1
|
Yang Y, Chen Q, Liu Z, Huang T, Hong Y, Li N, Ai K, Huang Q. Novel reduced heteropolyacid nanoparticles for effective treatment of drug-induced liver injury by manipulating reactive oxygen and nitrogen species and inflammatory signals. J Colloid Interface Sci 2025; 678:174-187. [PMID: 39243718 DOI: 10.1016/j.jcis.2024.08.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs. The activation and deterioration of reactive oxygen and nitrogen species (RONS) and inflammatory signals are key pathological mechanisms of drug-induced liver injury (DILI). Herein, a novel reduced heteropolyacid nanoparticle (RNP) has been developed, possessing high RONS-scavenging ability, strong anti-inflammatory activity, and excellent biosafety. These features enable it to swiftly restore the redox and immune balance of the liver. Intravenous administration of RNP effectively scavenged RONS storm, reversing liver oxidative stress and restoring normal mitochondrial membrane potential and function. Furthermore, by inhibiting c-Jun-N-terminal kinase phosphorylation, RNP facilitated the restoration of nuclear factor erythroid 2-related factor 2-mediated endogenous antioxidant signaling, ultimately rescuing the liver function and tissue morphology in acetaminophen-induced DILI mice. Crucially, the high biocompatible RNP exhibited superior efficacy in the DILI mouse model compared to the clinical antioxidant N-acetylcysteine. This targeted therapeutic approach, tailored to address the onset and progression of DILI, offers valuable new insights into controlling the condition and restoring liver structure and function.
Collapse
Affiliation(s)
- Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Niansheng Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Singh H, Singh T, Singh V, Singh B, Kaur S, Ahmad SF, Al-Mazroua HA, Singh B. Ehretia laevis mitigates paracetamol- induced hepatotoxicity by attenuating oxidative stress and inflammation in rats. Int Immunopharmacol 2024; 143:113565. [PMID: 39504859 DOI: 10.1016/j.intimp.2024.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Hepatotoxicity is caused due to intake of drug or any chemical above the therapeutic range or as overdose. Current therapies for the management of hepatotoxicity are associated with several side effects. The present study was envisaged to explore the hepatoprotective potential of Ehretia laevis (E. laevis) in paracetamol (PCM) induced hepatotoxicity. All the plant extracts and fractions were evaluated for antioxidant and antiproliferative potential using various in vitro assays. Hepatotoxicity was induced in rats using a standardized single oral dose of PCM (3 g/kg). The aqueous fraction of E. laevis (AFEL) exhibited significant antioxidant and antiproliferative activity as compared to methanol extract of E. laevis (MEEL) in vitro. Moreover, treatment with AFEL (25, 50 and 100 mg/kg) decreased serum hepatic markers, attenuate the oxidative stress, inflammation and histopathological changes. LC-MS analysis of AFEL showed the presence of rutin, quercetin and kaempferol. Rutin was found to be in higher concentration, therefore it was docked on TNF-α. Its overall binding mode supports its capability to make complex with TNF-α. The finding of the study suggested significant antioxidant, antiproliferative, and hepatoprotective potential of E. laevis in paracetamol induced hepatotoxicity which could be attributed to the presence of various polyphenols.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India; Khalsa College of Pharmacy, Amritsar 143005, India.
| | - Tanveer Singh
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India.
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
3
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2024; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
4
|
Luo Q, Li X, Huang J, Zhao L, Liu L, Huang S, Xu Y, Qiu P, Li C. Shenqi Pill alleviates acetaminophen-induced liver injury: a comprehensive strategy of network pharmacology and spectrum-effect relationship reveals mechanisms and active components. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156050. [PMID: 39303509 DOI: 10.1016/j.phymed.2024.156050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Acetaminophen (APAP), commonly used for its antipyretic and analgesic properties, can cause severe liver injury or even acute liver failure when overdosed. However, the options for treating APAP-induced liver toxicity are limited. Shenqi Pill (SQP), a traditional Chinese herbal formula, has shown effectiveness in treating various liver ailments. SQP consists of cinnamon, aconite, rehmannia, cornus, peony bark, Chinese yam, poria, and alisma in a ratio of 1:1:8:4:3:4:3:3. However, the mechanisms and active components of SQP that counteract drug-induced liver injury (DILI) are not well understood. PURPOSE This study aimed to explore the protective effects of SQP against APAP-induced liver injury in both laboratory and animal settings. It seeks to identify the active components and potential mechanisms by which SQP targets mitochondria to alleviate liver damage. METHODS A mouse model with APAP-induced liver injury was established to assess SQP's therapeutic impact. This study then analyzed the components of SQP using UPLC-Q-TOF-MS in both in vivo and in vitro environments. Network pharmacology and the GEO database helped predict potential pathways and targets. Potential active components were identified through spectrum-effect relationship analysis and validated their efficacy using Seahorse assays and molecular docking. RESULTS Treatment with SQP significantly reduced liver dysfunction, tissue damage, lipid metabolic disruptions, and inflammation caused by APAP in mice. In cellular tests, SQP-treated serum notably enhanced mitochondrial function, maintained membrane potential, decreased ROS levels, and prevented mitochondrial permeability transition pore opening. Biochemically, SQP reversed the suppression of p-AMPK, p-ACC, CPT1, and ACADM expression caused by APAP overdose. This study identified 97 in vitro and 24 in vivo components of SQP, with eight showing significant mitochondrial benefits. Molecular docking studies suggest that fuziline and paeoniflorin could activate AMPK. CONCLUSION SQP effectively mitigates APAP-induced liver injury by enhancing mitochondrial function via the AMPK-ACC-CPT1-ACADM pathway. Moreover, this study introduces a novel strategy for analyzing the relationship between the chemical and pharmacological properties of drug-containing serum, successfully identifying compounds with mitochondrial activity. Fuziline and paeoniflorin, in particular, emerge as promising mitochondrial protectants and warrant further investigation. This research underpins the development of innovative treatments for DILI using SQP and its components.
Collapse
Affiliation(s)
- Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junhao Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Zhao
- Analytical Testing Center, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueling Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Ramachandran A, Akakpo JY, Curry SC, Rumack BH, Jaeschke H. Clinically relevant therapeutic approaches against acetaminophen hepatotoxicity and acute liver failure. Biochem Pharmacol 2024; 228:116056. [PMID: 38346541 PMCID: PMC11315809 DOI: 10.1016/j.bcp.2024.116056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Liver injury and acute liver failure caused by an acetaminophen (APAP) overdose is a significant clinical problem in western countries. With the introduction of the mouse model of APAP hepatotoxicity in the 1970 s, fundamental mechanisms of cell death were discovered. This included the recognition that part of the APAP dose is metabolized by cytochrome P450 generating a reactive metabolite that is detoxified by glutathione. After the partial depletion of glutathione, the reactive metabolite will covalently bind to sulfhydryl groups of proteins, which is the initiating event of the toxicity. This insight led to the introduction of N-acetyl-L-cysteine, a glutathione precursor, as antidote against APAP overdose in the clinic. Despite substantial progress in our understanding of the pathomechanisms over the last decades viable new antidotes only emerged recently. This review will discuss the background, mechanisms of action, and the clinical prospects of the existing FDA-approved antidote N-acetylcysteine, of several new drug candidates under clinical development [4-methylpyrazole (fomepizole), calmangafodipir] and examples of additional therapeutic targets (Nrf2 activators) and regeneration promoting agents (thrombopoietin mimetics, adenosine A2B receptor agonists, Wharton's Jelly mesenchymal stem cells). Although there are clear limitations of certain therapeutic approaches, there is reason to be optimistic. The substantial progress in the understanding of the pathophysiology of APAP hepatotoxicity led to the consideration of several drugs for development as clinical antidotes against APAP overdose in recent years. Based on the currently available information, it is likely that this will result in additional drugs that could be used as adjunct treatment for N-acetylcysteine.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C Curry
- Department of Medical Toxicology, Banner - University Medical Center Phoenix, Phoenix, AZ, USA; Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Denver, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Xie D, Jiang Y, Wang H, Zhu L, Huang S, Liu S, Zhang W, Li T. Formononetin triggers ferroptosis in triple-negative breast cancer cells by regulating the mTORC1/SREBP1/SCD1 pathway. Front Pharmacol 2024; 15:1441105. [PMID: 39399463 PMCID: PMC11470441 DOI: 10.3389/fphar.2024.1441105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is the most malignant type of breast cancer, and its prognosis is still the worst. It is necessary to constantly explore the pathogenesis and effective therapeutic targets of TNBC. Formononetin is an active ingredient with anti-tumor effects that we screened earlier. The main purpose of this study is to elucidate mechanism of the inhibitory effect of Formononetin on TNBC. Methods We conducted experiments through both in vivo and in vitro methodologies. The in vivo experiments utilized a nude mice xenotransplantation model, while the in vitro investigations employed two breast cancer cell lines, MDA-MB-231 and MDA-MB-468. Concurrently, ferroptosis associated proteins, lipid peroxide levels, and proteins related to the rapamycin complex 1 were analyzed in both experimental settings. Results In our study, Formononetin exhibits significant inhibitory effects on the proliferation of triple TNBC, both in vivo and in vitro. Moreover, it elicits an increase in lipid peroxide levels, downregulates the expression of ferroptosis-associated proteins GPX4 and xCT, and induces ferroptosis in breast cancer cells. Concurrently, Formononetin impedes the formation of the mammalian target of rapamycin complex 1 (mTORC1) and suppresses the expression of downstream Sterol regulatory element-binding protein 1(SREBP1). The utilization of breast cancer cells with SREBP1 overexpression or knockout demonstrates that Formononetin induces ferroptosis by modulating the mTORC1-SREBP1 signaling axis. Discussion In conclusion, this study provides evidence that Formononetin exerts an anti-proliferative effect on triple-negative breast cancer by inducing ferroptosis. Moreover, the mTORC1-SREBP1 signal axis is identified as the primary mechanism through which formononetin exerts its therapeutic effects. These findings suggest that formononetin holds promise as a potential targeted drug for clinical treatment of TNBC.
Collapse
Affiliation(s)
- Dong Xie
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulang Jiang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyi Zhu
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shuangqin Huang
- General department, Songnan Town Community Health Service Center, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Tian Li
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yang Q, He WH, Xie L, Chen T, Liu RF, Hu JJ, Guo JY, Tan GZ, Wu FL, Gu P, Chen P, Chen Y. Oral administration of astilbin mitigates acetaminophen-induced acute liver injury in mice by modulating the gut microbiota. Acta Pharmacol Sin 2024:10.1038/s41401-024-01383-9. [PMID: 39313515 DOI: 10.1038/s41401-024-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) is characterized by extensive oxidative stress, and the clinical interventions for this adverse effect remain limited. Astilbin is an active compound found in the rhizome of Smilax glabra Roxb. with anti-inflammatory and antioxidant activities. Due to its low oral bioavailability, astilbin can accumulate in the intestine, which provides a basis for the interaction between astilbin and gut microbiota (GM). In the present study we investigated the protective effects of astilbin against APAP-induced ALI by focusing on the interaction between astilbin and GM. Mice were treated with astilbin (50 mg·kg-1·d-1, i.g.) for 7 days. After the last administration of astilbin for 2 h, the mice received APAP (300 mg/kg, i.g.) to induce ALI. We showed that oral administration of astilbin significantly alleviated APAP-induced ALI by altering the composition of GM and enriching beneficial metabolites including hydroxytyrosol (HT). GM depletion using an "antibiotics cocktail" or paraoral administration of astilbin abolished the hepatoprotective effects of astilbin. On the other hand, administration of HT (10 mg/kg, i.g.) caused similar protective effects in APAP-induced ALI mice. Transcriptomic analysis of the liver tissue revealed that HT inhibited reactive oxygen species and inflammation-related signaling in APAP-induced ALI; HT promoted activation of the Nrf2 signaling pathway to combat oxidative stress following APAP challenge in a sirtuin-6-dependent manner. These results highlight that oral astilbin ameliorates APAP-induced ALI by manipulating the GM and metabolites towards a more favorable profile, and provide an alternative therapeutic strategy for alleviating APAP-induced ALI.
Collapse
Affiliation(s)
- Qin Yang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hao He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Ruo-Fan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Jia Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Yin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Zhu Tan
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Fu-Ling Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China.
| |
Collapse
|
8
|
Deng X, Li Y, Chen Y, Hu Q, Zhang W, Chen L, Lu X, Zeng J, Ma X, Efferth T. Paeoniflorin protects hepatocytes from APAP-induced damage through launching autophagy via the MAPK/mTOR signaling pathway. Cell Mol Biol Lett 2024; 29:119. [PMID: 39244559 PMCID: PMC11380789 DOI: 10.1186/s11658-024-00631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is gradually becoming a common global problem that causes acute liver failure, especially in acute hepatic damage caused by acetaminophen (APAP). Paeoniflorin (PF) has a wide range of therapeutic effects to alleviate a variety of hepatic diseases. However, the relationship between them is still poorly investigated in current studies. PURPOSE This work aimed to explore the protective effects of PF on APAP-induced hepatic damage and researched the potential molecular mechanisms. METHODS C57BL/6J male mice were injected with APAP to establish DILI model and were given PF for five consecutive days for treatment. Aiming to clarify the pharmacological effects, the molecular mechanisms of PF in APAP-induced DILI was elucidated by high-throughput and other techniques. RESULTS The results demonstrated that serum levels of ALP, γ-GT, AST, TBIL, and ALT were decreased in APAP mice by the preventive effects of PF. Moreover, PF notably alleviated hepatic tissue inflammation and edema. Meanwhile, the results of TUNEL staining and related apoptotic factors coincided with the results of transcriptomics, suggesting that PF inhibited hepatocyte apoptosis by regulated MAPK signaling. Besides, PF also acted on reactive oxygen species (ROS) to regulate the oxidative stress for recovery the damaged mitochondria. More importantly, transmission electron microscopy showed the generation of autophagosomes after PF treatment, and PF was also downregulated mTOR and upregulated the expression of autophagy markers such as ATG5, ATG7, and BECN1 at the mRNA level and LC3, p62, ATG5, and ATG7 at the protein level, implying that the process by which PF exerted its effects was accompanied by the occurrence of autophagy. In addition, combinined with molecular dynamics simulations and western blotting of MAPK, the results suggested p38 as a direct target for PF on APAP. Specifically, PF-activated autophagy through the downregulation of MAPK/mTOR signaling, which in turn reduced APAP injury. CONCLUSIONS Paeoniflorin mitigated liver injury by activating autophagy to suppress oxidative stress and apoptosis via the MAPK/mTOR signaling pathway. Taken together, our findings elucidate the role and mechanism of paeoniflorin in DILI, which is expected to provide a new therapeutic strategy for the development of paeoniflorin.
Collapse
Affiliation(s)
- Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lisheng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, 55128, Germany.
| |
Collapse
|
9
|
Zhu YY, Zhang Q, Jia YC, Hou MJ, Zhu BT. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal 2024; 22:431. [PMID: 39243059 PMCID: PMC11378433 DOI: 10.1186/s12964-024-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.
Collapse
Affiliation(s)
- Yan-Yin Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Chen Jia
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Xiang Q, Xia Z, Liu H, Ye Z, Sun L, Feng D, Liao W. Isolation and characterization of a hepatoprotective polysaccharide from Lonicera caerulea L. var. edulis Turcz. ex Herd. fruit against APAP-induced acute liver injury mice. Int J Biol Macromol 2024; 275:133426. [PMID: 38936574 DOI: 10.1016/j.ijbiomac.2024.133426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The structure and bioactivities of a novel polysaccharide from Lonicera caerulea L. var. edulis Turcz. ex Herd. fruit (THP-3) were investigated. The crude polysaccharides of Turcz. ex Herd. (THP) were extracted by hot water extraction. After purification, the chemical structure of polysaccharides was identified. Then, a mouse model of acute drug-induced liver injury was constructed using 4-acetamidophenol (APAP) and pretreated with THP. The number-average molecular weight of THP-3 was 48.89 kDa and the mass average molar mass was 97.87 kDa. THP-3 was mainly composed of arabinose (42.54 %), glucose (27.62 %), galacturonic acid and galactose (29.84 %). The main linkage types of THP-3 were 1-linked Araf, 1,4-linked Glcp, and 1,3,6-linked Galp. In addition, after THP treatment, serum Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and γ-glutamyl transpeptidase (γGT) in AILI mice were successfully down-regulated. The results showed that THP could prevent the characteristic morphological changes of hepatic lobular injury and lipid depletion caused by APAP, reduced the level of oxidative damage in mice, increased the expression of APAP-induced hypolipidemia and related inflammatory indicators, and improved the detoxification function of liver. In general, the newly extracted THP polysaccharide has a good liver protection effect and is an ideal natural medicine for the treatment of liver diseases.
Collapse
Affiliation(s)
- Qianru Xiang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zijun Xia
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongji Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zichong Ye
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
12
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024:AD.2024.0586. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
13
|
Beţiu AM, Lighezan R, Avram VF, Muntean DM, Elmér E, Petrescu L. Dose-dependent effects of acetaminophen and ibuprofen on mitochondrial respiration of human platelets. Mol Cell Biochem 2024; 479:1501-1512. [PMID: 37486451 DOI: 10.1007/s11010-023-04814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Acetaminophen and ibuprofen are widely used over-the-counter medications to reduce fever, pain, and inflammation. Although both drugs are safe in therapeutic concentrations, self-medication is practiced by millions of aged patients with comorbidities that decrease drug metabolism and/or excretion, thus raising the risk of overdosage. Mitochondrial dysfunction has emerged as an important pathomechanism underlying the organ toxicity of both drugs. Assessment of mitochondrial oxygen consumption in peripheral blood cells is a novel research field Cu several applications, including characterization of drug toxicity. The present study, conducted in human platelets isolated from blood donor-derived buffy coat, was aimed at assessing the acute, concentration-dependent effects of each drug on mitochondrial respiration. Using the high-resolution respirometry technique, a concentration-dependent decrease of oxygen consumption in both intact and permeabilized platelets was found for either drug, mainly by inhibiting complex I-supported active respiration. Moreover, ibuprofen significantly decreased the maximal capacity of the electron transport system already from the lowest concentration. In conclusion, platelets from healthy donors represents a population of cells easily available, which can be routinely used in studies assessing mitochondrial drug toxicity. Whether these results can be recapitulated in patients treated with these medications is worth further investigation as potential peripheral biomarker of drug overdose.
Collapse
Affiliation(s)
- Alina Maria Beţiu
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| | - Rodica Lighezan
- Department of Infectious Diseases-Parasitology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Regional Blood Transfusion Center, Timişoara, Str. Martir M. Ciopec No. 1, Timișoara, Romania
| | - Vlad Florian Avram
- Department of Internal Medicine-Diabetes, Nutrition, Metabolic Diseases and Rheumatology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| | - Danina Mirela Muntean
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
- Department of Functional Sciences-Pathophysiology, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, E. Murgu Sq. No. 2, 300041, Timisoara, Romania.
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84, Lund, Sweden.
- Abliva AB, Medicon Village, 223 81, Lund, Sweden.
| | - Lucian Petrescu
- Doctoral School Medicine-Pharmacy, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy of Timişoara, Romania, E. Murgu Sq. No. 2, 300041, Timisoara, Romania
| |
Collapse
|
14
|
Adelusi OB, Akakpo JY, Eichenbaum G, Sadaff E, Ramachandran A, Jaeschke H. The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice. Arch Toxicol 2024; 98:1843-1858. [PMID: 38551724 PMCID: PMC11210275 DOI: 10.1007/s00204-024-03725-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.
Collapse
Affiliation(s)
- Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Gary Eichenbaum
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Ejaz Sadaff
- Office of the Chief Medical Officer, Johnson & Johnson, Consumer Health, New Brunswick, NJ, 08901, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
15
|
Bazan HA, Bhattacharjee S, Reid MM, Jun B, Polk C, Strain M, St Pierre LA, Desai N, Daly PW, Cucinello-Ragland JA, Edwards S, Recio J, Alvarez-Builla J, Cai JJ, Bazan NG. Transcriptomic signature, bioactivity and safety of a non-hepatotoxic analgesic generating AM404 in the midbrain PAG region. Sci Rep 2024; 14:11103. [PMID: 38750093 PMCID: PMC11096368 DOI: 10.1038/s41598-024-61791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Safe and effective pain management is a critical healthcare and societal need. The potential for acute liver injury from paracetamol (ApAP) overdose; nephrotoxicity and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use; and opioids' addiction are unresolved challenges. We developed SRP-001, a non-opioid and non-hepatotoxic small molecule that, unlike ApAP, does not produce the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine (NAPQI) and preserves hepatic tight junction integrity at high doses. CD-1 mice exposed to SRP-001 showed no mortality, unlike a 70% mortality observed with increasing equimolar doses of ApAP within 72 h. SRP-001 and ApAP have comparable antinociceptive effects, including the complete Freund's adjuvant-induced inflammatory von Frey model. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception region, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways/networks, including endocannabinoid signaling, genes pertaining to mechanical nociception, and fatty acid amide hydrolase (FAAH). Both regulate the expression of key genes encoding FAAH, 2-arachidonoylglycerol (2-AG), cannabinoid receptor 1 (CNR1), CNR2, transient receptor potential vanilloid type 4 (TRPV4), and voltage-gated Ca2+ channel. Phase 1 trial (NCT05484414) (02/08/2022) demonstrates SRP-001's safety, tolerability, and favorable pharmacokinetics, including a half-life from 4.9 to 9.8 h. Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.
Collapse
Affiliation(s)
- Hernan A Bazan
- Section of Vascular/Endovascular Surgery, Department of Surgery, Ochsner Clinic, New Orleans, LA, 70118, USA.
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Connor Polk
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Madeleine Strain
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Linsey A St Pierre
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Neehar Desai
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Patrick W Daly
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jessica A Cucinello-Ragland
- Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
- Department of Physiology, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Javier Recio
- Department of Organic Chemistry and IQAR, University of Alcala, 28805, Alcala de Henares, Madrid, Spain
| | - Julio Alvarez-Builla
- Department of Organic Chemistry and IQAR, University of Alcala, 28805, Alcala de Henares, Madrid, Spain
| | - James J Cai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Raith J, Bachmann M, Gonther S, Stülb H, Aghdassi AA, Pham CTN, Mühl H. Targeting cathepsin C ameliorates murine acetaminophen-induced liver injury. Theranostics 2024; 14:3029-3042. [PMID: 38855187 PMCID: PMC11155399 DOI: 10.7150/thno.96092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024] Open
Abstract
Acetaminophen (APAP) overdosing is a major cause of acute liver failure worldwide and an established model for drug-induced acute liver injury (ALI). While studying gene expression during murine APAP-induced ALI by 3'mRNA sequencing (massive analysis of cDNA ends, MACE), we observed splenic mRNA accumulation encoding for the neutrophil serine proteases cathepsin G, neutrophil elastase, and proteinase-3 - all are hierarchically activated by cathepsin C (CtsC). This, along with increased serum levels of these proteases in diseased mice, concurs with the established phenomenon of myeloid cell mobilization during APAP intoxication. Objective: In order to functionally characterize CtsC in murine APAP-induced ALI, effects of its genetic or pharmacological inhibition were investigated. Methods and Results: We report on substantially reduced APAP toxicity in CtsC deficient mice. Alleviation of disease was likewise observed by treating mice with the CtsC inhibitor AZD7986, both in short-term prophylactic and therapeutic protocols. This latter observation indicates a mode of action beyond inhibition of granule-associated serine proteases. Protection in CtsC knockout or AZD7986-treated wildtype mice was unrelated to APAP metabolization but, as revealed by MACE, realtime PCR, or ELISA, associated with impaired expression of inflammatory genes with proven pathogenic roles in ALI. Genes consistently downregulated in protocols tested herein included cxcl2, mmp9, and angpt2. Moreover, ptpn22, a positive regulator of the toll-like receptor/interferon-axis, was reduced by targeting CtsC. Conclusions: This work suggests CtsC as promising therapeutic target for the treatment of ALI, among others paradigmatic APAP-induced ALI. Being also currently evaluated in phase III clinical trials for bronchiectasis, successful application of AZD7986 in experimental APAP intoxication emphasizes the translational potential of this latter therapeutic approach.
Collapse
Affiliation(s)
- Jessica Raith
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sina Gonther
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hendrik Stülb
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ali A. Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christine T. N. Pham
- John Cochran VA Medical Center, Saint Louis, MO, USA; Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Zhao L, Zhang X, Chen Z, Lai Y, Xu J, Zhou R, Ma P, Cai W, Zeng Y, Wu X, Ying H, Yu F. Cynarin alleviates acetaminophen-induced acute liver injury through the activation of Keap1/Nrf2-mediated lipid peroxidation defense via the AMPK/SIRT3 signaling pathway. Food Funct 2024; 15:4954-4969. [PMID: 38602356 DOI: 10.1039/d3fo05025d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Overdose of Acetaminophen (APAP) is a major contributor to acute liver injury (ALI), a complex pathological process with limited effective treatments. Emerging evidence links lipid peroxidation to APAP-induced ALI. Cynarin (Cyn), a hydroxycinnamic acid derivative, exhibits liver protective effects, but whether it mitigates APAP-induced ALI is unclear. Our aim was to verify the protective impact of Cyn on APAP-induced ALI and elucidate the molecular mechanisms governing this process. Herein, the regulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) interaction was determined to be a novel mechanism underlying this protective impact of Cyn against APAP-induced ALI. Nrf2 deficiency increased the severity of APAP-induced ALI and lipid peroxidation and counteracted the protective effect of Cyn against this pathology. Additionally, Cyn promoted the dissociation of Nrf2 from Keap1, enhancing the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, thereby inhibiting lipid peroxidation. Molecular docking demonstrated that Cyn bound competitively to Keap1, and overexpression of Keap1 reversed Nrf2-activated anti-lipid peroxidation. Additionally, Cyn activated the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)3 signaling pathway, which exhibits a protective effect on APAP-induced ALI. These findings propose that Cyn alleviates APAP-induced ALI by enhancing the Keap1/Nrf2-mediated lipid peroxidation defense via activation of the AMPK/SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Zhuofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yuning Lai
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Ruoru Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Peipei Ma
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Weimin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
Hassan R, Hobloss Z, Myllys M, González D, Begher-Tibbe B, Reinders J, Friebel A, Hoehme S, Abdelmageed N, Abbas AA, Seddek AL, Morad SAF, Hengstler JG, Ghallab A. Acetaminophen overdose causes a breach of the blood-bile barrier in mice but not in rats. Arch Toxicol 2024; 98:1533-1542. [PMID: 38466352 DOI: 10.1007/s00204-024-03705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.
Collapse
Affiliation(s)
- Reham Hassan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Zaynab Hobloss
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Maiju Myllys
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Daniela González
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Brigitte Begher-Tibbe
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Joerg Reinders
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Adrian Friebel
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Hoehme
- Institute of Computer Science &, Saxonian Incubator for Clinical Research (SIKT), University of Leipzig, Haertelstraße 16-18, 04107, Leipzig, Germany
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Aya A Abbas
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Abdel-Latief Seddek
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Samy A F Morad
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
19
|
Jaeschke H, Ramachandran A. Comments on: Unveiling the therapeutic promise of natural products in alleviating drug-induced liver injury: Present advancements and future prospects. Phytother Res 2024; 38:1781-1782. [PMID: 38317477 PMCID: PMC11003835 DOI: 10.1002/ptr.8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
20
|
Yuan X, Chen P, Luan X, Yu C, Miao L, Zuo Y, Liu A, Sun T, Di G. NLRP3 deficiency protects against acetaminophen‑induced liver injury by inhibiting hepatocyte pyroptosis. Mol Med Rep 2024; 29:61. [PMID: 38391117 PMCID: PMC10902631 DOI: 10.3892/mmr.2024.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Acetaminophen (APAP) overdose is the primary cause of drug‑induced acute liver failure in numerous Western countries. NLR family pyrin domain containing 3 (NLRP3) inflammasome activation serves a pivotal role in the pathogenesis of various forms of acute liver injury. However, the cellular source for NLRP3 induction and its involvement during APAP‑induced hepatotoxicity have not been thoroughly investigated. In the present study, hematoxylin and eosin staining was performed to assess histopathological changes of liver tissue. Immunohistochemistry staining(NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3), western blotting (NLRP3, Caspase‑1, IL‑1β, GSDMD and Caspase‑3) and RT‑qPCR (NLRP3, Caspase‑1 and IL‑1β) were performed to assess the expression of NLRP3/GSDMD signaling pathway. TUNEL staining was performed to assess apoptosis of liver tissue. The serum expression levels of inflammatory factors (IL‑6, IL‑18, IL‑1β and TNF‑α) were assessed using ELISA and inflammation of liver tissue was assessed using immunohistochemistry (Ly6G and CD68) and RT‑qPCR (TNF‑α, Il‑6, Mcp‑1, Cxcl‑1, Cxcl‑2). A Cell Counting Kit‑8 was performed to assess cell viability and apoptosis. Protein and gene expression were analyzed by western blotting (PCNA, CCND1) and RT‑qPCR (CyclinA2, CyclinD1 and CyclinE1). Through investigation of an APAP‑induced acute liver injury model (AILI), the present study demonstrated that APAP overdose induced activation of NLRP3 and cleavage of gasdermin D (GSDMD) in hepatocytes, both in vivo and in vitro. Additionally, mice with hepatocyte‑specific knockout of Nlrp3 exhibited reduced liver injury and lower mortality following APAP intervention, accompanied by decreased infiltration of inflammatory cells and attenuated inflammatory response. Furthermore, pharmacological blockade of NLRP3/GSDMD signaling using MCC950 or disulfiram significantly ameliorated liver injury and reduced hepatocyte death. Notably, hepatocyte Nlrp3 deficiency promoted liver recovery by enhancing hepatocyte proliferation. Collectively, the present study demonstrated that inhibition of the NLRP3 inflammasome protects against APAP‑induced acute liver injury by reducing hepatocyte pyroptosis and suggests that targeting NLRP3 may hold therapeutic potential for treating AILI.
Collapse
Affiliation(s)
- Xinying Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Chen
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoyu Luan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Chaoqun Yu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Longyu Miao
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yaru Zuo
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Anxu Liu
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyi Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Guohu Di
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
21
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
22
|
Li Q, Zhang F, Wang H, Tong Y, Fu Y, Wu K, Li J, Wang C, Wang Z, Jia Y, Chen R, Wu Y, Cui R, Wu Y, Qi Y, Qu K, Liu C, Zhang J. NEDD4 lactylation promotes APAP induced liver injury through Caspase11 dependent non-canonical pyroptosis. Int J Biol Sci 2024; 20:1413-1435. [PMID: 38385085 PMCID: PMC10878146 DOI: 10.7150/ijbs.91284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/07/2024] [Indexed: 02/23/2024] Open
Abstract
Caspase-11 detection of intracellular lipopolysaccharide mediates non-canonical pyroptosis, which could result in inflammatory damage and organ lesions in various diseases such as sepsis. Our research found that lactate from the microenvironment of acetaminophen-induced acute liver injury increased Caspase-11 levels, enhanced gasdermin D activation and accelerated macrophage pyroptosis, which lead to exacerbation of liver injury. Further experiments unveiled that lactate inhibits Caspase-11 ubiquitination by reducing its binding to NEDD4, a negative regulator of Caspase-11. We also identified that lactates regulated NEDD4 K33 lactylation, which inhibits protein interactions between Caspase-11 and NEDD4. Moreover, restraining lactylation reduces non-canonical pyroptosis in macrophages and ameliorates liver injury. Our work links lactate to the exquisite regulation of the non-canonical inflammasome, and provides a basis for targeting lactylation signaling to combat Caspase-11-mediated non-canonical pyroptosis and acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Qinglin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fengping Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Hai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yingmu Tong
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Kunjin Wu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Jing Li
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Zi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yifan Jia
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yun Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Kai Qu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, People's Republic of China
| | - Jingyao Zhang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, People's Republic of China
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| |
Collapse
|
23
|
Chao X, Niu M, Wang S, Ma X, Yang X, Sun H, Hu X, Wang H, Zhang L, Huang R, Xia M, Ballabio A, Jaeschke H, Ni HM, Ding WX. High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice. Acta Pharm Sin B 2024; 14:190-206. [PMID: 38261809 PMCID: PMC10793101 DOI: 10.1016/j.apsb.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiao Yang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Sun
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xujia Hu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Li Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples 80131, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology & Motility, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Ouyang S, Zhou ZX, Liu HT, Ren Z, Liu H, Deng NH, Tian KJ, Zhou K, Xie HL, Jiang ZS. LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease. Curr Med Chem 2024; 31:1251-1264. [PMID: 36788688 DOI: 10.2174/0929867330666230213100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/16/2023]
Abstract
Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.
Collapse
Affiliation(s)
- Shao Ouyang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
- Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Department of Cardiovascular Medicine, Hengyang Medical School, The Second Affiliated Hospital, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hunan 421001, China
| | - Zhi-Xiang Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hui-Ting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Huan Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kai-Jiang Tian
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hai-Lin Xie
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| |
Collapse
|
25
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective. Curr Pharm Des 2024; 30:1952-1965. [PMID: 38859792 DOI: 10.2174/0113816128305296240523112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient explanations for dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines, including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumor-on-a-chip systems and emphasizes their use in evaluating anti-cancer medications.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
26
|
Liang Y, Qiu S, Zou Y, Luo L. Targeting ferroptosis with natural products in liver injury: new insights from molecular mechanisms to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155134. [PMID: 37863001 DOI: 10.1016/j.phymed.2023.155134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Ferroptosis is a brand-new type of controlled cell death that is distinguished by its reliance on iron and the production of lipid peroxidation. The role of ferroptosis in damaging liver disorders has attracted a lot of attention in recent years. One effective strategy to reduce liver damage is to target ferroptosis. PURPOSE The purpose of this review is to clarify the connection between ferroptosis and liver damage and to look into the potential contribution of natural products to the clinical management of liver damage and the discovery of novel medications. METHODS To study the methods by which natural products operate on ferroptosis to cure liver damage and their main signaling pathways, we searched databases from the time of initial publication to August 2023 in PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure. The liver illness that each natural product treats is categorized and summarized. It's interesting to note that several natural compounds, such Artemether, Fucoidan sulfate, Curcumin, etc., have the benefit of having many targets and multiple pathways of action. RESULTS We saw that in human samples or animal models of liver injury, ferroptosis indicators were activated, lipid peroxidation levels were elevated, and iron inhibitors had the ability to reduce liver damage. Liver damage can be treated with natural products by regulating ferroptosis. This is mostly accomplished through the modulation of Nrf2-related pathways (e.g., Conclusions and Astaxanthin), biological enzymes like GPX4 and the SIRT family (e.g., Chrysophanol and Decursin), and transcription factors like P53 (e.g., Artemether and Zeaxanthin). CONCLUSIONS This review proposes a promising path for the therapeutic therapy of liver damage by providing a theoretical foundation for the management of ferroptosis utilizing natural ingredients.
Collapse
Affiliation(s)
- Yongyi Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Shaojun Qiu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Youwen Zou
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
27
|
Trinh LT, Lim S, Lee HJ, Kim IT. Development of Efficient Sodium Alginate/Polysuccinimide-Based Hydrogels as Biodegradable Acetaminophen Delivery Systems. Gels 2023; 9:980. [PMID: 38131966 PMCID: PMC10743301 DOI: 10.3390/gels9120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Efficient drug delivery systems are essential for improving patient outcomes. Acetaminophen (AP), which is a kind of oral administration, is a commonly used pain reliever and fever reducer. However, oral administration carries various health risks, especially overdose and frequent use; for instance, AP is administered approximately 4 times per day. Therefore, the aim of this study is to develop an efficient delivery system for once-daily administration by combining sodium alginate and polysuccinimide (PSI) hydrogels to delay the release of analgesic AP. PSI is a biodegradable polymer that can be used safely and effectively in drug delivery systems because it is eliminated by hydrolysis in the intestine. The use of PSI also improves the mechanical properties of hydrogels and prolongs drug release. In this study, hydrogel characterizations such as mechanical properties, drug dissolution ability, and biodegradability were measured to evaluate the hydrolysis of PSI in the intestine. Based on the results, hydrogels could be designed to improve the structural mechanical properties and to allow the drug to be completely dissolved, and eliminated from the body through PSI hydrolysis in the intestines. In addition, the release profiles of AP in the hydrogels were evaluated, and the hydrogels provided continuous release of AP for 24 h. Our research suggests that sodium alginate/PSI hydrogels can potentially serve as biodegradable delivery systems for AP. These findings may have significant implications for developing efficient drug delivery systems for other classes of drugs.
Collapse
Affiliation(s)
| | | | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| | - Il Tae Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| |
Collapse
|
28
|
Yu Y, Chang L, Hu Q, Zhu J, Zhang J, Xia Q, Zhao J. P2rx1 deficiency alleviates acetaminophen-induced acute liver failure by regulating the STING signaling pathway. Cell Biol Toxicol 2023; 39:2761-2774. [PMID: 37046119 PMCID: PMC10693536 DOI: 10.1007/s10565-023-09800-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/06/2023] [Indexed: 04/14/2023]
Abstract
AIMS Purinergic signaling-mediated mitochondria dysfunction and innate immune-mediated inflammation act as triggers during acetaminophen (APAP)-induced liver injury (AILI). However, the underlying mechanisms by which purinoceptor regulates mitochondria function and inflammation response in the progression of AILI remains unclear. METHODS First, the hepatic level of purinergic receptor P2X 1 (P2RX1) was identified in the DILI patients and APAP-induced WT mice. P2rx1 knockout (KO) mice (P2rx1-/-) with 300 mg/kg APAP challenge were used for the analysis of the potential role of P2RX1 in the progression of AILI. Administration of DMX, the activator of stimulator of interferon genes (STING), was performed to investigate the effects of the STING-related pathway on APAP-treated P2rx1-/- mice. RESULTS The elevated hepatic P2RX1 levels were found in DILI patients and the AILI mice. P2rx1 depletion offered protection against the initial stages of AILI, mainly by inhibiting cell death and promoting inflammation resolution, which was associated with alleviating mitochondria dysfunction. Mechanistically, P2rx1 depletion could inhibit STING-TANK-binding kinase 1 (TBK1)-P65 signaling pathways in vivo. We then showed that DMX-mediated STING activation could greatly aggravate the liver injury of P2rx1-/- mice treated with APAP. CONCLUSION Our data confirmed that P2RX1 was inducted during AILI, identified P2RX1 as a novel regulator in mitochondria dysfunction and STING pathways, and suggested a promising therapeutic approach for AILI involving the blockade of P2RX1. 1. It first demonstrated the protective effects of P2rx1 deficiency on acetaminophen-induced liver injury (AILI). 2. P2rx1 knockout alleviates mitochondria function and promotes inflammation resolution after APAP treatment. 3. It first reported the regulation of P2RX1 on the STING signaling pathway in the progress of AILI. 4. P2RX1 blockade is a promising therapeutic strategy for AILI.
Collapse
Affiliation(s)
- Yeping Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ling Chang
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingluan Hu
- Department of Gastroenterology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Wei M, Gu X, Li H, Zheng Z, Qiu Z, Sheng Y, Lu B, Wang Z, Ji L. EGR1 is crucial for the chlorogenic acid-provided promotion on liver regeneration and repair after APAP-induced liver injury. Cell Biol Toxicol 2023; 39:2685-2707. [PMID: 36809385 DOI: 10.1007/s10565-023-09795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023]
Abstract
Improper use of acetaminophen (APAP) will induce acute liver failure. This study is designed to investigate whether early growth response-1 (EGR1) participated in the promotion on liver repair and regeneration after APAP-induced hepatotoxicity provided by natural compound chlorogenic acid (CGA). APAP induced the nuclear accumulation of EGR1 in hepatocytes regulated by extracellular-regulated protein kinase (ERK)1/2. In Egr1 knockout (KO) mice, the liver damage caused by APAP (300 mg/kg) was more severe than in wild-type (WT) mice. Results of chromatin immunoprecipitation and sequencing (ChIP-Seq) manifested that EGR1 could bind to the promoter region in Becn1, Ccnd1, and Sqstm1 (p62) or the catalytic/modify subunit of glutamate-cysteine ligase (Gclc/Gclm). Autophagy formation and APAP-cysteine adduct (APAP-CYS) clearance were decreased in Egr1 KO mice administered with APAP. The EGR1 deletion reduced hepatic cyclin D1 expression at 6, 12, or 18 h post APAP administration. Meanwhile, the EGR1 deletion also decreased hepatic p62, Gclc and Gclm expression, GCL enzymatic activity, and glutathione (GSH) content and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activation and thus aggravated oxidative liver injury induced by APAP. CGA increased EGR1 nuclear accumulation; enhanced hepatic Ccnd1, p62, Gclc, and Gclm expression; and accelerated the liver regeneration and repair in APAP-intoxicated mice. In conclusion, EGR1 deficiency aggravated liver injury and obviously delayed liver regeneration post APAP-induced hepatotoxicity through inhibiting autophagy, enhancing liver oxidative injury, and retarding cell cycle progression, but CGA promoted the liver regeneration and repair in APAP-intoxicated mice via inducing EGR1 transcriptional activation.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhiyong Zheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhimiao Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Rousar T, Handl J, Capek J, Nyvltova P, Rousarova E, Kubat M, Smid L, Vanova J, Malinak D, Musilek K, Cesla P. Cysteine conjugates of acetaminophen and p-aminophenol are potent inducers of cellular impairment in human proximal tubular kidney HK-2 cells. Arch Toxicol 2023; 97:2943-2954. [PMID: 37639014 PMCID: PMC10504157 DOI: 10.1007/s00204-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.
Collapse
Affiliation(s)
- Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Miroslav Kubat
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Lenka Smid
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - Jana Vanova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Petr Cesla
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic
| |
Collapse
|
31
|
Aki T, Tanaka H, Funakoshi T, Unuma K, Uemura K. Excessive N-acetylcysteine exaggerates glutathione redox homeostasis and apoptosis during acetaminophen exposure in Huh-7 human hepatoma cells. Biochem Biophys Res Commun 2023; 676:66-72. [PMID: 37487439 DOI: 10.1016/j.bbrc.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is one of the biggest drawbacks of this relatively safe and widely used drug. In addition to its hepatotoxicity, APAP also cause comparable levels of toxicity on human hepatoma cells. Here we show activation of the intrinsic caspase-9/3 pathway of apoptosis followed by gasdermin E (GSDME) cleavage and subsequent ballooning in APAP (10 mM, 72 h)-treated Huh-7 human hepatocarcinoma cells. N-acetylcysteine (NAC), an antioxidant currently used as an antidote for APAP overdose, does not alleviate APAP toxicity in Huh-7 cells; NAC overdose (10 mM) rather aggravates APAP toxicity. NAC overdose not only aggravates cell death, but also decreases the cellular GSH/GSSG ratio, an indicator of redox homeostasis of glutathione. These results show for the first time that APAP-induced apoptosis in hepatoma cells is followed by secondary necrosis via the caspase-3/GSDME pathway. NAC overdose (10 mM) not only worsens the glutathione redox status, but also accelerates this pathway.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroki Tanaka
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Groeneveld DJ, Poole LG, Bouck EG, Schulte A, Wei Z, Williams KJ, Watson VE, Lisman T, Wolberg AS, Luyendyk JP. Robust coagulation activation and coagulopathy in mice with experimental acetaminophen-induced liver failure. J Thromb Haemost 2023; 21:2430-2440. [PMID: 37054919 PMCID: PMC10524846 DOI: 10.1016/j.jtha.2023.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Patients with acetaminophen (APAP)-induced acute liver failure (ALF) display both hyper- and hypocoagulable changes not necessarily recapitulated by standard hepatotoxic doses of APAP used in mice (eg, 300 mg/kg). OBJECTIVES We sought to examine coagulation activation in vivo and plasma coagulation potential ex vivo in experimental settings of APAP-induced hepatotoxicity and repair (300-450 mg/kg) and APAP-induced ALF (600 mg/kg) in mice. RESULTS APAP-induced ALF was associated with increased plasma thrombin-antithrombin complexes, decreased plasma prothrombin, and a dramatic reduction in plasma fibrinogen compared with lower APAP doses. Hepatic fibrin(ogen) deposits increased independent of APAP dose, whereas plasma fibrin(ogen) degradation products markedly increased in mice with experimental ALF. Early pharmacologic anticoagulation (+2 hours after 600 mg/kg APAP) limited coagulation activation and reduced hepatic necrosis. The marked coagulation activation evident in mice with APAP-induced ALF was associated with a coagulopathy detectable ex vivo in plasma. Specifically, prolongation of the prothrombin time and inhibition of tissue factor-initiated clot formation were evident even after restoration of physiological fibrinogen concentrations. Plasma endogenous thrombin potential was similarly reduced at all APAP doses. Interestingly, in the presence of ample fibrinogen, ∼10 times more thrombin was required to clot plasma from mice with APAP-induced ALF compared with plasma from mice with simple hepatotoxicity. CONCLUSION The results indicate that robust pathologic coagulation cascade activation in vivo and suppressed coagulation ex vivo are evident in mice with APAP-induced ALF. This unique experimental setting may fill an unmet need as a model to uncover mechanistic aspects of the complex coagulopathy of ALF.
Collapse
Affiliation(s)
- Dafna J Groeneveld
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Lauren G Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Emma G Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Schulte
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Kurt J Williams
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Victoria E Watson
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ton Lisman
- Section of Hepatobiliary Surgery and Liver Transplantation and Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
33
|
Hu Y, Li M, Wang Y, Xue Q, Luo X, Khan A, Zhao T, Liu Y, Wang Z, Wang Y, Cheng G. Protective effect of hot-water and ethanol-aqueous extracts from Anneslea fragrans against acetaminophen-induced acute liver injury in mice. Food Chem Toxicol 2023; 179:113973. [PMID: 37506865 DOI: 10.1016/j.fct.2023.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Anneslea fragrans Wall. (AF) is an important medicinal and edible plant in China. The principal objectives of this study are to explore the hepatoprotective effect of ethanol-aqueous (AFE) and hot-water (AFW) extracts in vitro and in vivo. UPLC-ESI-MS/MS analysis showed that AFW and AFE are rich in dihydrochalcones. Both AFW and AFE significantly up-regulated the expressions of SOD, CAT and GSH, reduced the MDA content in acetaminophen (APAP)-induced HepG2 cells, and suppressed the expressions of NO, TNF-α, IL-1β, and IL-6 in LPS-induced RAW246.7 cells. In APAP-induced mice, AFW and AFE administration significantly decreased the plasma levels of AST and ALT, and improved liver tissue damage, the collagen deposition and fibrosis formation. Moreover, AFW and AFE decreased the MDA and ROS accumulations via activating Nrf2 pathway to increase the hepatic GSH contents and activities of SOD, CAT, HO-1, and NQO-1, reduced the levels of NO, TNF-α, IL-1β, and IL-6 by suppressing the JNK/p38/ERK/NF-κB pathways, and alleviated apoptosis via regulating Bcl-2, Bax, caspase-3/9 protein expressions. This study provides a new sight that AFW and AFE may have a potential natural resource for the treatment of liver injury.
Collapse
Affiliation(s)
- Yiwen Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mengcheng Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
34
|
Chiew AL, Isbister GK. Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective. Expert Opin Drug Metab Toxicol 2023; 19:601-616. [PMID: 37714812 DOI: 10.1080/17425255.2023.2259787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Acetaminophen (paracetamol) is a commonly used analgesic and antipyretic agent, which is safe in therapeutic doses. Acetaminophen poisoning due to self-harm or repeated supratherapeutic ingestion is a common cause of acute liver injury. Acetylcysteine has been a mainstay of treatment for acetaminophen poisoning for decades and is efficacious if administered early. However, treatment failures occur if administered late, in 'massive' overdoses or in high-risk patients. AREAS COVERED This review provides an overview of the mechanisms of toxicity of acetaminophen poisoning (metabolic and oxidative phase) and how this relates to the assessment and treatment of the acetaminophen poisoned patient. The review focuses on how these advances offer further insight into the utility of novel biomarkers and the role of proposed adjunct treatments. EXPERT OPINION Advances in our understanding of acetaminophen toxicity have allowed the development of novel biomarkers and a better understanding of how adjunct treatments may prevent acetaminophen toxicity. Newly proposed adjunct treatments like fomepizole are being increasingly used without robust clinical trials. Novel biomarkers (not yet clinically available) may provide better assessment of these newly proposed adjunct treatments, particularly in clinical trials. These advances in our understanding of acetaminophen toxicity and liver injury hold promise for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Angela L Chiew
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Geoffrey K Isbister
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle, Waratah, NSW, Australia
| |
Collapse
|
35
|
Monte AA, Vest A, Reisz JA, Berninzoni D, Hart C, Dylla L, D'Alessandro A, Heard KJ, Wood C, Pattee J. A Multi-Omic Mosaic Model of Acetaminophen Induced Alanine Aminotransferase Elevation. J Med Toxicol 2023; 19:255-261. [PMID: 37231244 PMCID: PMC10212224 DOI: 10.1007/s13181-023-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) is the most common cause liver injury following alcohol in US patients. Predicting liver injury and subsequent hepatic regeneration in patients taking therapeutic doses of APAP may be possible using new 'omic methods such as metabolomics and genomics. Multi'omic techniques increase our ability to find new mechanisms of injury and regeneration. METHODS We used metabolomic and genomic data from a randomized controlled trial of patients administered 4 g of APAP per day for 14 days or longer with blood samples obtained at 0 (baseline), 4, 7, 10, 13 and 16 days. We used the highest ALT as the clinical outcome to be predicted in our integrated analysis. We used penalized regression to model the relationship between genetic variants and day 0 metabolite level, and then performed a metabolite-wide colocalization scan to associate the genetically regulated component of metabolite expression with ALT elevation. Genome-wide association study (GWAS) analyses were conducted for ALT elevation and metabolite level using linear regression, with age, sex, and the first five principal components included as covariates. Colocalization was tested via a weighted sum test. RESULTS Out of the 164 metabolites modeled, 120 met the criteria for predictive accuracy and were retained for genetic analyses. After genomic examination, eight metabolites were found to be under genetic control and predictive of ALT elevation due to therapeutic acetaminophen. The metabolites were: 3-oxalomalate, allantoate, diphosphate, L-carnitine, L-proline, maltose, and ornithine. These genes are important in the tricarboxylic acid cycle (TCA), urea breakdown pathway, glutathione production, mitochondrial energy production, and maltose metabolism. CONCLUSIONS This multi'omic approach can be used to integrate metabolomic and genomic data allowing identification of genes that control downstream metabolites. These findings confirm prior work that have identified mitochondrial energy production as critical to APAP induced liver injury and have confirmed our prior work that demonstrate the importance of the urea cycle in therapeutic APAP liver injury.
Collapse
Affiliation(s)
- Andrew A Monte
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA.
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
- Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA.
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA.
| | - Alexis Vest
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle Berninzoni
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Claire Hart
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
| | - Layne Dylla
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Center for Bioinformatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Angelo D'Alessandro
- Metabolomics Core, Department of Biochemistry and Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kennon J Heard
- Department of Emergency Medicine, University of Colorado School of Medicine, Leprino Building, 7th Floor Campus Box B-215, 12401 E. 17th Avenue, Aurora, CO, 80045, USA
- Denver Health and Hospital Authority, Rocky Mountain Poison & Drug Center, Denver, CO, USA
| | - Cheyret Wood
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jack Pattee
- Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
36
|
Park SY, Gurung R, Hwang JH, Kang JH, Jung HJ, Zeb A, Hwang JI, Park SJ, Maeng HJ, Shin D, Oh SH. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo. Redox Biol 2023; 64:102783. [PMID: 37348157 DOI: 10.1016/j.redox.2023.102783] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Oxidative stress due to abnormal accumulation of reactive oxygen species (ROS) is an initiator of a large number of human diseases, and thus, the elimination and prevention of excessive ROS are important aspects of preventing the development of such diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is an essential transcription factor that defends against oxidative stress, and its function is negatively controlled by Kelch-like ECH-associated protein 1 (KEAP1). Therefore, activating NRF2 by inhibiting KEAP1 is viewed as a strategy for combating oxidative stress-related diseases. Here, we generated a cereblon (CRBN)-based proteolysis-targeting chimera (PROTAC), which we named SD2267, that induces the proteasomal degradation of KEAP1 and leads to NRF2 activation. As was intended, SD2267 bound to KEAP1, recruited CRBN, and induced the degradation of KEAP1. Furthermore, the KEAP1 degradation efficacy of SD2267 was diminished by MG132 (a proteasomal degradation inhibitor) but not by chloroquine (an autophagy inhibitor), which suggested that KEAP1 degradation by SD2267 was proteasomal degradation-dependent and autophagy-independent. Following KEAP1 degradation, SD2267 induced the nuclear translocation of NRF2, which led to the expression of NRF2 target genes and attenuated ROS accumulation induced by acetaminophen (APAP) in hepatocytes. Based on in vivo pharmacokinetic study, SD2267 was injected intraperitoneally at 1 or 3 mg/kg in APAP-induced liver injury mouse model. We observed that SD2267 degraded hepatic KEAP1 and attenuated APAP-induced liver damage. Summarizing, we described the synthesis of a KEAP1-targeting PROTAC (SD2267) and its efficacy and mode of action in vitro and in vivo. The results obtained suggest that SD2267 could be used to treat hepatic diseases related to oxidative stress.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Raju Gurung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
37
|
Sun M, Chen P, Xiao K, Zhu X, Zhao Z, Guo C, He X, Shi T, Zhong Q, Jia Y, Tao Y, Li M, Leong KW, Shao D. Circulating Cell-Free DNAs as a Biomarker and Therapeutic Target for Acetaminophen-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206789. [PMID: 37035952 PMCID: PMC10238175 DOI: 10.1002/advs.202206789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/08/2023] [Indexed: 06/04/2023]
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury and acute liver failure, while the detection, prognosis prediction, and therapy for APAP-induced liver injury (AILI) remain improved. Here, it is determined that the temporal pattern of circulating cell-free DNA (cfDNA) is strongly associated with damage and inflammation parameters in AILI. CfDNA is comparable to alanine aminotransferase (ALT) in predicting mortality and outperformed ALT when combined with ALT in AILI. The depletion of cfDNA or neutrophils alleviates liver damage, while the addition of cfDNA or adoptive transfer of neutrophils exacerbates the damage. The combination of DNase I and N-acetylcysteine attenuates AILI significantly. This study establishes that cfDNA is a mechanistic biomarker to predict mortality in AILI mice. The combination of scavenging cfDNA and reducing oxidative damage provides a promising treatment for AILI.
Collapse
Affiliation(s)
- Madi Sun
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Peiyu Chen
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Xiang Zhu
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Zhibin Zhao
- School of MedicineSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510006China
| | - Chenyang Guo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Xuan He
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Tongfei Shi
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yong Jia
- School of NursingJilin UniversityChangchunJilin130021China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Kam W. Leong
- Department of Systems BiologyColumbia UniversityNew YorkNY10032USA
| | - Dan Shao
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdong510630China
- Guangdong Provincial Key Laboratory of Biomedical EngineeringKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
38
|
Abstract
Mitochondria are critical organelles responsible for the maintenance of cellular energy homeostasis. Thus, their dysfunction can have severe consequences in cells responsible for energy-intensive metabolic function, such as hepatocytes. Extensive research over the last decades have identified compromised mitochondrial function as a central feature in the pathophysiology of liver injury induced by an acetaminophen (APAP) overdose, the most common cause of acute liver failure in the United States. While hepatocyte mitochondrial oxidative and nitrosative stress coupled with induction of the mitochondrial permeability transition are well recognized after an APAP overdose, recent studies have revealed additional details about the organelle's role in APAP pathophysiology. This concise review highlights these new advances, which establish the central role of the mitochondria in APAP pathophysiology, and places them in the context of earlier information in the literature. Adaptive alterations in mitochondrial morphology as well as the role of cellular iron in mitochondrial dysfunction and the organelle's importance in liver recovery after APAP-induced injury will be discussed.
Collapse
|
39
|
Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, Yang J, Wang Y, Song Y. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm Sin B 2023; 13:2483-2509. [PMID: 37425038 PMCID: PMC10326261 DOI: 10.1016/j.apsb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to human clinical trials is a crucial part of drug development, which deserves greater emphasis to reduce the cost and time in drug discovery. Recent advances in microfabrication and tissue engineering have given rise to organ-on-a-chip, an in vitro model capable of recapitulating human organ functions in vivo and providing insight into disease pathophysiology, which offers a potential alternative to animal models for more efficient pre-clinical screening of drug candidates. In this review, we first give a snapshot of general considerations for organ-on-a-chip device design. Then, we comprehensively review the recent advances in organ-on-a-chip for drug screening. Finally, we summarize some key challenges of the progress in this field and discuss future prospects of organ-on-a-chip development. Overall, this review highlights the new avenue that organ-on-a-chip opens for drug development, therapeutic innovation, and precision medicine.
Collapse
Affiliation(s)
- Yanping Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yi Yin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Li Q, Zhang W, Cheng N, Zhu Y, Li H, Zhang S, Guo W, Ge G. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154726. [PMID: 36863308 DOI: 10.1016/j.phymed.2023.154726] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cirsii Japonici Herba Carbonisata (Dajitan in Chinese) has been used to treat liver disorders in Asian countries. Pectolinarigenin (PEC), an abundant constituent in Dajitan, has been found to possess a wide range of biological benefits, including hepatoprotective effects. However, the effects of PEC on acetaminophen (APAP)-induced liver injury (AILI) and the underlying mechanisms have not been studied. PURPOSES To explore the role and mechanisms of PEC in protecting against AILI. STUDY DESIGN AND METHODS The hepatoprotective benefits of PEC were studied using a mouse model and HepG2 cells. PEC was tested for its effects by injecting it intraperitoneally before APAP administration. To assess liver damage, histological and biochemical tests were performed. The levels of inflammatory factors in the liver were measured using RT-PCR and ELISA. Western blotting was used to measure the expression of a panel of key proteins involved in APAP metabolism, as well as Nrf2 and PPARα. PEC mechanisms on AILI were investigated using HepG2 cells, while the Nrf2 inhibitor (ML385) and PPARα inhibitor (GW6471) were used to validate the importance of either Nrf2 and PPARα in the hepatoprotective effects of PEC. RESULTS PEC treatment decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in the liver. PEC pretreatment increased the activity of superoxide dismutase (SOD) and glutathione (GSH) while decreasing malondialdehyde production (MDA). PEC could also up-regulate two important APAP detoxification enzymes (UGT1A1 and SULT1A1). Further research revealed that PEC reduced hepatic oxidative damage and inflammation, and up-regulated APAP detoxification enzymes in hepatocytes by activating the Nrf2 and PPARα signaling pathways. CONCLUSIONS PEC ameliorates AILI by decreasing hepatic oxidative stress and inflammation while increasing phase Ⅱ detoxification enzymes related to APAP harmless metabolism through activation of Nrf2 and PPARα signaling. Hence, PEC may serve as a promising therapeutic drug against AILI.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Yadi Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
41
|
Chen L, Li Z, Wei W, An B, Tian Y, Liu W, Niu S, Wang Y, Wang L, Li W, Hao J, Wu J. Human embryonic stem cell-derived immunity-and-matrix regulatory cells promote intrahepatic cell renewal to rescue acute liver failure. Biochem Biophys Res Commun 2023; 662:104-113. [PMID: 37104880 DOI: 10.1016/j.bbrc.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Acute liver failure (ALF) is a clinical syndrome characterized by the accelerated development of hepatocyte necrosis and significant mortality. Given that liver transplantation is now the only curative treatment available for ALF, there is an urgent need to explore innovative therapies. Mesenchymal stem cells (MSCs) have been applied in preclinical studies for ALF. It had been demonstrated that human embryonic stem cell-derived immunity-and-matrix regulatory cells (IMRCs) met the properties of MSCs and had been employed in a wide range of conditions. In this study, we conducted a preclinical evaluation of IMRCs in the treatment of ALF and investigated the mechanism involved. ALF was induced in C57BL/6 mice via intraperitoneal administration of 50% CCl4 (6 mL/kg) mixed with corn oil, followed by intravenous injection of IMRCs (3 × 106 cells/each). IMRCs improved histopathological changes in the liver and reduced alanine transaminase (ALT) or aspartate transaminase (AST) levels in serum. IMRCs also promoted cell renewal in the liver and protected it from CCl4 damage. Furthermore, our data indicated that IMRCs protected against CCl4-induced ALF by regulating the IGFBP2-mTOR-PTEN signaling pathway, which is associated with the repopulation of intrahepatic cells. Overall, IMRCs offered protection against CCl4-induced ALF and were capable of preventing apoptosis and necrosis in hepatocytes, which provided a new perspective for treating and improving the prognosis of ALF.
Collapse
Affiliation(s)
- Ling Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wumei Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yukai Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jie Hao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
42
|
He X, Liang SM, Wang HQ, Tao L, Sun FF, Wang Y, Zhang C, Huang YC, Xu DX, Chen X. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. Toxicol Appl Pharmacol 2023; 465:116452. [PMID: 36894071 DOI: 10.1016/j.taap.2023.116452] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Mitochondrial oxidative stress has been a crucial mediator in acetaminophen (APAP)-induced hepatotoxicity. MitoQ, an analog of coenzyme Q10, is targeted towards mitochondria and acts as a potent antioxidant. This study aimed to explore the effect of MitoQ on APAP-induced liver injury and its possible mechanisms. To investigate this, CD-1 mice and AML-12 cells were treated with APAP. Hepatic MDA and 4-HNE, two markers of lipid peroxidation (LPO), were elevated as early as 2 h after APAP. Oxidized lipids were rapidly upregulated in APAP-exposed AML-12 cells. Hepatocyte death and mitochondrial ultrastructure alterations were observed in APAP-induced acute liver injury. The in vitro experiments showed that mitochondrial membrane potentials and OXPHOS subunits were downregulated in APAP-exposed hepatocytes. MtROS and oxidized lipids were elevated in APAP-exposed hepatocytes. We discovered that APAP-induced hepatocyte death and liver injury were ameliorated by attenuation of protein nitration and LPO in MitoQ-pretreated mice. Mechanistically, knockdown of GPX4, a key enzyme for LPO defense systems, exacerbated APAP-induced oxidized lipids, but did not influence the protective effect of MitoQ on APAP-induced LPO and hepatocyte death. Whereas knockdown of FSP1, another key enzyme for LPO defense systems, had little effect on APAP-induced lipid oxidation but partially weakened the protection of MitoQ on APAP-induced LPO and hepatocyte death. These results suggest that MitoQ may alleviate APAP-evoked hepatotoxicity by eliminating protein nitration and suppressing hepatic LPO. MitoQ prevents APAP-induced liver injury partially dependent of FSP1 and independent of GPX4.
Collapse
Affiliation(s)
- Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li Tao
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Fei-Fei Sun
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
43
|
Nabil-Adam A, Ashour ML, Shreadah MA. The hepatoprotective candidates by synergistic formula of marine and terrestrial against Acetaminophen toxicity using in-vitro, in-vivo, and in silico screening approach. Saudi J Biol Sci 2023; 30:103607. [PMID: 36941882 PMCID: PMC10023929 DOI: 10.1016/j.sjbs.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
Background One of the most regularly used hepatotoxic medicines is paracetamol (acetaminophen, N-acetyl-p-aminophenol; APAP). It causes liver failure in overdoses but is safe at therapeutic dosages. Combination therapy combining many natural compounds with a synergistic impact as hepatoprotective agents has become an essential therapeutic method against various disorders. Objective Due to the lack of literature on paracetamol's effects on hematological and hepatic status parameters in male albino mice, the main goal of this study was to compare the hepatoprotective activities of a mixture of three marine-derived polyphenolics and polysaccharides (Sargassum vulgare Bacillus oceanisediminis, and alginic acids) to Chrysanthemum extract and the mixture of them. Methods Sargassumvulgare, Bacillus Oceanisediminis, and alginate, as well as Chrysanthemum ethanol extracts, were tested for APAP-induced liver damage. Group 1 received saline solution subcutaneously, while Group 2 received 500 mg/kg body weight/day APAP intraperitoneal. Group 3 got 200 mg/day algal extract i.p. As in group 3, group 4 got an i.p. dose of 200 mg of algal extract before the APAP dose. This group was protected by Sargassum vulgare extract. Group 5: Received 200 mg/100 g/body of Bacillus oceanisediminis extracts i.p. for one week. Group 6: Received 200 mg/body of Bacillus oceanisediminis extract i.p. for one week before APAP treatment. Alginate (p200 mg/body weight/day) was given to Group 7. As in group 7, group 8 received 200 mg/body weight/day alginate extract i.p. before APAP. Group 9: Chrysanthemum extracts 200 mg/day for a week. Group 10: got an i.p. dose of Chrysanthemum extracts for one week before the APAP dose. Group 11: Four mixed extracts (Bacillus Oceanisediminis, Sargassum vulgare, Chrysanthemum, and alginate) were i.p200 mg/day for one week as a positive (+ve) control group. Group 12: Received i.p200 mg/kg combination extract for one week before APAP. Results Due to their synergistic antioxidant and anti-inflammatory actions, marine extracts and combinations of marine-derived extracts demonstrated a great effect against APAP toxicity, demonstrating hepatoprotective potential against APAP-induced liver damage. Conclusion The synergy of the three marine-derived combinations may lead to novel liver toxicity prevention agents.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeaddah 21442, Saudi Arabia
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Egypt
| |
Collapse
|
44
|
Zhao J, Shi S, Zhang X, Liu Y, Yuan M, Cheng G, Wang Y. Confusoside, a dihydrochalcone glucoside, prevents acetaminophen-induced liver injury by modulating the Nrf2/NF-κB/caspase signaling pathway. Food Funct 2023; 14:2432-2443. [PMID: 36786681 DOI: 10.1039/d2fo03497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1β, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Xiaoyu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Minglong Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Guiguang Cheng
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
45
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
46
|
Chen C, Wu H, Li Q, Liu M, Yin F, Wu M, Wei X, Wang H, Zha Z, Wang F. Manganese Prussian blue nanozymes with antioxidant capacity prevent acetaminophen-induced acute liver injury. Biomater Sci 2023; 11:2348-2358. [PMID: 36722889 DOI: 10.1039/d2bm01968j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As one of the leading cases of acute liver failure triggered by excessive Acetaminophen (APAP), breakdown of the antioxidant system, inflammatory response, and inescapable apoptosis following overaccumulation of reactive oxygen species (ROS) play crucial roles in the mechanisms of APAP-induced liver injury (AILI). Therefore, cutting off ROS overproduction at the source is considered promising. Here, manganese Prussian blue nanozymes (MPBZs) with superior antioxidant enzyme-like activity are prepared as an effective strategy for hepatocyte protection, in which MPBZs accumulated in the liver show anti-oxidation properties by scavenging superfluous ROS. Importantly, in addition to alleviating oxidative stress, bioactive MPBZs with abundant variable valence states as a natural antioxidant enzymes mediated the responses of multi-biological signaling pathways in vitro and in vivo, including Nrf2-Keap1, NF-κB, and mitochondrial-induced apoptosis signaling pathways, enhancing tolerance for imminent AILI. Taking nanomedicine, hepatology, and catalytic chemistry into consideration, the revealed superior performance of AILI prevention suggests that MPBZ-based nano-detoxification therapy may offer an effective alternative against AILI.
Collapse
Affiliation(s)
- Chongqing Chen
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Haitao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. .,School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qianhui Li
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Menghua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Fan Yin
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Miaomiao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Xiaoli Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Wang
- China Guangdong Provincial Key Laboratory of Digestive Cancer Research and The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
47
|
Huang Z, Wang H, Chun C, Li X, Xu S, Zhao Y. Self-assembled FGF21 nanoparticles alleviate drug-induced acute liver injury. Front Pharmacol 2023; 13:1084799. [PMID: 36703750 PMCID: PMC9871310 DOI: 10.3389/fphar.2022.1084799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) is a common antipyretic agent and analgesic. An overdose of APAP can result in acute liver injury (ALI). Oxidative stress and inflammation are central to liver injury. N-acetylcysteine (NAC), a precursor of glutathione, is used commonly in clinical settings. However, the window of NAC treatment is limited, and more efficacious alternatives must be found. Endogenous cytokines such as fibroblast growth factor (FGF) 21 can improve mitochondrial function while decreasing intracellular oxidative stress and inflammatory responses, thereby exhibiting antioxidant-like effects. In this study, self-assembled nanoparticles comprising chitosan and heparin (CH) were developed to deliver FGF21 (CH-FGF21) to achieve the sustained release of FGF21 and optimize the in vivo distribution of FGF21. CH-FGF21 attenuated the oxidative damage and intracellular inflammation caused by APAP to hepatocytes effectively. In a murine model of APAP-induced hepatotoxicity, CH-FGF21 could alleviate ALI progression and promote the recovery of liver function. These findings demonstrated that a simple assembly of CH nanoparticles carrying FGF21 could be applied for the treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Hengcai Wang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changju Chun
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea
| | - Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| |
Collapse
|
48
|
Gomphrena globosa L. extract alleviates carbon tetrachoride-induced liver injury in mice by activating antioxidant signaling pathways and promoting autophagy. Mol Biol Rep 2023; 50:97-106. [PMID: 36308582 DOI: 10.1007/s11033-022-07942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Carbon tetrachloride (CCl4) is highly toxic to animal liver and is a major contributor to liver injury. Gomphrena globosa L. (GgL) is an edible plant with anti-inflammation and antioxidation properties. The aim of this study was to investigate the potential therapeutic effects of GgL on liver injury. METHODS AND RESULTS A model of chronic liver injury in mice was established by intraperitoneal injection of CCl4 (0.4 mL/kg) for 3 weeks, and the mice were treated intraperitoneally with different concentrations of GgL crude extract (GgCE; 100, 200, 300 mg/kg) or Bifendatatum (Bif; 20 mg/kg) in the last 2 weeks. The results showed that GgCE treatment alleviated the liver injury, improved the pathological changes caused by CCl4 on the mice liver, and enhance the antioxidant capacity. We also found that GgCE increased the expression of antioxidant stress related proteins, decreased the phosphorylation levels of autophagy related proteins PI3K and mTOR, and decreased the expression of LC3 II and P62 proteins. CONCLUSION These results suggest that GgCE alleviated CCl4-induced chronic liver injury in mice by activating antioxidant signaling pathways and promoting autophagy, indicating a potential therapeutic effect of GgCE on liver injury.
Collapse
|
49
|
The E3 ubiquitin ligase NEDD4-1 protects against acetaminophen-induced liver injury by targeting VDAC1 for degradation. Acta Pharm Sin B 2023; 13:1616-1630. [PMID: 37139424 PMCID: PMC10150139 DOI: 10.1016/j.apsb.2023.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 12/15/2022] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.
Collapse
|
50
|
Yu D, Li J, Wang Y, Guo D, Zhang X, Chen M, Zhou Z. Oridonin ameliorates acetaminophen-induced acute liver injury through ATF4/PGC-1α pathway. Drug Dev Res 2022; 84:211-225. [PMID: 36567664 DOI: 10.1002/ddr.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) causes hepatocyte cell death, oxidative stress, and inflammation. Oridonin (Ori), a covalent NLRP3-inflammasome inhibitor, ameliorates APAP-induced ALI through an unclear molecular mechanism. This study found that Ori decreased hepatic cytochrome P450 2E1 level and increased glutathione content to prevent APAP metabolism, and then reduced the necrotic area, improved liver function, and inhibited APAP-induced proinflammatory cytokines and oxidative stress. Ori also decreased activating transcription factor 4 (ATF4) protein levels and increased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) to reduce APAP-induced endoplasmic reticulum stress activation and mitochondrial dysfunction. Furthermore, western blot and luciferase assay found that ATF4 inhibited transcription in the PGC-1α promoter -507 to -495 region to reduce PGC-1α levels, while ATF4 knockdown neutralized the hepatoprotective effect of Ori. Molecular docking showed that Ori bound to ATF4's amino acid residue glutamate 302 through 6, 7, and 18 hydroxyl bands. Our findings demonstrated that Ori prevented metabolic activation of APAP and further inhibited the ATF4/PGC-1α pathway to alleviate APAP overdose-induced hepatic toxicity, which illuminated its potential therapeutic effects on ALI.
Collapse
Affiliation(s)
- Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiye Li
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Yu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Guo
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Xiaodan Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Mingming Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|