1
|
Wang Y, Yang J, Wang B, Chen M, Ran L, Liu S, Zhou M, Zhang L, Jiang Y, Dai X, Lin L, Zhang Y. Fabrication of close-contact S-scheme Cr 2Bi 3O 11-Bi 2O 3/Fe 3O 4@porous carbon microspheres based on in-situ reaction: Enhanced photo-Fenton wastewater treatment. J Colloid Interface Sci 2024; 673:690-699. [PMID: 38901359 DOI: 10.1016/j.jcis.2024.06.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Low photo-induced carrier recombination rate, exceptional light absorption, and advantageous recycling performance are crucial attributes of semiconductor photocatalyst for wastewater purification. Herein, based on in-situ reaction, close-contact S-scheme bismuth chromate/bismuth oxide/ferroferric oxide@porous carbon microspheres (Cr2Bi3O11-Bi2O3/Fe3O4@PCs) (F-CBFP) was fabricated using alginates as precursor. Due to the abundance of functional groups on the porous carbon (PCs), Bi2O3 and Cr2Bi3O11 nanoparticles (NPs) are in situ deposited onto the highly conductive 3D magnetic porous Fe3O4@PCs microsphere surface, which not only form tight interfacial contacts and reduces interfacial potential barriers but also prevent agglomeration or shedding of the NPs during photocatalytic reactions. Moreover, density functional theory (DFT) calculations further confirm that the formation of a robust built-in electric field (BIEF) within F-CBFP prompts photo-induced electrons in the conduction band (CB) of Bi2O3 to combine with holes in the valence band (VB) of Cr2Bi3O11, effectively constructing a S-scheme heterojunction system. Also, Fe3O4 can act as a Fenton catalyst, activating the H2O2 generated by Cr2Bi3O11 under illumination. In wastewater treatment, the obtained F-CBFP shows remarkable photo-Fenton degradation (towards methyl orange (97.8 %, 60 min) and tetracycline hydrochloride (95.3 %, 100 min)) and disinfection performance (100 % E. coli inactivation), and exceptional cyclic stability.
Collapse
Affiliation(s)
- Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan 625014, China
| | - Jia Yang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Bolin Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Maoli Chen
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Linlin Ran
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Shuting Liu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Meng Zhou
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Li Lin
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
2
|
Hollanda LR, de Souza JAB, Dotto GL, Foletto EL, Chiavone-Filho O. Iron-bearing mining reject as an alternative and effective catalyst for photo-Fenton oxidation of phenol in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21291-21301. [PMID: 38383932 DOI: 10.1007/s11356-024-32513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| | | | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
3
|
Liu H, Li X, Zhang X, Coulon F, Wang C. Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation. CHEMOSPHERE 2023; 337:139404. [PMID: 37399998 DOI: 10.1016/j.chemosphere.2023.139404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Shi G, Zeng S, Liu Y, Xiang J, Deng D, Wu C, Teng Q, Yang H. Efficient heterogeneous Fenton-like degradation of methylene blue using green synthesized yeast supported iron nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115240. [PMID: 37441945 DOI: 10.1016/j.ecoenv.2023.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
To reduce the consumption of oxidant and catalyst in Fenton-like reaction and to realize the reuse of catalyst, yeast supported iron nanoparticles (nZVI@SCM) was synthesized by tobacco leaf extract and applied in the heterogeneous Fenton-like degradation of aqueous methylene blue (MB) at ambient conditions. The performance of the composite was exploited in terms of catalytic activity and factors influencing MB degradation. The surface changes of nZVI@SCM before and after reaction were characterized by XPS, SEM, FT-IR and XRD. Iron leaching, primary reactive oxidizing species, and the storage stability and reusability of catalyst were also investigated. Typically, 99.7% removal of 50 mg/L MB, with a TOC removal of 97.2%, could be achieved within 10 h by 0.1 g/L nZVI@SCM coupled with 1.0 mM H2O2. The MB degradation is in good agreement with the pseudo-first-order model, and hydroxyl radicals in the bulk solution is the main reactive oxidizing species responsible for MB degradation. Based on the identified intermediates by liquid chromatography/mass spectrometry, the possible MB degradation mechanism in the nZVI@SCM/H2O2 system is discussed. The developed high-performance nZVI@SCM catalyst strategy can provide a new route in enhancing the Fenton-like degradation of organic contaminants with less consumption of catalyst and oxidant.
Collapse
Affiliation(s)
- Guorong Shi
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Shuangqing Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yefeng Liu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Jun Xiang
- Hunan Wenpu Detection Technology Research Co., Ltd, Changsha 410001, China
| | - Dale Deng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Chenmeng Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qian Teng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Hua Yang
- School of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Wang Z, Jing C, Zhai W, Li Y, Liu W, Zhang F, Li S, Wang H, Yu D. MIL-101(Fe)/Polysulfone Hollow Microspheres from Pickering Emulsion Template for Effective Photocatalytic Degradation of Methylene Blue. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Pandey Y, Verma A, Toor AP. Abatement of paraquat contaminated water using solar assisted heterogeneous photo-Fenton like treatment with iron-containing industrial wastes as catalysts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116550. [PMID: 36347188 DOI: 10.1016/j.jenvman.2022.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Owing to the tremendous increase of chemicals for agricultural practices, the quality of water has degraded significantly and requires inevitable attention. With this in mind, present work aims at treating Paraquat (PQ) contaminated water using Fe containing industrial waste as a catalyst via photo-Fenton treatment. Utilizing the industrially generated Fe rich waste by-products i.e., Fly ash (FA), Foundry sand (FS), Red mud (RM), and Blast sand (BS) as catalysts marks the novelty of the work since this idea of using waste for treating waste serves the dual purpose of environment remediation:first by treating wastewater and second by resolving the issue of solid waste disposal. In the present study, 25 mg/L PQ was subjected to both UV and solar radiations in the presence of FeSO4, FA, FS, RM, and BS as catalysts. The presence of Fe in the catalysts was verified using analytical techniques namely FTIR, FESEM-EDX, and their XRD was also analyzed. The system was further optimized for various parameters and results indicated maximum PQ degradation under UV radiations was attained in the order FeSO4 (73%) > BS (65%) > FS (46%) > RM (37%) > FA (14%) within 60 min which significantly increased with introduction of solar radiations to 83% for Fe salt and 76% for BS justifying the potential of using waste for treating waste. Further, to enhance the real-life utilization of industrial waste, Fe2O3/BS heterojunction (Fe-BS) was synthesized which along with leading to 88% degradation of PQ, also showed 82% COD removal indicating that the catalyst not only degrades the pollutant but also converts it into a lower toxic form. Further, the intermediates formed during the process were analyzed using LCMS.
Collapse
Affiliation(s)
- Yamini Pandey
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Anoop Verma
- Thapar Institute of Engg. & Technology, Patiala, Punjab, India
| | - Amrit Pal Toor
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institute of Chemical Engg & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Araújo MEB, Silva VC, Fernandes JV, Cartaxo JM, Rodrigues AM, Menezes RR, de Araújo Neves G. Innovative adsorbents based on bentonite mining waste for removal of cationic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90446-90462. [PMID: 35871192 DOI: 10.1007/s11356-022-22083-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature. Sample AM02 showed the largest surface area (69.13 m2/g) and the best adsorptive performance for both dyes, with removal more significant than 90%. The adsorption of CV and MB in the waste followed the Langmuir isothermal model. Samples AM01 and AM02 followed the pseudo-second-order (PSO) kinetic model, while AM03 better fitted the Elovich kinetic model. The enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated as adsorption parameters. The process of adsorption of CV and MB dyes in the waste was predominantly endothermic and occurred spontaneously. WRBM samples proved to be a promising candidate for removing cationic dyes present in water.
Collapse
Affiliation(s)
- Maria Eduarda Barbosa Araújo
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Vanderlane Cavalcanti Silva
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Jucielle Veras Fernandes
- Graduate Program in Materials Science and Engineering, Federal University of Campina Grande, Av. Aprígio Veloso - 882, Campina Grande, Paraíba, 58429-900, Brazil
| | - Juliana Melo Cartaxo
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Alisson Mendes Rodrigues
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil.
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Academic Unit of Materials Engineering, Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, 58429-900, Brazil
| |
Collapse
|
8
|
Eskikaya O, Gun M, Bouchareb R, Bilici Z, Dizge N, Ramaraj R, Balakrishnan D. Photocatalytic activity of calcined chicken eggshells for Safranin and Reactive Red 180 decolorization. CHEMOSPHERE 2022; 304:135210. [PMID: 35679982 DOI: 10.1016/j.chemosphere.2022.135210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
One of the most important problems affecting the environment today is the inability to adequately treat wastewater containing dyes. Among of the many treatment processes used in the treatment of dye-containing wastewater, photocatalytic based wastewater treatment processes attract the attention of scientists as a new, economically feasible, and promising approach which has been in practice for a few decades. However, in order to use these processes in wider areas, cheap and effective catalysts are still being developed today. In this study, the photocatalytic activity of eggshell-CaO produced from waste chicken eggshells was investigated for decolorization of Safranin (Basic Red 2) and Reactive Red 180 (RR180) dyes. First, sintering process was applied to the waste chicken eggshells at different temperatures (300, 600, 900 °C) in order to observe CaO formation from the eggshells. Second, the parameters such as photocatalyst amount, pH, concentration of dyes, and reaction time were optimized on dye removal efficiency in photocatalytic experiments. The optimum conditions were performed under visible light and found to be 1 g/L of catalyst amount (sintered at 900 °C), original solution pH (6.80 for Safranin and 6.60 for RR180), and 5 mg/L of dye concentration. The photocatalytic removal efficiencies of Safranin and RR180 dyes were 100% and 97.90%, respectively, under the determined optimum experimental conditions. The adsorption efficiency of the dyes that could be realized during the photocatalytic experiment was measured as 20.99% and 9.99% for Safranin and RR180 dyes, respectively.
Collapse
Affiliation(s)
- Ozan Eskikaya
- Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Tarsus, 33400, Turkey
| | - Melis Gun
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Raouf Bouchareb
- Department of Environmental Engineering, Saleh Boubnider University, Constantine, 25000, Algeria
| | - Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | | | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
9
|
The Adsorptive and Photocatalytic Performance of Granite and Basalt Waste in the Discoloration of Basic Dye. Catalysts 2022. [DOI: 10.3390/catal12101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work explored the adsorptive capacity and catalytic activity of rock powders from basaltic and granitic rocks in the discoloration of synthetic and industrial effluents containing the yellow dye Basic Yellow 96. The rock powders were characterized with scanning electron microscopy associated with energy-dispersive spectroscopy, photoacoustic spectroscopy, N2 physisorption and X-ray diffraction, the latter confirming the abundant presence of silica in the four materials studied. The basaltic powders presented specific surface areas between 7 and 10 times greater than those of granitic materials, which allowed up to 92% removal of the dye in 3 h of test using the basaltic powder. Despite the smaller area, the granitic materials showed considerable photocatalytic activity in 3 h, 94%, the same as that of the basaltic materials in the photocatalysis. Granitic and basaltic photocatalysts proved to be efficient in the discoloration of synthetic and industrial effluents, although TOC analyses indicated that it was not possible to promote the pollutant mineralization in the industrial effluent. Both artificial light and sunlight were effective in the photocatalysis of the dye, although the former was slightly faster.
Collapse
|
10
|
Tekin G, Ersöz G, Atalay S. Photo-degradation of sugar processing wastewater by copper doped bismuth oxyiodide: Assessment of treatment performance and kinetic studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115432. [PMID: 35759968 DOI: 10.1016/j.jenvman.2022.115432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
In this study, photo-Fenton-like oxidation method was evaluated for synthetic sugar industry wastewater using visible-light driven Cu-BiOI photocatalyst. Reaction conditions including initial pH, catalyst loading, initial hydrogen peroxide (H2O2) concentration, and temperature, were optimized. At these optimized conditions, the total saccharide concentration (TSC) and total organic carbon (TOC) removals were 56.20% and 30.67%, respectively whereas the maximum TSC and TOC removal reached up to 93.35% and 74.72% respectively by decreasing initial sucrose concentration. The kinetic study showed that the reaction order for sucrose and TOC oxidation was determined as 2 for pseudo-homogeneous power law models with respect to sucrose concentration and TOC, respectively.For heterogeneous models, Langmuir-Hinshelwood model based on the mechanism of adsorbed pollutant and oxidant on different catalytic sites was the best fit for oxidation of sucrose and other organic intermediates. According to the catalyst characterization studies, incorporation of copper was successful and Cu-BiOI possesses high photocatalytic activity accomplished by acid-assisted synthesis method.
Collapse
Affiliation(s)
- Gülen Tekin
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| | - Gülin Ersöz
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| | - Süheyda Atalay
- Ege University, Faculty of Engineering, Chemical Engineering Department, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
11
|
Ferrous-Oxalate-Modified Aramid Nanofibers Heterogeneous Fenton Catalyst for Methylene Blue Degradation. Polymers (Basel) 2022; 14:polym14173491. [PMID: 36080566 PMCID: PMC9460404 DOI: 10.3390/polym14173491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The heterogeneous Fenton system has drawn great attention in recent years due to its effective degradation of polluted water capability without limitation of the pH range and avoiding excess ferric hydroxide sludge. Therefore, simple chemical precipitation and vacuum filtration method for manufacturing the heterogeneous Fenton aramid nanofibers (ANFs)/ferrous oxalate (FeC2O4) composite membrane catalysts with excellent degradation of methylene blue (MB) is reported in the study. The morphology and structure of materials synthesized were characterized by scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), infrared spectrometer (FTIR), and X-ray diffraction (XRD) equipment. The 10 ppm MB degradation efficiency of composite catalyst and ferrous oxalate (FeC2O4) within 15 min were 94.5% and 91.6%, respectively. The content of methylene blue was measured by a UV-Vis spectrophotometer. Moreover, the dye degradation efficiency still could achieve 92% after five cycles, indicating the composite catalyst with excellent chemical stability and reusability. Simultaneously, the composite catalyst membrane can degrade not only MB but also rhodamine B (RB), orange II (O II), and methyl orange (MO). This study represents a new avenue for the fabrication of heterogeneous Fenton catalysts and will contribute to dye wastewater purification, especially in the degradation of methylene blue.
Collapse
|
12
|
Nippes RP, Macruz PD, Gomes AD, Girotto CP, Scaliante MHNO, de Souza M. Removal of reactive blue 250 dye from aqueous medium using Cu/Fe catalyst supported on Nb2O5 through oxidation with H2O2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Bilici Z, Saleh M, Yabalak E, Khataee A, Dizge N. The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:77-89. [PMID: 35050867 DOI: 10.2166/wst.2021.501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater from the textile industry containing a high concentration of organic and inorganic chemicals has strong color and residual chemical oxygen demand (COD). Therefore, advanced oxidation processes (AOPs) are very good candidates to treat textile industry wastewater. In this study, we investigated the effect of different types of AOPs supported with hydrogen peroxide (H2O2) for the treatment of viscose fibers dyeing wastewater. Fenton, photo-Fenton, and Fenton-supported subcritical water oxidation (FSWO) processes were chosen as AOPs to compare the treatment efficiency of viscose fibers dyeing wastewater. The effects of solution pH, Fe2+ concentration, and H2O2 concentration on the treatment of viscose fibers dyeing wastewater were tested. The maximum color and COD removal efficiency was obtained corresponding to pH 2.5 for all oxidation methods when methylene blue (MB) dye solution was used. However, the maximum efficiencies were obtained at pH 3.0 for real textile wastewater decolorization. The MB dye removal efficiency was increased to 97.22, 100, and 100% for Fenton, photo-Fenton, and FSWO processes, respectively, when the addition of H2O2 concentration was adjusted to 125 mg/L. However, the maximum color removal efficiencies of viscose fibers dyeing wastewater were obtained 56.94, 61.26, 64.11% for Fenton, photo-Fenton, FSWO processes, respectively. As a result, the FSWO showed maximum color removal efficiencies.
Collapse
Affiliation(s)
- Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey E-mail:
| | - Mohammed Saleh
- National Agricultural Research Center (NARC), Jenin, Palestine
| | - Erdal Yabalak
- Department of Chemistry, Mersin University, Mersin 33343, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey E-mail:
| |
Collapse
|