1
|
Zha X, Fang M, Zhong W, Chen L, Feng H, Zhang M, Wang H, Zhang Y. Dose-, stage- and sex- difference of prenatal prednisone exposure on placental morphological and functional development. Toxicol Lett 2024; 402:68-80. [PMID: 39580039 DOI: 10.1016/j.toxlet.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Prednisone, a synthetic glucocorticoid, is commonly used to treat autoimmune diseases in pregnant women. However, some studies suggest that the use of prednisone during pregnancy may lead to adverse pregnancy outcomes. In this study, we established PPE mouse models at different doses (0.25, 0.5, 1.0 mg/kg·d) and different stages (whole pregnancy, early pregnancy and middle-late pregnancy) and determined outcomes on the placenta and fetus. The results of our study indicated that at the highest dose of 1 mg/kg PPE using a GD 0-18 dosing regime, PPE caused placental morphological changes measured as a decrease in placental weight relative to controls and a decrease in the placenta junctional zone (JZ)/labyrinth zone (LZ) ratio. No changes were observed on the fetuses for number of live, stillborn, and absorbed fetuses between the experimental groups and the control group. In the placentas at some doses, there were decreases in cell proliferation markers measured at the RNA and protein level by Western blot and increased apoptosis. Measures of gene expression at the mRNA level showed altered nutrients (including glucose, amino acid, and cholesterol) transport gene expressions with the most significant change associated with the male placentas at high-dose and whole pregnancy PPE group. It was further found that PPE led to the inhibition of the insulin-like growth factor 2 (IGF2)/insulin-like growth factor 1 receptor (IGF1R) signaling pathway, which was well correlated with the indicators of cell proliferation, syncytialization and nutrient (glucose and amino acid) transport indices. In conclusion, PPE can alter placental morphology and nutrient transport function, with differences in effect related to dose, stage and gender. Differential gene expressions measured for genes of the IGF2/IGF1R signaling pathway suggested this pathway may be involved in the effects seen with PPE. This study provides a theoretical and experimental basis for enhancing the understanding of the effects of prednisone use on placenta during human pregnancy but does not currently raise concerns for human use as effects were not seen on the fetuses and while the effects on cell proliferation are informative they were inconsistent and the differential effects on female and male placentas unexplained suggesting that further work is required to elucidate if these findings have relevance for human use of PPE during pregnancy.
Collapse
Affiliation(s)
- Xiaomeng Zha
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Zhong
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Chen
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Feng
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China.
| |
Collapse
|
2
|
Kalugendo E, Nazir A, Agarwal R. Assessment of azithromycin-induced toxicity in Caenorhabditis elegans: Effects on morphology, behavior, and lipid metabolism. Toxicol Rep 2024; 13:101832. [PMID: 39717856 PMCID: PMC11664063 DOI: 10.1016/j.toxrep.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Antibiotics are indispensable in modern healthcare, playing a critical role in mitigating bacterial infections. Azithromycin is used to fight upper respiratory tract infections, however has potential toxic effects that remain inadequately understood. In our present study, azithromycin exposure to Caenorhabditis elegans led to significant physiological and behavioral change, with pronounced effects observed at the studied concentration. The study employs an N2 wild-type strain to examine key physiological and behavioral parameters within the worm. C.elegans were exposed to two concentrations of azithromycin (0.0038 and 0.00038 mg/ml) from the embryonic stage to the L4 stage for 48 hours. The study assessed key endpoints including body length, thrashing behavior, brood size, embryonic viability, lipid accumulation via Nile red staining, pharyngeal pumping rate, and response to 1-Nonanol (which assesses neurotransmitter function). Results showed that at 0.0038 mg/ml, azithromycin significantly reduced body length, increased progeny production, altered lipid deposition, delayed response to 1-Nonanol, and decreased feeding rates. Even at the lowest concentration (0.00038 mg/ml), changes in body length and lipid accumulation were observed. These findings suggest that the toxicity of azithromycin in C.elegans is dose-dependent and varies with exposure duration and developmental stage. Further research is needed to elucidate the molecular mechanisms underlying these toxic effects, particularly at environmentally relevant concentrations of azithromycin.
Collapse
Affiliation(s)
- Elisa Kalugendo
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakhi Agarwal
- Laboratory of Forensic Chemistry and Toxicology, School of Forensic Sciences, National Forensic Sciences University, Delhi, India
| |
Collapse
|
3
|
Huang S, Yao B, Guo Y, Zhang Y, Li H, Zhang Y, Liu S, Wang X. Human trophoblast organoids for improved prediction of placental ABC transporter-mediated drug transport. Toxicol Appl Pharmacol 2024; 492:117112. [PMID: 39326791 DOI: 10.1016/j.taap.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ATP-binding cassette (ABC) transporters, the important transmembrane efflux transporters, play an irreplaceable role in the placenta barrier. The disposition and drug-drug interaction of clinical drugs are also closely related to the functions of ABC transporters. The trophoblast is a unique feature of the placenta, which is crucial for normal placentation and maintenance during pregnancy. ABC transporters are abundantly expressed in placental syncytiotrophoblast, especially P-gp, BCRP, and MRPs. However, due to the lack of appropriate modeling systems, the molecular mechanisms of regulation between ABC transporters and trophoblast remains unclear. In this report, trophoblast organoids were cultured from human placental villi and developed into three-dimension structures with cavities. Trophoblast organoids exhibited transporter expression and localization comparable to that in villous tissue, indicating their physiological relevance for modeling drug transport. Moreover, fluorescent substrates can accumulate in organoids and be selectively inhibited by inhibitors, indicating the efflux function of ABC transporters (P-gp, BCRP, MRP1, and MRP2) in organoids. Two commonly used hypertension drugs and three antipsychotics were chosen to further validate this drug transport model and demonstrate varying degrees of inhibitory effects on ABC transporters. Overall, a new drug transport model mediated by ABC transporter has been successfully established based on human trophoblast organoids, which can be used to study drug transport in the placenta.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Haichuan Li
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yi Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
5
|
de Souza LL, Meyer LG, Rossetti CL, Miranda RA, Bertasso IM, Lima DGV, da Silva BS, Pinheiro VHSD, Claudio-Neto S, Manhães AC, Moura EG, Lisboa PC. Maternal low-dose caffeine intake during the perinatal period promotes short- and long-term sex-dependent hormonal and behavior changes in the offspring. Life Sci 2024; 354:122971. [PMID: 39147313 DOI: 10.1016/j.lfs.2024.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
AIM Maternal caffeine crosses the placenta and mammary barriers, reaching the baby and, because his/her caffeine metabolism is immature, our hypothesis is that even a low caffeine intake (250 mg/day), lower than the dose limit recommended by the World Health Organization, can promote caffeine overexposure in the offspring, leading to short- and long-term changes. MAIN METHODS Pregnant Wistar rats received intragastric caffeine (CAF) (25 mg/Kg/day) or vehicle during the gestation and lactation periods. We evaluated morphometrical, metabolic, hormonal, and behavioral parameters of male and female offspring at different ages. KEY FINDINGS Even a low caffeine intake promoted lower maternal body mass and adiposity, higher plasma cholesterol and lower plasma T3, without changes in plasma corticosterone. Female CAF offspring exhibited lower birth weight, body mass gain and food intake throughout life, and hyperinsulinemia at weaning, while male CAF offspring showed reduced food intake and lower plasma T3 at weaning. At puberty and adulthood, male CAF showed higher preference for palatable food, aversion to caffeine intake and higher locomotor activity, while female CAF only showed lower preference for high fat diet (HFD) and lower anxiety-like behavior. At adulthood, both male and female offspring showed higher plasma T3. Male CAF showed hypertestosteronemia, while female CAF showed hypoinsulinemia without effect on glucose tolerance. SIGNIFICANCE A low caffeine intake during the perinatal period affects rat's offspring development, promoting sex-dependent hormonal and behavior changes. Current data suggest the need to review caffeine recommendations during the perinatal period.
Collapse
Affiliation(s)
- Luana Lopes de Souza
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Lilian Guedes Meyer
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | | | - Beatriz Souza da Silva
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Vitor Hugo Santos Duarte Pinheiro
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil; Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Sylvio Claudio-Neto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil; Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Jiang H, Guo J, Li J, Li C, Du W, Canavese F, Xie F, Li H, Yang J, Ying H, Hua J. Do birth outcomes mediate the association between drug use in pregnancy and neonatal metabolic bone disease? A prospective cohort study of 10,801 Chinese women. Front Public Health 2024; 12:1377070. [PMID: 39403442 PMCID: PMC11472830 DOI: 10.3389/fpubh.2024.1377070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024] Open
Abstract
Background Prenatal drug use may cause toxicity to bone health in newborns. We aimed to examine whether birth outcomes mediate the association between medication use and neonatal metabolic bone disease (MBD). Methods A prospective cohort of 10,801 pregnant women (17-49 years) and their infants followed at a single center from 1 January 2012 to 31 December 2021 were included. Based on four single drugs, comprehensive medication use was determined and categorized into three groups using latent-class analysis: group 1 included antibiotics and furosemide or less than two drugs except for MgSO4; group 2 included MgSO4 without antibiotics or furosemide; and group 3 encompassed dexamethasone and antibiotics. Mediation analysis was conducted to assess the mediating effects of prematurity, low birth weight (LBW), and small for gestational age (SGA). Results There were 138 (1.3%) infants with MBD; 2,701 (25%) were born preterm, 1717 (15.9%) had LBW, and 303 (2.8%) were SGA. Pregnant women in groups 2 and 3 were 2.52 to 14.66 times more likely to deliver an infant with MBD than those in group 1. Only LBW showed a significant mediating effect on the association between comprehensive medication use and MBD, with a mediation proportion of 51.8% (45.0-64.1%, p < 0.001). Conclusion Comprehensive medication use during pregnancy was associated with an increased risk of neonatal MBD, largely mediated by LBW. Early antepartum monitoring and prevention targeting adverse birth outcomes are necessary to mitigate the risk of MBD.
Collapse
Affiliation(s)
- Honglin Jiang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jialin Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Li
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunlin Li
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenchong Du
- NTU Psychology, Nottingham Trent University, Nottingham, United Kingdom
| | - Federico Canavese
- CHU Lille, Department of Pediatric Orthopedic Surgery, Lille University, Lille, France
| | - Feng Xie
- Department of Orthopedics and Sports Medicine, Shanghai United Family Hospital, Shanghai, China
| | - Huajing Li
- Aigora Technology PTE. LTD, TRIVEX, Singapore, Singapore
| | - Jian Yang
- Aigora Technology PTE. LTD, TRIVEX, Singapore, Singapore
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Gorrie D, Bravo M, Fan L. The Yin and Yang of the Natural Product Triptolide and Its Interactions with XPB, an Essential Protein for Gene Expression and DNA Repair. Genes (Basel) 2024; 15:1287. [PMID: 39457411 PMCID: PMC11507457 DOI: 10.3390/genes15101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Triptolide, a bioactive diterpene tri-epoxide extracted from Tripterygium wilfordii Hook F (TWHF), exhibits notable pharmacological activities, including anti-inflammatory, immunosuppressive, antifertility, and anticancer effects. Despite its promising therapeutic potential, clinical applications of triptolide are significantly limited by its poor water solubility and substantial toxicity, particularly hepatotoxicity, nephrotoxicity, and cardiotoxicity. These toxic effects are difficult to separate from many of its desired therapeutic effects, the Yin and Yang of triptolide applications. Triptolide's therapeutic and toxic effects are linked to its inhibitory interactions with XPB, a DNA helicase essential for transcription by RNA polymerase II (RNAPII) and nucleotide excision repair (NER). By irreversibly binding to XPB, triptolide inhibits its ATPase activity, leading to global repression of transcription and impaired NER, which underlies its cytotoxic and antitumor properties. Recent developments, including triptolide prodrugs such as Minnelide and derivatives like glutriptolides, aim to enhance its pharmacokinetic properties and reduce toxicity. This review critically examines triptolide's chemical structure, therapeutic applications, toxicological profile, and molecular interactions with XPB and other protein targets to inform future strategies that maximize therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
| | | | - Li Fan
- Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521, USA; (D.G.); (M.B.)
| |
Collapse
|
8
|
Chen Z, Sun X, Liu Y, Zhao X, Guo Y, Wang H. The characterization of developmental toxicity in fetal offspring induced by acetaminophen exposure during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116980. [PMID: 39226632 DOI: 10.1016/j.ecoenv.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE Acetaminophen (APAP), an antipyretic and analgesic commonly used during pregnancy, has been recognized as a novel environmental contaminant. Preliminary evidence suggests that prenatal acetaminophen exposure (PAcE) could adversely affect offspring's gonadal and neurologic development, but there is no systematic investigation on the characteristics of APAP's fetal developmental toxicity. METHODS Pregnant mice were treated with 100 or 400 mg/kg∙d APAP in the second-trimester, or 400 mg/kg∙d APAP in the second- or third-trimester, or different courses (single or multiple) of APAP, based on clinical regimen. The effects of PAcE on pregnancy outcomes, maternal/fetal blood phenotypes, and multi-organ morphological and functional development of fetal mice were analyzed. RESULTS PAcE increased the incidence of adverse pregnancy outcomes and altered blood phenotypes including aminotransferases, lipids, and sex hormones in dams and fetuses. The expression of key functional genes in fetal organs indicated that PAcE inhibited hippocampal synaptic development, sex hormone synthesis, and osteogenic and chondrogenic development, but enhanced hepatic lipid synthesis and uptake, renal inflammatory hyperplasia, and adrenal steroid hormone synthesis. PAcE also induced marked pathological alterations in the fetal hippocampus, bone, kidney, and cartilage. The sensitivity rankings of fetal organs to PAcE might be hippocampus/bone > kidney > cartilage > liver > gonad > adrenal gland. Notably, PAcE-induced multi-organ developmental toxicity was more considerable under high-dose, second-trimester, and multi-course exposure and in male fetuses. CONCLUSION This study confirmed PAcE-induced alterations in multi-organ development and function in fetal mice and elucidated its characteristics, which deepens the comprehensive understanding of APAP's developmental toxicity.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Xiaoxiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Xiaoqi Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
10
|
Zhao X, Xiao H, Li X, Zhu L, Peng Y, Chen H, Chen L, Xu D, Wang H. Multi-organ developmental toxicity and its characteristics in fetal mice induced by dexamethasone at different doses, stages, and courses during pregnancy. Arch Toxicol 2024; 98:1891-1908. [PMID: 38522057 DOI: 10.1007/s00204-024-03707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
11
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Dai Y, Peng Y, Lu Z, Mao T, Chen K, Lu X, Liu K, Zhou X, Hu W, Wang H. Prenatal prednisone exposure impacts liver development and function in fetal mice and its characteristics. Toxicol Sci 2024; 199:63-80. [PMID: 38439560 DOI: 10.1093/toxsci/kfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid β-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
13
|
Souza LL, Moura EG, Lisboa PC. Can mothers consume caffeine? The issue of early life exposure and metabolic changes in offspring. Toxicol Lett 2024; 393:96-106. [PMID: 38387763 DOI: 10.1016/j.toxlet.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/02/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Caffeine is a substance with central and metabolic effects. Although it is recommended that its use be limited during pregnancy, many women continue to consume caffeine. Direct and indirect actions of caffeine in fetuses and newborns promote adaptive changes, according to the Developmental Origins of Health and Diseases (DOHaD) concept. In fact, epidemiological and experimental evidence reveals the impact of early caffeine exposure. Here, we reviewed these findings with an emphasis on experimental models with rodents. The similarity of human and rodent caffeine metabolism allows the comprehension of molecular mechanisms affected by prenatal caffeine exposure. Maternal caffeine intake affects the body weight and endocrine system of offspring at birth and has long-term effects on the endocrine system, liver function, glucose and lipid metabolism, the cardiac system, the reproductive system, and behavior. Interestingly, some of these effects are sex dependent. Thus, the dose of caffeine considered safe for pregnant women may not be adequate for the prenatal period.
Collapse
Affiliation(s)
- Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Liu L, Wen Y, Ni Q, Chen L, Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol Res 2023; 56:61. [PMID: 37978540 PMCID: PMC10656939 DOI: 10.1186/s40659-023-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
15
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|