including patient-derived xenografts bearing Group 3 medulloblastoma and a transgenic Sonic Hedgehog (Ptch1+/-, Trp53-/-) medulloblastoma model. RESULTS Effective reduction of microglia, TAM, and spinal cord macrophage with CSF-1Ri resulted in negligible effects on the rate of local and spinal recurrences or survival following radiation. Results were comparable between medulloblastoma subgroups. While notably few tumor-infiltrating lymphocytes (TILs) were detected, average numbers of CD3+ TILs and FoxP3+ Tregs did not differ between groups following treatment and tumor aggressiveness by Ki67 proliferation index was unaltered. CONCLUSION In the absence of other microenvironmental influences, medulloblastoma-educated macrophages do not operate as tumor-supportive cells or promote leptomeningeal recurrence in these models. Our data add to a growing body of literature describing a distinct immunophenotype amid the medulloblastoma microenvironment and highlight the importance of appropriate pediatric modeling prior to clinical translation.
Collapse
|
12
|
Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance? Molecules 2021; 26:2601. [PMID: 33946916 PMCID: PMC8124695 DOI: 10.3390/molecules26092601] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Despite enormous progress in the treatment of many malignancies, the development of cancer resistance is still an important reason for cancer chemotherapy failure. Increasing knowledge of cancers' molecular complexity and mechanisms of their resistance to anticancer drugs, as well as extensive clinical experience, indicate that an effective fight against cancer requires a multidimensional approach. Multi-target chemotherapy may be achieved using drugs combination, co-delivery of medicines, or designing hybrid drugs. Hybrid drugs simultaneously targeting many points of signaling networks and various structures within a cancer cell have been extensively explored in recent years. The single hybrid agent can modulate multiple targets involved in cancer cell proliferation, possesses a simpler pharmacokinetic profile to reduce the possibility of drug interactions occurrence, and facilitates the process of drug development. Moreover, a single medication is expected to enhance patient compliance due to a less complicated treatment regimen, as well as a diminished number of adverse reactions and toxicity in comparison to a combination of drugs. As a consequence, many efforts have been made to design hybrid molecules of different chemical structures and functions as a means to circumvent drug resistance. The enormous number of studies in this field encouraged us to review the available literature and present selected research results highlighting the possible role of hybrid drugs in overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Marta Szumilak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Andrzej Stanczak
- Department of Community Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego Street, 90-151 Lodz, Poland;
| |
Collapse
|
13
|
Therapeutic Drug Monitoring of Targeted Anticancer Protein Kinase Inhibitors in Routine Clinical Use: A Critical Review. Ther Drug Monit 2021; 42:33-44. [PMID: 31479043 DOI: 10.1097/ftd.0000000000000699] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Therapeutic response to oral targeted anticancer protein kinase inhibitors (PKIs) varies widely between patients, with insufficient efficacy of some of them and unacceptable adverse reactions of others. There are several possible causes for this heterogeneity, such as pharmacokinetic (PK) variability affecting blood concentrations, fluctuating medication adherence, and constitutional or acquired drug resistance of cancer cells. The appropriate management of oncology patients with PKI treatments thus requires concerted efforts to optimize the utilization of these drug agents, which have probably not yet revealed their full potential. METHODS An extensive literature review was performed on MEDLINE on the PK, pharmacodynamics, and therapeutic drug monitoring (TDM) of PKIs (up to April 2019). RESULTS This review provides the criteria for determining PKIs suitable candidates for TDM (eg, availability of analytical methods, observational PK studies, PK-pharmacodynamics relationship analysis, and randomized controlled studies). It reviews the major characteristics and limitations of PKIs, the expected benefits of TDM for cancer patients receiving them, and the prerequisites for the appropriate utilization of TDM. Finally, it discusses various important practical aspects and pitfalls of TDM for supporting better implementation in the field of cancer treatment. CONCLUSIONS Adaptation of PKIs dosage regimens at the individual patient level, through a rational TDM approach, could prevent oncology patients from being exposed to ineffective or unnecessarily toxic drug concentrations in the era of personalized medicine.
Collapse
|
14
|
Shawky AM, Abdalla AN, Ibrahim NA, Abourehab MAS, Gouda AM. Discovery of new pyrimidopyrrolizine/indolizine-based derivatives as P-glycoprotein inhibitors: Design, synthesis, cytotoxicity, and MDR reversal activities. Eur J Med Chem 2021; 218:113403. [PMID: 33823396 DOI: 10.1016/j.ejmech.2021.113403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Targeting P-glycoprotein (P-gp, ABCB1 transporter), which plays an essential role in multi-drug resistance (MDR) in cancers, with new cytotoxic agents is a promising strategy in cancer chemotherapy. In the current study, we report the synthesis of thirteen novel pyrimidopyrrolizine, pyrimidoindolizine, and diazepinopyrrolizine derivatives. The new compounds exhibited cytotoxic activities against MCF7, A2780 and HT29 cancer cell lines (IC50 = 0.02-19.58 μM) and MRC5 (IC50 = 0.17-20.57 μM). The six most active compounds (23b, 24a,b and, 31c-e) were evaluated for their MDR reversal activities in MCF7/ADR cells. Mechanistic study using real-time PCR revealed the ability of compound 31c to inhibit P-gp. In addition, compound 31c increased the accumulation of Rho123 inside MCF7/ADR cells in a dose-dependent manner compared to verapamil. Compound 31c arrested the cell cycle of MCF7 cells at the G1 phase. Compound 31c also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for compound 31c toward P-gp. Like zosuquidar, compound 31c displayed one hydrogen bond and several hydrophobic interactions with amino acids in P-gp. These results indicated that compound 31c represents a potential anticancer candidate with MDR reversal activity.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Central Laboratory for Micro-analysis, Minia University, Minia, 61519, Egypt
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Departmentof Pharmacology and Toxicology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Nashwa A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ahmed M Gouda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
15
|
Wang CY, Lee MH, Kao YR, Hsiao SH, Hong SY, Wu CW. Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119016. [PMID: 33744274 DOI: 10.1016/j.bbamcr.2021.119016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/19/2023]
Abstract
Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used in the clinical treatment of non-small cell lung cancer (NSCLC) patients with EGFR mutations. Previous studies have shown that Aurora kinase A (AURKA) is overexpressed in a broad spectrum of cancer cells, which can induce epithelial-mesenchymal transition (EMT) and contribute to the occurrence of acquired EGFR-TKI resistance. However, whether the inhibition of AURKA could overcome EGFR-TKI resistance or reverse the EMT in TKI-resistant NSCLC cells remains unclear. In the current study, we established three EGFR-TKI-resistant cell lines and analyzed their expression profiles by RNA sequencing. The results revealed that the EMT pathway is significantly upregulated in the three cell lines with EGFR-TKI resistance. The phosphorylation of AURKA at Thr 288 was also upregulated, suggesting that the activation of AURKA plays an important role in the occurrence of EGFR-TKI resistance. Interestingly, the AURKA inhibitor, alisertib treatment restored the susceptibility of resistant cells to EGFR-TKIs and partially reversed the EMT process, thereby reducing migration and invasion in EGFR-TKI-resistant cells. This study provides evidence that targeting AURKA signaling pathway by alisertib may be a novel approach for overcoming EGFR-TKI resistance and for the treatment of metastatic EGFR-TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Meng-Hsuan Lee
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Hsin Hsiao
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shiao-Ya Hong
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Medical Research Center, Cardinal Tien Hospital, New Taipei, Taiwan.
| | - Cheng-Wen Wu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
16
|
Song Y, Zhao M, Wu Y, Yu B, Liu HM. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Acta Pharm Sin B 2021; 11:750-762. [PMID: 33777680 PMCID: PMC7982506 DOI: 10.1016/j.apsb.2020.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
The protein tyrosine phosphatase Src homology phosphotyrosyl phosphatase 2 (SHP2) is implicated in various cancers, and targeting SHP2 has become a promising therapeutic approach. We herein described a robust cross-validation high-throughput screening protocol that combined the fluorescence-based enzyme assay and the conformation-dependent thermal shift assay for the discovery of SHP2 inhibitors. The established method can effectively exclude the false positive SHP2 inhibitors with fluorescence interference and was also successfully employed to identify new protein tyrosine phosphatase domain of SHP2 (SHP2-PTP) and allosteric inhibitors. Of note, this protocol showed potential for identifying SHP2 inhibitors against cancer-associated SHP2 mutation SHP2-E76A. After initial screening of our in-house compound library (∼2300 compounds), we identified 4 new SHP2-PTP inhibitors (0.17% hit rate) and 28 novel allosteric SHP2 inhibitors (1.22% hit rate), of which SYK-85 and WS-635 effectively inhibited SHP2-PTP (SYK-85: IC50 = 0.32 μmol/L; WS-635: IC50 = 4.13 μmol/L) and thus represent novel scaffolds for designing new SHP2-PTP inhibitors. TK-147, an allosteric inhibitor, inhibited SHP2 potently (IC50 = 0.25 μmol/L). In structure, TK-147 could be regarded as a bioisostere of the well characterized SHP2 inhibitor SHP-099, highlighting the essential structural elements for allosteric inhibition of SHP2. The principle underlying the cross-validation protocol is potentially feasible to identify allosteric inhibitors or those inactivating mutants of other proteins.
Collapse
Key Words
- AKT, protein kinase B
- ALK, anaplastic lymphoma kinase
- AML, acute myelogenous leukemia
- Allosteric inhibitors
- BTLA, B and T lymphocyte attenuator
- Bis-tris, bis-(2-hydroxyethyl)amino-tris(hydroxymethyl)methane
- DTT, dithiothreitol
- DiFMU, 6,8-difluoro-4-methylumbelliferyl hydroxid
- DiFMUP, 6,8-difluoro-4-methylumbelliferyl phosphate
- Enzyme assay
- FI, fluorescence intensity
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HTS, high-throughput screening
- High-throughput screening
- IC50, half maximal inhibitory concentration
- JAK, janus kinase
- JMML, juvenile myelomonocytic leukaemia
- LB, lysogeny broth
- LOC, ligand only control
- LS, LEOPARD syndrome
- MAPK, mitogen-activated protein kinase
- MEK, extracellular regulated protein kinase kinases
- NPC, no protein control
- NS, Noonan syndrome
- OD, optical density
- PD-1, programmed death 1
- PI3K, phosphatidylinositol 3 kinase
- PMSF, phenylmethanesulfonyl fluoride
- PTP, protein tyrosine phosphatase
- R2, coefficient of determination
- RAS, rat sarcoma
- S/B, signal over background
- SD, standard deviation
- SDS-PAGE, sodium dodecyl sulphate polyacyrlamide gel electrophoresis
- SH2, Src homology 2
- SHP2
- SHP2, Src homology phosphotyrosyl phosphatase 2
- SHP2-PTP, protein tyrosine phosphatase domain of Src homology phosphotyrosyl phosphatase 2
- SHP2-WT, wild type Src homology phosphotyrosyl phosphatase 2
- STAT, signal transducer and activator of transcription
- Thermal shift assay
- Tm, melting temperature
- p-IRS1, phosphorylated insulin receptor substrate 1
- ΔTm, melting temperature change
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Zhao Y, Bilal M, Raza A, Khan MI, Mehmood S, Hayat U, Hassan STS, Iqbal HMN. Tyrosine kinase inhibitors and their unique therapeutic potentialities to combat cancer. Int J Biol Macromol 2021; 168:22-37. [PMID: 33290765 DOI: 10.1016/j.ijbiomac.2020.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023]
Abstract
Cancer is one of the leading causes of death with a mortality rate of 12%. Although significant progress has been achieved in cancer research, the effective treatment of cancer remains the greatest global challenge in medicine. Dysregulation of tyrosine kinases (TK) is one of the characteristics of several types of cancers. Thus, drugs that target and inhibit these enzymes, known as TK inhibitors (TKIs), are considered vital chemotherapeutics to combat various types of cancer. The oral bioavailability of available TKIs and their targeted therapy are their potential benefits. Based on these characteristics, most TKIs are included in first/second-line therapy for the treatment of different cancers. This review aims to shed light on orally-active TKIs (natural and synthetic molecules) and their promising implication in the therapy of numerous types of tumors along with their mechanisms of action. Further, recent progress in the development of synthetic and isolation of natural TKIs is reviewed. A significant growth in research regarding the development of new-generation TKIs is made with time (23 FDA-approved TKIs from 2018) due to their better therapeutic response. Oral bioavailability should be considered as an important parameter while developing of new-generation TKIs; however, drug delivery systems can also be used to address issue of poor bioavailability to a certain extent. Moreover, clinical trials should be designed in consideration of the development of resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shahid Mehmood
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 6-Suchdol, 165 21 Prague, Czech Republic
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A 2020; 117:19221-19227. [PMID: 32719139 PMCID: PMC7431045 DOI: 10.1073/pnas.1919221117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.
Collapse
Affiliation(s)
- Marc Hoemberger
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454;
- HHMI, Brandeis University, Waltham, MA 02454
| |
Collapse
|
19
|
Srikakulam SK, Bastys T, Kalinina OV. A shift of dynamic equilibrium between the KIT active and inactive states causes drug resistance. Proteins 2020; 88:1434-1446. [PMID: 32530065 DOI: 10.1002/prot.25963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/06/2020] [Indexed: 11/11/2022]
Abstract
Tyrosine phosphorylation, a highly regulated post-translational modification, is carried out by the enzyme tyrosine kinase (TK). TKs are important mediators in signaling cascades, facilitating diverse biological processes in response to stimuli. TKs may acquire mutations leading to malignancy and are viable targets for anti-cancer drugs. Mast/stem cell growth factor receptor KIT is a TK involved in cell differentiation, whose dysregulation leads to various types of cancer, including gastrointestinal stromal tumors, leukemia, and melanoma. KIT can be targeted by a range of inhibitors that predominantly bind to the inactive state of the enzyme. A mutation Y823D in the activation loop of KIT is known to be responsible for the loss of sensitivity to some drugs in metastatic tumors. We used all-atom molecular dynamics simulations to study the impact of Y823D on the KIT conformation and dynamics and compared it to the effect of phosphorylation of Y823. We simulated in total 6.4 μs of wild-type, mutant and phosphorylated KIT in the active- and inactive-state conformations. We found that Y823D affects the protein dynamics differently: in the active state, the mutation increases the protein stability, whereas in the inactive state it induces local destabilization, thus shifting the dynamic equilibrium towards the active state, altering the communication between distant regulatory regions. The observed dynamics of the Y823D mutant is similar to the dynamics of KIT phosphorylated at position Y823, thus we hypothesize that this mutation mimics a constitutively active kinase, which is not responsive to inhibitors that bind its inactive conformation.
Collapse
Affiliation(s)
- Sanjay K Srikakulam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Graduate School of Computer Science, Saarland University, Saarbrücken, Germany.,Interdisciplinary Graduate School of Natural Product Research, Saarland University, Saarbrücken, Germany
| | - Tomas Bastys
- Graduate School of Computer Science, Saarland University, Saarbrücken, Germany.,Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
20
|
Tołoczko-Iwaniuk N, Dziemiańczyk-Pakieła D, Nowaszewska BK, Celińska-Janowicz K, Miltyk W. Celecoxib in Cancer Therapy and Prevention - Review. Curr Drug Targets 2020; 20:302-315. [PMID: 30073924 DOI: 10.2174/1389450119666180803121737] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES It is generally accepted that inflammatory cells found in the tumor microenvironment are involved in the neoplastic process, promoting cell proliferation, survival, and migration. Therefore, administering anti-inflammatory medication in cancer therapy seems to be justified. A potential pathway associated with the aforementioned issue is cyclooxygenase-2 inhibition, particularly as the overexpression of this enzyme has been proven to occur in cancer tissues and is also associated with a poor prognosis in several types of human malignancies. Celecoxib, a COX-2 selective inhibitor, has been utilized for over 20 years, particularly as an anti-inflammatory, analgesic and antipyretic medication. However, to date, its antineoplastic properties have not been sufficiently investigated. In recent years, the number of research studies on the antineoplastic effects of celecoxib has increased considerably. The vast majority of publications refers to preclinical studies attempting to elucidate its mechanisms of action. Clinical trials concerning celecoxib have focused primarily on the treatment of cancers of the colon, breast, lung, prostate, stomach, head and neck, as well as premalignant lesions such as familial adenoma polyposis. In this review article authors attempt to summarise the latest research which has elucidated celecoxib use in the treatment and prevention of cancer. CONCLUSION Both preclinical and clinical studies have demonstrated promising results of the role of celecoxib in the treatment and prevention of cancer - the best outcome was observed in colon, breast, prostate and head and neck cancers. However, more clinical trials providing real evidence-based clinical advances of celecoxib use are needed.
Collapse
Affiliation(s)
- Natalia Tołoczko-Iwaniuk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| | - Dorota Dziemiańczyk-Pakieła
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-404 Bialystok, Poland
| | - Beata Klaudia Nowaszewska
- Department of Maxillofacial and Plastic Surgery, Medical University of Bialystok, Skłodowskiej-Curie 24A, 15-404 Bialystok, Poland
| | - Katarzyna Celińska-Janowicz
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, Mickiewicza 2D Street, 15-222 Bialystok, Poland
| |
Collapse
|
21
|
Bao SM, Hu QH, Yang WT, Wang Y, Tong YP, Bao WD. Targeting Epidermal Growth Factor Receptor in Non-Small-Cell-Lung Cancer: Current State and Future Perspective. Anticancer Agents Med Chem 2020; 19:984-991. [PMID: 30868964 DOI: 10.2174/1871520619666190313161009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/20/2018] [Accepted: 03/01/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is one of the leading cause of cancer death worldwide, the most common histological type of lung cancer is non-small cell lung cancer (NSCLC), whose occurrence and development is closely related to the mutation and amplification of epidermal growth factor receptors (EGFR). Currently , a series of targeted drugs were developed on the inhibition of EGFR such as epidermal growth factor receptortyrosine kinase inhibitor EGFR-TKI and monoclonal antibody (McAb). OBJECTIVE We sought to summarizes the current drugs targeting Epidermal Growth Factor Receptor in nonsmall- cell-lung. METHODS We conducted a comprehensive review of the development and application of EGFR-TKI and McAb which targeted EGFR in NSCLC and compared the mechanisms of PROTAC with the traditional inhibitors. RESULTS The drugs targeted EGFR in NSCLC have been widely used in clinic practices. Compared to traditional chemotherapy, these drugs excel with their clear and specific targeting, better curative effects, and less toxic and side effects. However, the mechanism comes with some insurmountable weaknesses like serious toxic and other side effects, as well as proneness to producing drug resistance. CONCLUSION The emerging PROTAC (Proteolysis Targeting Chimera) technology has been successfully applied to selective degradation of multiple protein targets, including EGFR. It also highlights the potential and challenges of PROTAC therapy regarding future combination therapeutic options in NSCLC treatment.
Collapse
Affiliation(s)
- Shui-Ming Bao
- Department of biology, East China University of Technology, 418 Guanglan Road, Nan chang, Jiangxi province 330013, China
| | - Qing-Hui Hu
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Wen-Ting Yang
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Yao Wang
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Yin-Ping Tong
- Nanchang Five Elements Biology Technology Company Limited, Nanchang, Jiangxi, China
| | - Wen-Dai Bao
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
22
|
Cui C, Yang J, Li X, Liu D, Fu L, Wang X. Functions and mechanisms of circular RNAs in cancer radiotherapy and chemotherapy resistance. Mol Cancer 2020; 19:58. [PMID: 32171304 PMCID: PMC7071709 DOI: 10.1186/s12943-020-01180-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs), one type of non-coding RNA, were initially misinterpreted as nonfunctional products of pre-mRNA mis-splicing. Currently, circRNAs have been proven to manipulate the functions of diverse molecules, including non-coding RNAs, mRNAs, DNAs and proteins, to regulate cell activities in physiology and pathology. Accumulating evidence indicates that circRNAs play critical roles in tumor genesis, development, and sensitivity to radiation and chemotherapy. Radiotherapy and chemotherapy are two primary types of intervention for most cancers, but their therapeutic efficacies are usually retarded by intrinsic and acquired resistance. Thus, it is urgent to develop new strategies to improve therapeutic responses. To achieve this, clarification of the underlying mechanisms affecting therapeutic responses in cancer is needed. This review summarizes recent progress and mechanisms of circRNAs in cancer resistance to radiation and chemotherapy, and it discusses the limitations of available knowledge and potential future directions.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jianbo Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
23
|
Targeting Receptor Tyrosine Kinase VEGFR-2 in Hepatocellular Cancer: Rational Design, Synthesis and Biological Evaluation of 1,2-Disubstituted Benzimidazoles. Molecules 2020; 25:molecules25040770. [PMID: 32053964 PMCID: PMC7071059 DOI: 10.3390/molecules25040770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, a novel series of 1,2-disubstituted benzo[d]imidazoles was rationally designed as VEGFR-2 inhibitors targeting hepatocellular carcinoma. Our design strategy is two-fold; it aimed first at studying the effect of replacing the 5-methylfuryl moiety of the well-known antiangiogenic 2-furylbenzimidazoles with an isopropyl moiety on the VEGFR-2 inhibitory activity and the cytotoxic activity. Our second objective was to further optimize the structures of the benzimidazole derivatives through elongation of the side chains at their one-position for the design of more potent type II-like VEGFR-2 inhibitors. The designed 1,2-disubstituted benzimidazoles demonstrated potent cytotoxic activity against the HepG2 cell line, reaching IC50 = 1.98 μM in comparison to sorafenib (IC50 = 10.99 μM). In addition, the synthesized compounds revealed promising VEGFR-2 inhibitory activity in the HepG2 cell line, e.g., compounds 17a and 6 showed 82% and 80% inhibition, respectively, in comparison to sorafenib (% inhibition = 92%). Studying the effect of 17a on the HepG2 cell cycle demonstrated that 17a arrested the cell cycle at the G2/M phase and induced a dose-dependent apoptotic effect. Molecular docking studies of the synthesized 1,2-disubstituted benzimidazoles in the VEGFR-2 active site displayed their ability to accomplish the essential hydrogen bonding and hydrophobic interactions for optimum inhibitory activity.
Collapse
|
24
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Zanforlin E, Zagotto G, Ribaudo G. A Chemical Approach to Overcome Tyrosine Kinase Inhibitors Resistance: Learning from Chronic Myeloid Leukemia. Curr Med Chem 2019; 26:6033-6052. [PMID: 29874990 DOI: 10.2174/0929867325666180607092451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The possibilities of treatment for oncological diseases are growing enormously in the last decades. Unfortunately, these developments have led to the onset of resistances with regards to the new treatments. This is particularly true if we face with the therapeutic field of Tyrosine Kinase Inhibitors (TKIs). This review gives an overview of possible TKI resistances that can occur during the treatment of an oncologic diesease and available strategies that can be adopted, taking cues from a successful example such as CML. METHODS We performed a literature search for peer-reviewed articles using different databases, such as PubMed and Scopus, and exploiting different keywords and different logical operators. RESULTS 68 papers were included in the review. Twenty-four papers give an overview of the causes of TKIs resistances in the wide oncologic field. The remaining papers deal CML, deeply analysing the TKIs Resistances present in this pathology and the strategies adopted to overcome them. CONCLUSION The aim of this review is to furnish an overview and a methodological guideline for the approach and the overcoming of TKIs Resistances.
Collapse
Affiliation(s)
- Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Ciampi R, Romei C, Ramone T, Prete A, Tacito A, Cappagli V, Bottici V, Viola D, Torregrossa L, Ugolini C, Basolo F, Elisei R. Genetic Landscape of Somatic Mutations in a Large Cohort of Sporadic Medullary Thyroid Carcinomas Studied by Next-Generation Targeted Sequencing. iScience 2019; 20:324-336. [PMID: 31605946 PMCID: PMC6817656 DOI: 10.1016/j.isci.2019.09.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 02/04/2023] Open
Abstract
Sporadic Medullary Thyroid Carcinoma (sMTC) is a rare but aggressive thyroid tumor. RET and RAS genes are present in about 50%-80% of cases, but most of the remaining cases are still orphan of a genetic driver. We studied the largest series of sMTC by deep sequencing to define the mutational landscape. With this methodology we greatly reduced the number of RET- or RAS-negative cases and we confirmed the central role of RET and RAS mutations. Moreover, we highlighted the bad prognostic role of RET mutations in sMTC and consolidated the favorable prognostic role of RAS mutations. For the first time, we showed that the variant allele frequency represents an additional prognostic marker inside the group of RET-mutated sMTC.
Collapse
Affiliation(s)
- Raffaele Ciampi
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy.
| | - Cristina Romei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Teresa Ramone
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Alessandro Prete
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Alessia Tacito
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Virginia Cappagli
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Valeria Bottici
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - David Viola
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| | - Liborio Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University-Hospital of Pisa, Pisa 56124 Italy
| | - Clara Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University-Hospital of Pisa, Pisa 56124 Italy
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University-Hospital of Pisa, Pisa 56124 Italy
| | - Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University-Hospital of Pisa, Pisa 56124 Italy
| |
Collapse
|
27
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in active pumping of many diverse substrates through the cellular membrane. The transport mediated by these proteins modulates the pharmacokinetics of many drugs and xenobiotics. These transporters are involved in the pathogenesis of several human diseases. The overexpression of certain transporters by cancer cells has been identified as a key factor in the development of resistance to chemotherapeutic agents. In this chapter, the localization of ABC transporters in the human body, their physiological roles, and their roles in the development of multidrug resistance (MDR) are reviewed. Specifically, P-glycoprotein (P-GP), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP/ABCG2) are described in more detail. The potential of ABC transporters as therapeutic targets to overcome MDR and strategies for this purpose are discussed as well as various explanations for the lack of efficacy of ABC drug transporter inhibitors to increase the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hong-May Sim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
29
|
Xu S, Zhang H, Chong Y, Guan B, Guo P. YAP Promotes VEGFA Expression and Tumor Angiogenesis Though Gli2 in Human Renal Cell Carcinoma. Arch Med Res 2019; 50:225-233. [PMID: 31518897 DOI: 10.1016/j.arcmed.2019.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/30/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND High vascularization is a major characteristic of renal cell carcinoma (RCC). Thus, exploration of molecules promoting the tumor vascularization in RCC is urgent. Yes-associated Protein (YAP) is an oncogene in many cancer types, and high YAP expression was correlated with worse overall survival of RCC patients according to The Cancer Genome Atlas (TCGA) database. However, whether YAP promotes tumor angiogenesis of RCC is still unknown. METHODS Western blotting assay, real-time Quantitive PCR analysis, and ELISA assay were used to detect the related gene expression. The function of YAP on tumor angiogenesis was investigated by HUVEC recruitment, tube formation, and rabbit cornea assay. The clinical relevance of several genes was analyzed in a public database. RESULTS knockdown of YAP decreased RCC cell-inducing HUVEC recruitment and tube formation. Moreover, tumor angiogenesis ability of 786-O cells was crippled by YAP knockdown in vivo. In addition, the expression of Vascular endothelial growth factors A (VEGFA) was positively correlated with YAP expression in RCC tumor tissues, and YAP promoted expression and secretion of VEGFA in RCC cells. Mechanistically, GLI family zinc finger 2 (Gli2) knockdown in RCC cells reduced both basic and YAP-induced VEGFA expression, HUVECs recruitment, and tube formation, indicating that Gli2 is necessary for YAP to promote expression of VEGFA. CONCLUSION Taken together, our results demonstrate that YAP/Gli2 promotes VEGFA expression and tumor angiogenesis in RCC cells, which could provide novel therapeutic targets in RCC treatment.
Collapse
Affiliation(s)
- Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Haibao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Bing Guan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Du P, Guan Y, An Z, Li P, Liu L. A selective and robust UPLC-MS/MS method for the simultaneous quantitative determination of anlotinib, ceritinib and ibrutinib in rat plasma and its application to a pharmacokinetic study. Analyst 2019; 144:5462-5471. [PMID: 31380858 DOI: 10.1039/c9an00861f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A selective and robust UPLC-MS/MS method has been firstly developed for simultaneous determination of three anti-tumor tyrosine kinase inhibitors (anlotinib, ANL; ceritinib, CER; ibrutinib, IBR) in rat plasma using cost-effective protein precipitation extraction. LC separation was achieved on Waters XBrige C18 column (50 mm × 2.1 mm, 3.5 μm) under gradient conditions in a run time of 5 min. ESI+ was involved through mass spectrometry. Multiple reaction monitoring transitions were at m/z 408.2 → 339.2 for ANL, 558.2 → 433.2 for CER, 441.0 → 138.0 for IBR, 285.0 → 193.1 for diazepam (internal standard), respectively. The optimized method was validated based on US FDA guideline, EMEA guideline as well as Pharmacopoeia of the People's Republic of China. The assay was linear in the range of 0.1-20 ng mL-1 for ANL, 2-1000 ng mL-1 for CER, 1-500 ng mL-1 for IBR. Intra- and inter-day accuracy and precision for all analytes were ≦13.84% and ≦12.56%, respectively. ANL, CER and IBR were sufficiently stable under most investigated conditions. The optimized method was successfully applied for a pharmacokinetic study after single oral gavage administration of mixture (ANL, CER and IBR) at dose of 6 mg kg-1, 25 mg kg-1 and 10 mg kg-1.
Collapse
Affiliation(s)
- Ping Du
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Yin Guan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Pengfei Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Fallacara AL, Zamperini C, Podolski-Renić A, Dinić J, Stanković T, Stepanović M, Mancini A, Rango E, Iovenitti G, Molinari A, Bugli F, Sanguinetti M, Torelli R, Martini M, Maccari L, Valoti M, Dreassi E, Botta M, Pešić M, Schenone S. A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4- d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor. Cancers (Basel) 2019; 11:E848. [PMID: 31248184 PMCID: PMC6628362 DOI: 10.3390/cancers11060848] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Overexpression of P-glycoprotein (P-gp) and other ATP-binding cassette (ABC) transporters in multidrug resistant (MDR) cancer cells is responsible for the reduction of intracellular drug accumulation, thus decreasing the efficacy of chemotherapeutics. P-gp is also found at endothelial cells' membrane of the blood-brain barrier, where it limits drug delivery to central nervous system (CNS) tumors. We have previously developed a set of pyrazolo[3,4-d]pyrimidines and their prodrugs as novel Src tyrosine kinase inhibitors (TKIs), showing a significant activity against CNS tumors in in vivo. Here we investigated the interaction of the most promising pair of drug/prodrug with P-gp at the cellular level. The tested compounds were found to increase the intracellular accumulation of Rho 123, and to enhance the efficacy of paclitaxel in P-gp overexpressing cells. Encouraging pharmacokinetics properties and tolerability in vivo were also observed. Our findings revealed a novel role of pyrazolo[3,4-d]pyrimidines which may be useful for developing a new effective therapy in MDR cancer treatment, particularly against glioblastoma.
Collapse
Affiliation(s)
- Anna Lucia Fallacara
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Claudio Zamperini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Marija Stepanović
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Arianna Mancini
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Enrico Rango
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Giulia Iovenitti
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Alessio Molinari
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Francesca Bugli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Maurizio Martini
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Laura Maccari
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Massimo Valoti
- Dipartimento Scienze della Vita, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Elena Dreassi
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Maurizio Botta
- Dipartimento Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, 53100 Siena, Italy.
- Lead Discovery Siena S.r.l., via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy.
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" (IBISS), University of Belgrade, 11060 Belgrade (RS), Serbia.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16132 Genova, Italy.
| |
Collapse
|
32
|
Li J, Halfter K, Zhang M, Saad C, Xu K, Bauer B, Huang Y, Shi L, Mansmann UR. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures. BMC Cancer 2019; 19:600. [PMID: 31208363 PMCID: PMC6580552 DOI: 10.1186/s12885-019-5804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinase (RTK) inhibitors are frequently used to treat cancers and the results have been mixed, some of these small molecule drugs are highly successful while others show a more modest response. A high number of studies have been conducted to investigate the signaling mechanisms and corresponding therapeutic influence of RTK inhibitors in order to explore the therapeutic potential of RTK inhibitors. However, most of these studies neglected the potential metabolic impact of RTK inhibitors, which could be highly associated with drug efficacy and adverse effects during treatment. METHODS In order to fill these knowledge gaps and improve the therapeutic utilization of RTK inhibitors a large-scale computational simulation/analysis over multiple types of cancers with the treatment responses of RTK inhibitors was performed. The pharmacological data of all eight RTK inhibitor and gene expression profiles of 479 cell lines from The Cancer Cell Line Encyclopedia were used. RESULTS The potential metabolic impact of RTK inhibitors on different types of cancers were analyzed resulting in cancer-specific (breast, liver, pancreas, central nervous system) metabolic signatures. Many of these are in line with results from different independent studies, thereby providing indirect verification of the obtained results. CONCLUSIONS Our study demonstrates the potential of using a computational approach on signature-based-analysis over multiple cancer types. The results reveal the strength of multiple-cancer analysis over conventional signature-based analysis on a single cancer type.
Collapse
Affiliation(s)
- Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Kai Xu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU, Munich, Germany
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Ulrich R. Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
33
|
Kannan S, Fox SJ, Verma CS. Exploring Gatekeeper Mutations in EGFR through Computer Simulations. J Chem Inf Model 2019; 59:2850-2858. [PMID: 31099565 DOI: 10.1021/acs.jcim.9b00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of resistance against drugs that inhibit a particular protein is a major problem in targeted therapy. There is a clear need for rigorous methods to predict the likelihood of specific drug-resistance mutations arising in response to the binding of a drug. In this work we attempt to develop a robust computational protocol for predicting drug resistant mutations at the gatekeeper position (T790) in EGFR. We explore how mutations at this site affects interactions with ATP and three drugs that are currently used in clinics. We found, as expected, that certain mutations are not tolerated structurally, while some other mutations interfere with the natural substrate and hence are unlikely to be selected for. However, we found five possible mutations that are well tolerated structurally and energetically. Two of these mutations were predicted to have increased affinity for the drugs over ATP, as has been reported earlier. By reproducing the trends in the experimental binding affinities of the data, the methods chosen here are able to correctly predict the effects of these mutations on the binding affinities of the drugs. However, the increased affinity does not always translate into increased efficacy, because the efficacy is affected by several other factors such as binding kinetics, competition with ATP, and residence times. The computational methods used in the current study are able to reproduce or predict the effects of mutations on the binding affinities. However, a different set of methods is required to predict the kinetics of drug binding.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute , Agency for Science Technology and Research (A*STAR) , 30 Biopolis Street , #07-01 Matrix, Singapore 138671 Singapore
| | - Stephen J Fox
- Bioinformatics Institute , Agency for Science Technology and Research (A*STAR) , 30 Biopolis Street , #07-01 Matrix, Singapore 138671 Singapore
| | - Chandra S Verma
- Bioinformatics Institute , Agency for Science Technology and Research (A*STAR) , 30 Biopolis Street , #07-01 Matrix, Singapore 138671 Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore
| |
Collapse
|
34
|
Kessler BE, Mishall KM, Kellett MD, Clark EG, Pugazhenthi U, Pozdeyev N, Kim J, Tan AC, Schweppe RE. Resistance to Src inhibition alters the BRAF-mutant tumor secretome to promote an invasive phenotype and therapeutic escape through a FAK>p130Cas>c-Jun signaling axis. Oncogene 2019; 38:2565-2579. [PMID: 30531837 PMCID: PMC6450711 DOI: 10.1038/s41388-018-0617-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023]
Abstract
Few therapy options exist for patients with advanced papillary and anaplastic thyroid cancer. We and others have previously identified c-Src as a key mediator of thyroid cancer pro-tumorigenic processes and a promising therapeutic target for thyroid cancer. To increase the efficacy of targeting Src in the clinic, we sought to define mechanisms of resistance to the Src inhibitor, dasatinib, to identify key pathways to target in combination. Using a panel of thyroid cancer cell lines expressing clinically relevant mutations in BRAF or RAS, which were previously developed to be resistant to dasatinib, we identified a switch to a more invasive phenotype in the BRAF-mutant cells as a potential therapy escape mechanism. This phenotype switch is driven by FAK kinase activity, and signaling through the p130Cas>c-Jun signaling axis. We have further shown this more invasive phenotype is accompanied by alterations in the secretome through the increased expression of pro-inflammatory cytokines, including IL-1β, and the pro-invasive metalloprotease, MMP-9. Furthermore, IL-1β signals via a feedforward autocrine loop to promote invasion through a FAK>p130Cas>c-Jun>MMP-9 signaling axis. We further demonstrate that upfront combined inhibition of FAK and Src synergistically inhibits growth and invasion, and induces apoptosis in a panel of BRAF- and RAS-mutant thyroid cancer cell lines. Together our data demonstrate that acquired resistance to single-agent Src inhibition promotes a more invasive phenotype through an IL-1β>FAK>p130Cas>c-Jun >MMP signaling axis, and that combined inhibition of FAK and Src has the potential to block this inhibitor-induced phenotype switch.
Collapse
Affiliation(s)
- Brittelle E Kessler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Katie M Mishall
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Meghan D Kellett
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Erin G Clark
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Bioinformatics and Personalized Medicine, Aurora, CO, 80045, USA
| | - Jihye Kim
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
AbdElhameid MK, Labib MB, Negmeldin AT, Al-Shorbagy M, Mohammed MR. Design, synthesis, and screening of ortho-amino thiophene carboxamide derivatives on hepatocellular carcinomaas VEGFR-2Inhibitors. J Enzyme Inhib Med Chem 2018; 33:1472-1493. [PMID: 30191744 PMCID: PMC6136361 DOI: 10.1080/14756366.2018.1503654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/21/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
In this work, design, synthesis, and screening of thiophene carboxamides 4-13 and 16-23 as dual vascular endothelial growth factor receptors (VEGFRs) and mitotic inhibitors was reported. All compounds were screened against two gastrointestinal solid cancer cells, HepG-2 and HCT-116 cell lines. The most active cytotoxic derivatives 5 and 21 displayed 2.3- and 1.7-fold higher cytotoxicity than Sorafenib against HepG-2 cells. Cell cycle and apoptosis analyses for compounds 5 and 21 showed cells accumulation in the sub-G1 phase, and cell cycle arrest at G2/M phase. The apoptotic inducing activities of compounds 5 and 21were correlated to the elevation of p53, increase in Bax/Bcl-2 ratio, and increase in caspase-3/7.Compounds 5 and 21 showed potent inhibition againstVEGFR-2 (IC50 = 0.59 and 1.29 μM) and β-tubulin polymerization (73% and 86% inhibition at their IC50 values).Molecular docking was performed with VEGFR-2 and tubulin binding sites to explain the displayed inhibitory activities.
Collapse
Affiliation(s)
- Mohammed K. AbdElhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Madlen B. Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed T. Negmeldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences College of Pharmacy, Gulf Medical University, Gulf Medical University, Ajman, UAE
| | - Muhammad Al-Shorbagy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology and Toxicology Department, School of Pharmacy, NewGiza University, Egypt
| | - Manal R. Mohammed
- Department of Radiation Biology, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
36
|
Mphahlele MJ, Maluleka MM, Parbhoo N, Malindisa ST. Synthesis, Evaluation for Cytotoxicity and Molecular Docking Studies of Benzo[ c]furan-Chalcones for Potential to Inhibit Tubulin Polymerization and/or EGFR-Tyrosine Kinase Phosphorylation. Int J Mol Sci 2018; 19:E2552. [PMID: 30154363 PMCID: PMC6164331 DOI: 10.3390/ijms19092552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
A series of 2-arylbenzo[c]furan-chalcone hybrids 3a⁻y have been synthesized and evaluated for antiproliferative effects against the human breast cancer (MCF-7) cell line and for its potential to induce apoptosis and also to inhibit tubulin polymerization and/or epidermal growth factor receptor-tyrosine kinase (EGFR-TK) phosphorylation. Most of these compounds exhibited moderate to significant antigrowth effects in vitro against the MCF-7 cell line when compared to the reference standard actinomycin D. The capabilities of the most cytotoxic benzofuran-chalcone hybrids 3b and 3i, to induce apoptosis, have been evaluated by Annexin V-Cy3 SYTOX staining and caspase-3 activation. The experimental and molecular docking results suggest that the title compounds have the potential to exhibit inhibitory effects against tubulin polymerization and epidermal growth factor receptor tyrosine kinase (EGFR-TK) phosphorylation. The modeled structures of representative compounds displayed hydrophobic interactions as well as hydrogen and/or halogen bonding with the protein residues. These interactions are probably responsible for the observed increased binding affinity for the two receptors and their significant antigrowth effect against the MCF-7 cell line.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Marole M Maluleka
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Nishal Parbhoo
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Sibusiso T Malindisa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|
37
|
Lee A, Hong S, Kim D. KRDS: a web server for evaluating drug resistance mutations in kinases by molecular docking. J Cheminform 2018; 10:20. [PMID: 29633047 PMCID: PMC5891443 DOI: 10.1186/s13321-018-0274-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/02/2018] [Indexed: 11/23/2022] Open
Abstract
Kinases are major targets of anti-cancer therapies owing to their importance in signaling processes that regulate cell growth and proliferation. However, drug resistance has emerged as a major obstacle to cancer therapy. Resistance to drugs has various underlying mechanisms, including the acquisition of mutations at drug binding sites and the resulting reduction in drug binding affinity. Therefore, the identification of mutations that are relevant to drug resistance may be useful to overcome this issue. We hypothesized that these mutations can be identified by combining recent advances in computational methods for protein structure modeling and ligand docking simulation. Hence, we developed a web-based tool named the Kinase Resistance Docking System (KRDS) that enables the assessment of the effects of mutations on kinase-ligand interactions. KRDS receives a list of mutations in kinases, generates structural models of the mutants, performs docking simulations, and reports the results to users. The changes in docking scores and docking conformations can be analyzed to infer the effects of mutations on drug binding and drug resistance. We expect our tool to improve our understanding of drug binding mechanisms and facilitate the development of effective new drugs to overcome resistance related to kinases; it may be particularly useful for biomedical researchers who are not familiar with computational environments. Our tool is available at http://bcbl.kaist.ac.kr/KRDS/.
Collapse
Affiliation(s)
- Aeri Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seungpyo Hong
- Division of Nutrition and Metabolism Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
38
|
He Y, Zhou L, Gao S, Yin T, Tu Y, Rayford R, Wang X, Hu M. Development and validation of a sensitive LC–MS/MS method for simultaneous determination of eight tyrosine kinase inhibitors and its application in mice pharmacokinetic studies. J Pharm Biomed Anal 2018; 148:65-72. [DOI: 10.1016/j.jpba.2017.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 09/08/2017] [Indexed: 11/26/2022]
|
39
|
Muthuvel SK, Elumalai E, K G, K H. Molecular docking and dynamics studies of 4-anilino quinazolines for epidermal growth factor receptor tyrosine kinase to find potent inhibitor. J Recept Signal Transduct Res 2018; 38:475-483. [PMID: 31038021 DOI: 10.1080/10799893.2019.1590411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A series of novel 4-anilino quinazoline derivatives were taken based on the literature study and optimized with Autodock version 4.2 and molecular dynamics (MD) protocol to investigate the interaction between the target compounds and the amino acid residues of target protein epidermal growth factor receptor (EGFR) tyrosine kinase (PDB ID: 1M17). The free energies of binding and inhibition constants (Ki) of the docked ligands were calculated by the Lamarckian genetic algorithm (LGA). The docking results showed that the compounds SGQ4, DMUQ5, 6AUQ6, and PTQ8 had produced significant docking affinity for the protein tyrosine kinase with the binding energy of -7.46, -7.31, -6.85, and -6.74 kcal/mol, respectively, compared to the standard inhibitor Erlotinib (binding energy: -3.84 kcal/mol). Furthermore, molecular dynamics simulations (MDS) were performed using Gromacs to investigate the stability of a ligand-protein complex. The combined analysis of root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of 1M17 protein with docked ligands reveals that 1M17 protein has more stability when it interacts reacts with the inhibitor. Molecular descriptive properties and toxicity profile predicted by software. All the designed molecules passed Lipinski's rule of five successfully and they were found to be safe.
Collapse
Affiliation(s)
- Suresh Kumar Muthuvel
- a School of Life Sciences , Centre for Bioinformatics, Pondicherry University , Puducherry , Pondicherry , India
| | - Elakkiya Elumalai
- a School of Life Sciences , Centre for Bioinformatics, Pondicherry University , Puducherry , Pondicherry , India
| | - Girija K
- b Department of Pharmaceutical Chemistry , Mother Theresa Post Graduate and Research Institute of Health Sciences , Gorimedu , Pondicherry , India
| | - Hemalatha K
- b Department of Pharmaceutical Chemistry , Mother Theresa Post Graduate and Research Institute of Health Sciences , Gorimedu , Pondicherry , India
| |
Collapse
|
40
|
Fraser J, Cabodevilla AG, Simpson J, Gammoh N. Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking. Essays Biochem 2017; 61:597-607. [PMID: 29233871 PMCID: PMC5869858 DOI: 10.1042/ebc20170091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023]
Abstract
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here.
Collapse
Affiliation(s)
- Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Ainara G Cabodevilla
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Joanne Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
41
|
Da Silva CG, Peters GJ, Ossendorp F, Cruz LJ. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother Pharmacol 2017; 80:881-894. [PMID: 28887666 PMCID: PMC5676819 DOI: 10.1007/s00280-017-3427-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The therapeutic efficacy of conventional chemotherapy against several solid tumors is generally limited and this is often due to the development of resistance or poor delivery of the drugs to the tumor. Mechanisms of resistance may vary between cancer types. However, with current development of genetic analyses, imaging, and novel delivery systems, we may be able to characterize and bypass resistance, e.g., by inhibition of the right target at the tumor site. Therefore, combined drug treatments, where one drug will revert or obstruct the development of resistance and the other will concurrently kill the cancer cell, are rational solutions. However, drug exposure of one drug will defer greatly from the other due to their physicochemical properties. In this sense, multi-compound nanoparticles are an excellent modality to equalize drug exposure, i.e., one common physicochemical profile. In this review, we will discuss novel approaches that employ nanoparticle technology that addresses specific mechanisms of resistance in cancer. METHODS The PubMed literature was consulted and reviewed. RESULTS Nanoparticle technology is emerging as a dexterous solution that may address several forms of resistance in cancer. For instance, we discuss advances that address mechanisms of resistance with multi-compound nanoparticles which co-deliver chemotherapeutics with an anti-resistance agent. Promising anti-resistance agents are (1) targeted in vivo gene silencing methods aimed to disrupt key resistance gene expression or (2) protein kinase inhibitors to disrupt key resistance pathways or (3) efflux pumps inhibitors to limit drug cellular efflux.
Collapse
Affiliation(s)
- C G Da Silva
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Bldg.1, C2-187h, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
42
|
Bandyopadhyay S, Li J, Traer E, Tyner JW, Zhou A, Oh ST, Cheng JX. Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS One 2017; 12:e0179558. [PMID: 28719608 PMCID: PMC5515395 DOI: 10.1371/journal.pone.0179558] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Since the advent of tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, and dasatinib, chronic myelogenous leukemia (CML) prognosis has improved greatly. However, ~30-40% of patients develop resistance to imatinib therapy. Although most resistance is caused by mutations in the BCR-ABL kinase domain, 50-85% of these patients develop resistance in the absence of new mutations. In these cases, targeting other pathways may be needed to regain clinical response. Using label-free Raman spectromicroscopy, we evaluated a number of leukemia cell lines and discovered an aberrant accumulation of cholesteryl ester (CE) in CML, which was found to be a result of BCR-ABL kinase activity. CE accumulation in CML was found to be a cancer-specific phenomenon as untransformed cells did not accumulate CE. Blocking cholesterol esterification with avasimibe, a potent inhibitor of acyl-CoA cholesterol acyltransferase 1 (ACAT-1), significantly suppressed CML cell proliferation in Ba/F3 cells with the BCR-ABLT315I mutation and in K562 cells rendered imatinib resistant without mutations in the BCR-ABL kinase domain (K562R cells). Furthermore, the combination of avasimibe and imatinib caused a profound synergistic inhibition of cell proliferation in K562R cells, but not in Ba/F3T315I. This synergistic effect was confirmed in a K562R xenograft mouse model. Analysis of primary cells from a BCR-ABL mutation-independent imatinib resistant patient by mass cytometry suggested that the synergy may be due to downregulation of the MAPK pathway by avasimibe, which sensitized the CML cells to imatinib treatment. Collectively, these data demonstrate a novel strategy for overcoming BCR-ABL mutation-independent TKI resistance in CML.
Collapse
MESH Headings
- Acetamides
- Acetates/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Cholesterol/metabolism
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Esterification/drug effects
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/drug effects
- Mice
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Sulfonamides
- Sulfonic Acids/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Amy Zhou
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen T. Oh
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
43
|
Guerin M, Qian C, Zhong Q, Cui Q, Guo Y, Bei J, Shao J, Zhu X, Huang W, Wu J, Liu R, Liu Q, Wang J, Jia W, Zheng X, Zeng Y. Translational oncology toward benefiting cancer patients: the Sun Yat-sen University Cancer Center experience. SCIENCE CHINA-LIFE SCIENCES 2017; 59:1057-1062. [PMID: 23132500 DOI: 10.1007/s11427-012-4398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mathilde Guerin
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chaonan Qian
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qian Cui
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yunmiao Guo
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jinxin Bei
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jianyong Shao
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaofeng Zhu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ranyi Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Qiang Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jing Wang
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weihua Jia
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohui Zheng
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
44
|
D'Cunha R, Bae S, Murry DJ, An G. TKI combination therapy: strategy to enhance dasatinib uptake by inhibiting Pgp- and BCRP-mediated efflux. Biopharm Drug Dispos 2016; 37:397-408. [PMID: 27418107 DOI: 10.1002/bdd.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/02/2016] [Accepted: 07/04/2016] [Indexed: 11/06/2022]
Abstract
The overexpression of efflux transporters, especially P-glycoprotein (Pgp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2), represents an important mechanism of multidrug resistance (MDR). Tyrosine kinase inhibitors (TKIs), a novel group of target-specific anticancer drugs, have recently been found to interact with Pgp and BCRP and to serve as both substrates and inhibitors. Considering their dual role, we anticipate that combination TKI therapy may represent a promising strategy to reverse efflux transporter mediated TKI resistance. Presently, investigations on these interactions are very limited. To fill the literature gap, dasatinib was used as the model drug and the effects of various TKIs on Pgp- and BCRP- mediated dasatinib efflux were evaluated. Cell uptake studies were performed using LLC-PK1 and MDCK-II cells along with their subclones that were transfected with human Pgp and BCRP, respectively. Among the 14 TKIs screened, nine TKIs greatly inhibited Pgp-mediated dasatinib efflux at 50 μm. Further concentration dependent studies showed that imatinib, nilotinib and pazopanib were potent Pgp inhibitors with IC50 values of 2.42, 6.11 and 8.06 μm, respectively. Additionally, 50 μm of five TKIs greatly increased dasatinib accumulation through BCRP inhibition. Concentration dependent studies revealed that imatinib, erlotinib, nilotinib, axitinib and pazopanib were potent BCRP inhibitors with IC50 values of 0.94, 2.23, 2.50, 6.89 and 10.4 μm, respectively. Our findings point to potential combinations of TKIs that could enhance intracellular concentrations of the targeted TKI, overcome MDR and improve TKI efficacy. Further in vivo studies are warranted to confirm the efflux transporter-mediated TKI-TKI interaction. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ronilda D'Cunha
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - SoHyun Bae
- College of Pharmacy, University of Iowa, Iowa City, USA
| | - Daryl J Murry
- Department of Pharmacy Practice, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198-6045, USA
| | - Guohua An
- The Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
45
|
Kissova M, Maga G, Crespan E. The human tyrosine kinase Kit and its gatekeeper mutant T670I, show different kinetic properties: Implications for drug design. Bioorg Med Chem 2016; 24:4555-4562. [PMID: 27527414 DOI: 10.1016/j.bmc.2016.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022]
Abstract
The tyrosine kinase Kit, a receptor for Stem Cell Factor, is involved, among others, in processes associated to cell survival, proliferation and migration. Upon physiological conditions, the activity of Kit is tightly regulated. However, primary mutations that lead to its constitutive activation are the causal oncogenic driver of gastrointestinal stromal tumours (GISTs). GISTs are known to be refractory to conventional therapies but the introduction of Imatinib, a selective inhibitor of tyrosine kinases Abl and Kit, significantly ameliorated the treatment options of GISTs patients. However, the acquisition of secondary mutations renders Kit resistant towards all available drugs. Mutation involving gatekeeper residues (such as V654a and T670I) influence both the structure and the catalytic activity of the enzyme. Therefore, detailed knowledge of the enzymatic properties of the mutant forms, in comparison with the wild type enzyme, is an important pre-requisite for the rational development of specific inhibitors. In this paper we report a thorough kinetic analysis of the reaction catalyzed by the Kit kinase and its gatekeeper mutated form T670I. Our results revealed the different mechanisms of action of these two enzymes and may open a new avenue for the future design of specific Kit inhibitors.
Collapse
Affiliation(s)
- Miroslava Kissova
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
46
|
Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 Tyrosine Kinase inhibitors. Life Sci 2016; 160:47-56. [PMID: 27449398 DOI: 10.1016/j.lfs.2016.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/08/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
AIM Aberrant human epidermal growth factor receptor-2 (HER2) expression and constitutive mutant activation of its tyrosine kinase domain account for tumor aggression and therapy resistance in many types of cancers with major share in breast cancer cases. HER2 specific treatment modalities still face challenges owing to the side effects and acquired resistance of available therapeutics. Recently, the anti-proliferative and pro-apoptotic potential of phytochemicals, especially of flavonoids have become increasingly appreciated as powerful chemo preventive agents. Consequently, the major goal of our study is to identify flavonoids capable of inhibiting HER2 Tyrosine Kinase (HER2-TK) activity and validate their anti-tumor activity against HER2 positive tumors. MAIN METHODS Molecular docking studies for identifying flavonoids binding at HER2 kinase domain, ADP-Glo™ Kinase Assay for determining kinase activity, MTT assay to measure growth inhibition, various apoptotic assays and cell cycle analysis by FACS were performed. KEY FINDINGS Among the flavonoids screened, Naringenin (NG) and Hesperetin (HP) possessed high glide scores from molecular docking studies of enzyme-inhibitor mode. The interaction analysis revealed their ability to establish stable and strong interaction at the ATP binding site of HER2-TK. These compounds also inhibited in vitro HER2-TK activity suggesting their role as HER2 inhibitors. The study also unraveled the anti-proliferative, pro-apoptotic and anti-cancerous activity of these flavonoids against HER2 positive breast cancer cell line. SIGNIFICANCE The study identified two citrus fruit flavonoids, NG and HP as HER2-TK inhibitors and this is the first report on their potential to target preferentially and sensitize HER2 positive cancer cells to cell death.
Collapse
Affiliation(s)
- Bhavya Balan Chandrika
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| | - Mathew Steephan
- Govt Brennen College, Kannur University, Kannur 670 661, Kerala, India
| | | | - A Sabu
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India
| | - M Haridas
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Kannur University Thalassery Campus, Kannur 670 661, Kerala, India.
| |
Collapse
|
47
|
IOANNOU NIKOLAOS, SEDDON ALANM, DALGLEISH ANGUS, MACKINTOSH DAVID, SOLCA FLAVIO, MODJTAHEDI HELMOUT. Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition. Int J Oncol 2016; 48:908-18. [PMID: 26781210 PMCID: PMC4750538 DOI: 10.3892/ijo.2016.3320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) variants with acquired resistance to treatment with gemcitabine, afatinib, or erlotinib, and to investigate the molecular changes that accompany the acquisition of a drug-resistant phenotype. We also investigated the therapeutic potential of various agents in the treatment of such drug-resistant variants. Three variant forms of BxPc3 cells with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) were developed following treatment with increasing doses of such drugs. The expression level, mutational and phosphorylation status of various growth factor receptors and downstream cell signaling molecules were determined by FACS, human phopsho-RTK array, and western blot analysis while the sulforhodamine B assay was used for determining the effect of various agents on the growth of such tumours. We found that all three BxPc3 variants with acquired resistance to gemcitabine (BxPc3GEM), afatinib (BxPc3AFR) or erlotinib (BxPc3OSIR) also become less sensitive to treatment with the two other agents. Acquisition of resistance to these agents was accompanied by upregulation of p-c-MET, p-STAT3, CD44, increased autocrine production of EGFR ligand amphiregulin and differential activation status of EGFR tyrosine residues as well as downregulation of total and p-SRC. Of all therapeutic interventions examined, including the addition of an anti-EGFR antibody ICR62, an anti-CD44 monoclonal antibody, and of STAT3 or c-MET inhibitors, only treatment with the STAT3 inhibitor Stattic produced a higher growth inhibitory effect in all three drug-resistant variants. In addition, treatment with a combination of afatinib with either c-MET inhibitor Crizotinib or Stattic resulted in an additive or synergistic growth inhibition in all three variants. Our results suggest that activation of STAT3 may play an important role in the acquisition of resistance to gemcitabine and HER inhibitors in pancreatic cancer and warrant further studies on the therapeutic potential of STAT3 inhibitors in such a setting.
Collapse
Affiliation(s)
- NIKOLAOS IOANNOU
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ALAN M. SEDDON
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - ANGUS DALGLEISH
- Department of Cellular and Molecular Medicine, St George's University of London, London, UK
| | - DAVID MACKINTOSH
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| | - FLAVIO SOLCA
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - HELMOUT MODJTAHEDI
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Kingston
| |
Collapse
|
48
|
|
49
|
Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Landys Chovel Cuervo M, Holgate ST, Levi-Schaffer F. The expanding role of immunopharmacology: IUPHAR Review 16. Br J Pharmacol 2015; 172:4217-27. [PMID: 26173913 PMCID: PMC4556463 DOI: 10.1111/bph.13219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Drugs targeting the immune system such as corticosteroids, antihistamines and immunosuppressants have been widely exploited in the treatment of inflammatory, allergic and autoimmune disorders during the second half of the 20th century. The recent advances in immunopharmacological research have made available new classes of clinically relevant drugs. These comprise protein kinase inhibitors and biologics, such as monoclonal antibodies, that selectively modulate the immune response not only in cancer and autoimmunity but also in a number of other human pathologies. Likewise, more effective vaccines utilizing novel antigens and adjuvants are valuable tools for the prevention of transmissible infectious diseases and for allergen-specific immunotherapy. Consequently, immunopharmacology is presently considered as one of the expanding fields of pharmacology. Immunopharmacology addresses the selective regulation of immune responses and aims to uncover and exploit beneficial therapeutic options for typical and non-typical immune system-driven unmet clinical needs. While in the near future a number of new agents will be introduced, improving the effectiveness and safety of those currently in use is imperative for all researchers and clinicians working in the fields of immunology, pharmacology and drug discovery. The newly formed ImmuPhar (http://iuphar.us/index.php/sections-subcoms/immunopharmacology) is the Immunopharmacology Section of the International Union of Basic and Clinical Pharmacology (IUPHAR, http://iuphar.us/). ImmuPhar provides a unique international expert-lead platform that aims to dissect and promote the growing understanding of immune (patho)physiology. Moreover, it challenges the identification and validation of drug targets and lead candidates for the treatment of many forms of debilitating disorders, including, among others, cancer, allergies, autoimmune and metabolic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, University of AthensAthens, Greece
- Allergy Unit ‘D. Kalogeromitros’, 2nd Department of Dermatology and Venereology, ‘Attikon’ General University Hospital, Medical School, University of AthensAthens, Greece
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka UniversityOsaka, Japan
| | - Carlo Riccardi
- Department of Medicine, University of PerugiaPerugia, Italy
| | | | - Hans-Uwe Simon
- Institute of Pharmacology, University of BernBern, Switzerland
| | | | | | | | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, School of Pharmacy Institute for Drug Research, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
50
|
Interplay between receptor tyrosine kinases and hypoxia signaling in cancer. Int J Biochem Cell Biol 2015; 62:101-14. [DOI: 10.1016/j.biocel.2015.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 02/06/2023]
|