1
|
Zheng X, Tang J, Song A, Zhou Y, Miao J, Li Z, Pan L. Study on reproductive endocrine disturbance and DNA damage mechanism of female Ruditapes philippinarum under Benzo[a]pyrene stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122844. [PMID: 37918772 DOI: 10.1016/j.envpol.2023.122844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The reproductive toxicity of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms has attracted increasing attention from scholars. Currently, research in this field primarily focuses on vertebrates such as zebrafish and other model species. However, there is still a significant knowledge gap in the toxicity of PAHs to invertebrates and its potential mechanisms. Benzo[a]pyrene (B[a]P) is one of the most representative PAHs. In this study, female Ruditapes philippinarum (R. philippinarum) was treated with B[a]P concentrations of 0, 0.8, 4, and 20 μg/L to investigate reproductive indicators in the proliferative, growth, mature, and spawn stages. Transcriptomics was used to investigate the expression of genes associated with the reproductive endocrine system, DNA repair, autophagy, apoptosis, and ovarian development at different reproductive stages. Our results suggested that B[a]P disrupted the endocrine system by interfering with the production of steroid hormones and the transmission of estrogen signals in female R. philippinarum. The structure of the ovarian DNA duplex is severely damaged under the stress of B[a]P, and a series of cellular responses caused by DNA damage are also interfered. Additionally, we observed a reduction in the gonadosomatic index (GSI) and mature oocytes numbers after B[a]P exposed. Tissue section indicated that severe damage to the ovarian structure at mature and spawn stages. In conclusion, this study combined transcriptomic and toxicological to explore the negative effects on ovarian development induced by B[a]P, focusing on reproductive endocrine disturbance and DNA damage.
Collapse
Affiliation(s)
- Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Lance E, Sartor L, Foucault P, Geffard A, Marie B. Insights on the Organ-Dependent, Molecular Sexual Dimorphism in the Zebra Mussel, Dreissena polymorpha, Revealed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Metabolomics. Metabolites 2023; 13:1046. [PMID: 37887371 PMCID: PMC10609167 DOI: 10.3390/metabo13101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The zebra mussel, Dreissena polymorpha, is extensively used as a sentinel species for biosurveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies. However, its metabolome remains poorly understood, particularly in light of the potential molecular sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and inter-organ differences in the metabolome suggest variability in responsiveness, which can influence the analysis and interpretation of data, particularly in the case where males and females would be analyzed indifferently. This study aimed to assess the extent to which the molecular fingerprints of functionally diverse tissues like the digestive glands, gonads, gills, and mantle of D. polymorpha can reveal tissue-specific molecular sexual dimorphism. We employed a non-targeted metabolomic approach using liquid chromatography high-resolution mass spectrometry and revealed a significant sexual molecular dimorphism in the gonads, and to a lesser extent in the digestive glands, of D. polymorpha. Our results highlight the critical need to consider inter-sex differences in the metabolome of D. polymorpha to avoid confounding factors, particularly when investigating environmental effects on molecular regulation in the gonads, and to a lesser extent in the digestive glands.
Collapse
Affiliation(s)
- Emilie Lance
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Lucas Sartor
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Pierre Foucault
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| | - Alain Geffard
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Benjamin Marie
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| |
Collapse
|
3
|
Zhao X, Wang Q, Li X, Xu H, Ren C, Yang Y, Xu S, Wei G, Duan Y, Tan Z, Fang Y. Norgestrel causes digestive gland injury in the clam Mactra veneriformis: An integrated histological, transcriptomics, and metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162110. [PMID: 36764532 DOI: 10.1016/j.scitotenv.2023.162110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The potential adverse effects of progestins on aquatic organisms, especially non-target species, are of increasing concern worldwide. However, the effect and mechanism of progestin toxicity on aquatic invertebrates remain largely unexplored. In the present study, clams Mactra veneriformis were exposed to norgestrel (NGT, 0, 10, and 1000 ng/L), the dominant progestin detected in the aquatic environment, for 21 days. NGT accumulation, histology, transcriptome, and metabolome were assessed in the digestive gland. The bioconcentration factor (BCF) was 386 and 268 in the 10 ng/L NGT group and 1000 ng/L NGT group, respectively, indicating efficient accumulation of NGT in the clams. Histological analysis showed that NGT led to the swelling of epithelial cells and blurring of the basement membrane in the digestive gland. Differentially-expressed genes and KEGG pathway enrichment analysis using a transcriptomic approach suggested that NGT primarily disturbed the detoxification system, antioxidant defense, carbohydrate and amino acid metabolism, and steroid hormone metabolism, which was consistent with the metabolites analyzed using a metabolomic approach. Furthermore, we speculated that the oxidative stress caused by NGT resulted in histological damage to the digestive gland. This study showed that NGT caused adverse effects in the clams and sheds light on the mechanisms of progestin interference in aquatic invertebrates.
Collapse
Affiliation(s)
- Xiaoran Zhao
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiangfei Li
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Hua Xu
- Yantai Ecological Environment Monitoring Center, Shandong Province, Yantai 264010, PR China
| | - Chuanbo Ren
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Shuhao Xu
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Guoxing Wei
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yujun Duan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Zhitao Tan
- School of Agriculture, Ludong University, Yantai 264025, PR China
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Wang S, Sun Z, Ren C, Li F, Xu Y, Wu H, Ji C. Time- and dose-dependent detoxification and reproductive endocrine disruption induced by tetrabromobisphenol A (TBBPA) in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105839. [PMID: 36481715 DOI: 10.1016/j.marenvres.2022.105839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
As a typical brominated flame retardant (BFR), tetrabromobisphenol A (TBBPA) has been frequently detected in both biotic and abiotic matrices in marine environment. Our previous study found that genes related to metabolism phase I/II/III as well as steroid metabolism in Mytilus galloprovincialis were significantly altered by TBBPA treatment. However, the time- and dose-dependent response profiles of these genes to TBBPA exposure were rarely reported. In this study, the time- and dose-dependent effects of TBBPA on detoxification and reproductive endocrine disruption in M. galloprovincialis were explored by evaluating the responses of related gene expressions, enzymatic activities and gametogenesis to different concentrations of TBBPA (0.6, 3, 15, 75 and 375 μg/L) for different durations (14, 21 and 28 days). The results showed that the TBBPA accumulation increased linearly with the increases of exposure time and dose. Cytochrome P450 family 3 (CYP3A1-like) cooperated with CYP4Y1 for phase I biotransformation of TBBPA in mussels. The dose-response curves of phase II/III genes (glutathione-S-transferase (GST), P-glycoprotein (ABCB), and multidrug resistance protein (ABCC)) showed similar response profiles to TBBPA exposure. The common induction of phase I/II/III (CYPs, GST, ABCB and ABCC) suggested TBBPA detoxification regulation in mussels probably occurred in a step-wise manner. Concurrently, direct sulfation mediated by sulfotransferases (SULTs) on TBBPA was also the vital metabolic mechanism for TBBPA detoxification, which was supported by the coincidence between up-regulation of SULT1B1 and TBBPA accumulation. The significant promotion of steroid sulfatase (STS) might result from TBBPA-sulfate catalyzed by SULT1B1 due to its chemical similarity to estrone-sulfate. Furthermore, the promotion of gametogenesis was consistent with the induction of STS, suggesting that STS might interrupt steroids hydrolysis process and was responsible for reproductive endocrine disruption in M. galloprovincialis. This study provides a better understanding of the detoxification and endocrine-disrupting mechanisms of TBBPA.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zuodeng Sun
- Shandong Fisheries Development and Resource Conservation Center, Ji'nan, 250013, PR China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
5
|
Bernardini I, Matozzo V, Valsecchi S, Peruzza L, Rovere GD, Polesello S, Iori S, Marin MG, Fabrello J, Ciscato M, Masiero L, Bonato M, Santovito G, Boffo L, Bargelloni L, Milan M, Patarnello T. The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. ENVIRONMENT INTERNATIONAL 2021; 152:106484. [PMID: 33740673 DOI: 10.1016/j.envint.2021.106484] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Sara Valsecchi
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Stefano Polesello
- Water Research Institute, Italian National Research Council (IRSA-CNR), Via Mulino 19, 20861 Brugherio, MB, Italy
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Maria Ciscato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luciano Masiero
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Marco Bonato
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Gianfranco Santovito
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
6
|
Ovarian transcriptome analysis of Mactra chinensis provides insights into genes expressed during the intermediate and ripening stages. Anim Reprod Sci 2019; 208:106078. [DOI: 10.1016/j.anireprosci.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 11/30/2022]
|
7
|
Hallmann A, Konieczna L, Swiezak J, Milczarek R, Smolarz K. Aromatisation of steroids in the bivalve Mytilus trossulus. PeerJ 2019; 7:e6953. [PMID: 31198629 PMCID: PMC6535040 DOI: 10.7717/peerj.6953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/12/2019] [Indexed: 11/20/2022] Open
Abstract
In this study, we demonstrated the presence of the enzymatic complex able to perform aromatization (estrogen synthesis) in both, the microsomal and mitochondrial fractions of gills and gonads from Mytilus trossulus. Based on in vitro experiments, we highlighted the importance of temperature as the limiting factor of aromatisation efficiency (AE) in mussels. After testing range of temperatures (4–23 °C), the highest AE was found during incubation at 8 °C and pH 7.6 (41.66 pmol/h/mg protein in gills and 58.37 pmol/h/mg protein in gonads). The results were confirmed during field studies where the most efficient aromatisation occurred in bivalves collected in spring while the least effective in those collected in winter. During in vitro studies, AE turned out to be more intensive in female gonads than in male gonads. The process was also more intensive in mitochondrial fraction than in microsomal one (62.97 pmol/h/mg protein in male gills and 73.94 pmol/h/mg protein in female gonads). Enzymatic complex (aromatase-like enzyme) catalysing aromatisation in mussels was found to be insensitive to inhibitory effect of selective inhibitors of mammalian aromatase such as letrozole and anastrazole, suggesting its different structure from vertebrate aromatase. Further in vivo studies using 13C-labeled steroids at 8 °C temperature window confirmed that bivalves are able to uptake testosterone and androstenedione from the ambient environment and metabolise them to estrone and 17β-estradiol thus confirming endogenous estrogen’ synthesis.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Swiezak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Ryszard Milczarek
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| |
Collapse
|
8
|
Smolarz K, Zabrzańska S, Konieczna L, Hallmann A. Changes in steroid profiles of the blue mussel Mytilus trossulus as a function of season, stage of gametogenesis, sex, tissue and mussel bed depth. Gen Comp Endocrinol 2018; 259:231-239. [PMID: 29247680 DOI: 10.1016/j.ygcen.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
Abstract
This paper describes changes in the content of free steroid hormones e.g. testosterone (T), estradiol-17β (E2), estrone (E1) and estriol (E3) of Mytilus trossulus from the southern Baltic Sea as a function of season, stage of gametogenesis, sex, tissue (gonadal and somatic) and depth. The highest levels of T, E2, E1 and E3 were found in mussels sampled in spring and summer while the lowest levels were found in winter. This pattern was stable and was seen in both sexes and tissues in mussels from both mussel beds. The spring and summer peaks in steroid levels (SL) coincided with advanced levels of gametogenesis (the highest gonadal index, GI) of our model species. But, the lowest GI (autumn) and the lowest steroids content (winter) did not overlap. Instead, water temperature increase was followed by increase of SL and vice versa. This suggests that steroids may not be actively involved in the early stages of gamete development and does not preclude them from potentially being involved as endogenous modulators in the final stages of reproduction (e.g. spawning). Hence, observed fluctuations in SL in our model species are unlikely to be caused by reproductive cycle but are rather of unknown nature, likely linked with environmental conditions. Sex-related differences in steroid content included estrogen domination in females and androgen domination in males. A trend towards higher level of steroids in gills than in gonads was found, supporting the hypothesis about an exogenous origin of steroids in bivalves. However, based on the present results, we cannot exclude the possibility that these steroids have both an endogenous and exogenous origin.
Collapse
Affiliation(s)
- Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Sandra Zabrzańska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland.
| |
Collapse
|
9
|
Mezghani-Chaari S, Machreki-Ajimi M, Hamza-Chaffai A, Minier C. High estradiol exposure disrupts the reproductive cycle of the clam Ruditapes decussatus in a sex-specific way. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26670-26680. [PMID: 28956239 DOI: 10.1007/s11356-017-0146-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Bivalve species may be susceptible to environmental estrogenic compounds including estradiol (E2). However, they are able to biotransform the hormone quite readily and inactivate its estrogenic action. To study the long-term effects of elevated free E2 tissue levels, we transiently exceeded the biotransformation capacity of the clam Ruditapes decussatus by exposing them with high E2 concentrations (400 ng/L) and subsequently study the consequences on gametogenesis during the following reproductive cycle. Exposure to 400 ngE2/L led to a significant increase in tissue free E2 levels, which reached 10-50 ng E2Eq/gww. No deleterious effect on gonado-somatic index (GSI), condition index (CI), or ability to respond to the stress on stress test could be detected after a month of exposure, suggesting the absence of negative effects on the clam's health. However, a marked increase in gametogenesis could be observed in both sexes during the exposure. Subsequent transplantation of the clams in the field allowed the normal development of the male clams and maturation of the gonads without any detrimental effect observed after 4 months. In contrast, in early July, all female clams formerly exposed to E2 showed lower health status, and only ovaries with atretic oocytes while all control and indigenous females were normal and mature. These results show a sex-specific effect of high E2 exposure and suggest either a direct or indirect role for E2 in R. decussatus' reproduction.
Collapse
Affiliation(s)
- Sawssan Mezghani-Chaari
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia.
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France.
| | - Monia Machreki-Ajimi
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Amel Hamza-Chaffai
- Unit of Marine and Environmental Toxicology, Sfax University, IPEIS, BP 1172, 3018, Sfax, Tunisia
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR-I 02 SEBIO, Normandie University, BP 540, 76058, Le Havre, France
| |
Collapse
|
10
|
Lee S, Hong S, Liu X, Kim C, Jung D, Yim UH, Shim WJ, Khim JS, Giesy JP, Choi K. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1117-1125. [PMID: 28783190 DOI: 10.1039/c7em00125h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Gwanak, Seoul, 08826, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Prisco M, Agnese M, De Marino A, Andreuccetti P, Rosati L. Spermatogenic Cycle and Steroidogenic Control of Spermatogenesis in Mytilus galloprovincialis Collected in the Bay of Naples. Anat Rec (Hoboken) 2017; 300:1881-1894. [PMID: 28658561 DOI: 10.1002/ar.23626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022]
Abstract
The aim of the present article was to study the spermatogenic cycle of Mytilus galloprovincialis collected in the Bay of Naples during a whole year and to acquire new insights into the mechanism of control. Knowledge of the Mytilus cycle in this geographic area is of particular interest as, to the best of our knowledge, the male gonad cycle has been hitherto unexplored. Testis organization was evaluated together with the localization of the enzymes 3β-HSD, 17β-HSD, and P450-aromatase, which are strictly connected to the synthesis of two key hormones involved in the testis activity: testosterone and 17β-estradiol. It was demonstrated that: (1) the spermatogenic cycle starts in late Summer-early Fall and continues until early Winter, when the first spawning occurs; after rapid gonad restoration, several spawning events take place until June, when the testis becomes non-active again; (2) in the testis, true Leydig and Sertoli cells are present; (3) during the reproductive period, Sertoli, Leydig, germ, and adipogranular cells (ADGs) are positive to 3β-HSD and 17β-HSD, while only germ cells are positive to P450 aromatase; by contrast, during the resting period, only ADGs are positive to 3β-HSD and 17β-HSD, and P450-aromatase is no longer recognizable. The presence of a hermaphrodite sample is also described. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1881-1894, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy
| |
Collapse
|
12
|
Omran NE, Salama WM. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 2016; 32:656-65. [PMID: 24215068 DOI: 10.1177/0748233713506959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p ≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p ≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity.
Collapse
|
13
|
Hallmann A, Smolarz K, Konieczna L, Zabrzańska S, Belka M, Bączek T. LC–MS measurment of free steroids in mussels ( Mytilus trossulus) from the southern Baltic Sea. J Pharm Biomed Anal 2016; 117:311-5. [DOI: 10.1016/j.jpba.2015.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 01/02/2023]
|
14
|
Lüchmann KH, Clark MS, Bainy ACD, Gilbert JA, Craft JA, Chipman JK, Thorne MAS, Mattos JJ, Siebert MN, Schroeder DC. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:10-20. [PMID: 26186662 DOI: 10.1016/j.aquatox.2015.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, USA; Department of Ecology and Evolution, University of Chicago, Chicago, USA; Marine Biological Laboratory, Woods Hole, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | - J Kevin Chipman
- School of Biological Sciences, The University of Birmingham, Birmingham, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marília N Siebert
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Plymouth, UK.
| |
Collapse
|
15
|
Sex-related differences in steroid concentrations in the blue mussel (Mytilus edulis trossulus) from the southern Baltic Sea. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:14-9. [DOI: 10.1016/j.cbpa.2014.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/24/2014] [Accepted: 12/12/2014] [Indexed: 01/01/2023]
|
16
|
Koutsogiannaki S, Franzellitti S, Kalogiannis S, Fabbri E, Dimitriadis VK, Kaloyianni M. Effects of cadmium and 17β-estradiol on Mytilus galloprovincialis redox status. Prooxidant-antioxidant balance (PAB) as a novel approach in biomonitoring of marine environments. MARINE ENVIRONMENTAL RESEARCH 2015; 103:80-88. [PMID: 25460065 DOI: 10.1016/j.marenvres.2014.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Cadmium and 17β-estradiol are rapidly accumulated in mussel tissues, making mussels excellent pollution sentinel organisms. The aim of the present study was to compare the oxidative responses of the mussels after 1, 3 and 7 days of exposure to cadmium with those to 17β-estradiol and subsequently, to suggest a multi-parametric approach for biomonitoring studies. Our results showed that environmentally relevant concentrations of either cadmium or 17β-estradiol for 1, 3 and 7 days induced oxidative stress in hemocytes of exposed mussels. The latter was determined by significantly increased ROS levels and apoptosis, by suppression of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferase (GST) expression levels and subsequent increased prooxidant levels, as measured by prooxidant-antioxidant balance (PAB) assay. To our knowledge this is the first time that prooxidant-antioxidant balance is evaluated in invertebrates as an index of oxidative stress. The simultaneous use of the parameters of prooxidant-antioxidant balance and antioxidant enzymes expression patterns, in combination with ROS production levels and apoptosis, in mussel hemocytes is suggested as an approach that may help to better evaluate the impact of environmental pollution on marine organisms and thereupon ecosystems.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Environmental Science Research, Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Selmi 3, 40100 Bologna, Italy
| | - Stavros Kalogiannis
- Alexander Technological Educational Institution of Thessaloniki, Department of Nutrition and Dietetics, Thessaloniki, Greece
| | - Elena Fabbri
- University of Bologna, Interdepartment Centre for Environmental Science Research, Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Selmi 3, 40100 Bologna, Italy
| | - Vasileios K Dimitriadis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
17
|
Fokina NN, Bakhmet IN, Shklyarevich GA, Nemova NN. Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:103-109. [PMID: 25212488 DOI: 10.1016/j.ecoenv.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
A study on the effect oil pollution under normal and reduced salinity had on blue mussels Mytilus edulis L. from the White Sea in an aquarium-based experiment and in the natural habitat revealed a change in gill total lipids as a compensatory response. The cholesterol concentration and the cholesterol/phospholipids ratio in gills were found to reflect the impact of the environmental factors (oil pollution and desalination), and evidence adaptive changes in the cell membrane structure. An elevated content of storage lipids (chiefly triacylglycerols) in the mussels in the aquarium experiment indicates, first of all, the uptake and accumulation of oil products in gill cells under both normal and reduced seawater salinity, while high triacylglycerols level in gill littoral mussels from 'control' biotope in the Gulf of Kandalaksha is primarily associated with the mussel׳s pre-spawning period.
Collapse
Affiliation(s)
- N N Fokina
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia.
| | - I N Bakhmet
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia
| | - G A Shklyarevich
- Petrozavodsk State University, Lenin Pr. 33, Petrozavodsk 185910, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia
| |
Collapse
|
18
|
Forsgren KL, Qu S, Lavado R, Cwiertny D, Schlenk D. Trenbolone acetate metabolites promote ovarian growth and development in adult Japanese medaka (Oryzias latipes). Gen Comp Endocrinol 2014; 202:1-7. [PMID: 24780119 DOI: 10.1016/j.ygcen.2014.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 12/09/2013] [Accepted: 04/16/2014] [Indexed: 11/15/2022]
Abstract
Trenbolone acetate, a synthetic androgen, has been used as a growth promoter in beef cattle in the US since 1987. While several teleost studies have investigated the masculinization effects of the metabolite 17β-trenbolone, few have focused on the reproductive impacts of all three trenbolone acetate (TBA) metabolites including trendione. Adult female medaka (Oryzias latipes) were exposed to TBA metabolites (10, 100, and 1000ng/L) for 14days (n=3). Histological examination revealed that TBA metabolites (1000ng/L) significantly reduced the percentage of primary ovarian follicles and increased the percentage of vitellogenic follicles compared to control fish. 17α-Trenbolone significantly increased whereas trendione reduced whole body levels of estradiol-17β. Testosterone was significantly reduced by trendione treatment and only the highest dose of 17β-trenbolone and lowest dose of trendione altered 11-ketotestosterone. Additionally, TBA metabolites may be further broken down and/or metabolized or converted by the animal influencing both sex steroid levels and ovarian development.
Collapse
Affiliation(s)
- Kristy L Forsgren
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| | - Shen Qu
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, United States
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - David Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| |
Collapse
|
19
|
Liu J, Zhang Z, Zhang L, Liu X, Yang D, Ma X. Variations of estradiol-17β and testosterone levels correlated with gametogenesis in the gonad of Zhikong scallop (Chlamys farreri) during annual reproductive cycle. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the potential roles of sex steroids in modulating reproductive processes in the Zhikong scallop (Chlamys farreri (Jones and Preston, 1904)), variations in estradiol-17β (E2) and testosterone (T) levels in gonads were examined monthly from January to December 2012 by enzyme-linked immunosorbent assay (ELISA). The mean concentrations of E2 and T in gonads ranged from 75.07 to 666.24 pg/g and from 91.09 to 506.28 pg/g, respectively. Concentrations of E2 were significantly higher in ovaries than in testes, while T concentrations were higher in testes than in ovaries during gametogenesis. Concentrations of E2 in females and T in males increased with development and maturation of gonad, attained the highest value before spawning, and decreased rapidly after spawning. A positive correlation between E2 levels and oocyte diameters (r = 0.743, P < 0.05, n = 25) was observed, suggesting that E2 may play a role in oogenesis. These findings indicate that E2 and T, which are highly correlated with the reproductive cycle, may play an important role in sex determination, sex differentiation, gametogenesis, and spawning in C. farreri.
Collapse
Affiliation(s)
- J. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - Z. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - L. Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - D. Yang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| | - X. Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, People’s Republic of China
| |
Collapse
|
20
|
Giusti A, Leprince P, Mazzucchelli G, Thomé JP, Lagadic L, Ducrot V, Joaquim-Justo C. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals. PLoS One 2013; 8:e81086. [PMID: 24363793 PMCID: PMC3867191 DOI: 10.1371/journal.pone.0081086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/27/2023] Open
Abstract
Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant evidence of interaction of EDCs with reproductive pathways that are under the control of the endocrine system of L. stagnalis.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
- * E-mail:
| | | | | | - Jean-Pierre Thomé
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| | - Laurent Lagadic
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
| | - Virginie Ducrot
- INRA (Institut National de la Recherche Agronomique), UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
| | - Célia Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| |
Collapse
|
21
|
Tian S, Pan L, Sun X. An investigation of endocrine disrupting effects and toxic mechanisms modulated by benzo[a]pyrene in female scallop Chlamys farreri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:162-171. [PMID: 24185101 DOI: 10.1016/j.aquatox.2013.09.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The purpose of this study was to investigate the endocrine disrupting effects induced by benzo[a]pyrene (B[a]P) and explore the underlying mechanisms in mollusks. In this study, sexually mature female Chlamys farreri were exposed to benzo[a]pyrene for 10 days at four different concentrations as 0, 0.025, 0.5 and 10 μg/L. Sex steroids were identified and quantified by electrochemiluminescence immunoassay (ECLIA) method and results showed that exposure to B[a]P exerts great suppression on 17β-estradiol, testosterone production and disrupts progesterone levels in ovary. Transcription of genes were detected and measured by real-time RT-PCR. It showed that at day 10 B[a]P inhibited 3 β-HSD, CYP17 and 17β-HSD mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of B[a]P that disrupt steroidogenic machinery. Moreover, 0.025 μg/L B[a]P activated transcription of aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), CYP1A1 and estrogen receptor (ER), while 10 μg/L B[a]P suppressed all of them. The consistency of their responses to B[a]P exposure implies that AHR action may be involved in invertebrate CYP regulation and ER transcription despite of unknown mechanisms. Additionally, B[a]P exposure could induce ovarian impairment and developmental delay in C. farreri. Overall, sensitivity of C. farreri to endocrine disruption and toxicity suggests that C. farreri is a suitable species for study of endocrine-disrupting effects in marine invertebrates. This study will form a solid basis for a realistic extrapolation of endocrine disrupting effects across taxonomic groups and phyla.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | | | | |
Collapse
|
22
|
Giusti A, Joaquim-Justo C. Esterification of vertebrate like steroids in molluscs: a target of endocrine disruptors? Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:187-98. [PMID: 24004916 DOI: 10.1016/j.cbpc.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/24/2022]
Abstract
Alterations of the reproductive organs of gastropod molluscs exposed to pollutants have been reported in natural populations for more than 40 years. In some cases, these impacts have been linked to exposure to endocrine-disrupting chemicals (EDCs), which are known to induce adverse impacts on vertebrates, mainly by direct binding to steroid receptors or by altering hormone synthesis. Investigations on the mechanisms of action of endocrine disruptors in molluscs show that EDCs induce modifications of endogenous titres of androgens (e.g., testosterone, androstenedione) and oestrogens (e.g., 17ß-oestradiol). Alterations of the activity of enzymes related to steroid metabolism (i.e., cytochrome P-450 aromatase, acyltransferases) are also often observed. In bivalves and gastropods, fatty acid esterification of steroids might constitute the major regulation of androgen and oestrogen homeostasis. The present review indicates that metabolism of steroid hormones to fatty acid esters might be a target of synthetic EDCs. Alterations of this process would impact the concentrations of free, potentially bioactive, form of steroids.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liège University, 15 Allée du 6 août, 4000 Liège, Belgium.
| | | |
Collapse
|
23
|
Giusti A, Ducrot V, Joaquim-Justo C, Lagadic L. Testosterone levels and fecundity in the hermaphroditic aquatic snail Lymnaea stagnalis exposed to testosterone and endocrine disruptors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1740-1745. [PMID: 23564527 DOI: 10.1002/etc.2234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/11/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Endocrine disruptors are known to alter endogenous free and esterified levels of androgenic and estrogenic steroid hormones in aquatic mollusks. The origin of steroids in these animals, however, remains controversial. In the present study, free and esterified testosterone concentrations were measured in the hermaphroditic aquatic gastropod Lymnaea stagnalis exposed to molecules known for their androgenic (testosterone and tributyltin), anti-androgenic (cyproterone-acetate), and estrogenic (chlordecone) properties, by reference to their mode of action in vertebrates. In parallel, snail oviposition and fecundity were followed over a 21-d exposure period. Testosterone exposure resulted in increased esterified testosterone levels, whereas free testosterone concentrations remained stable. In contrast, cyproterone-acetate significantly increased the free form of testosterone with no changes in the esterified form, whereas chlordecone showed a tendency to reduce (though not significantly) esterified testosterone concentrations without changing free testosterone levels. Finally, tributyltin did not alter testosterone homeostasis. The production of egg clutches and eggs was significantly reduced only in the snails exposed to the highest concentrations of chlordecone (19.6 µg/L) and tributyltin (94.2 ng Sn/L). Overall, the present study demonstrates that uptake of testosterone from the exposure medium occurs in L. stagnalis. Moreover, it shows that cyproterone-acetate and, to a lesser extent, chlordecone can alter endogenous testosterone levels in this freshwater snail. However, the relationship between hormonal changes and snail reproduction has not been established. Environ Toxicol Chem 2013;32:1740-1745. © 2013 SETAC.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Centre of Analytical Research and Technology (CART), Liege University, Liège, Belgium
| | | | | | | |
Collapse
|
24
|
Ronan JM, McHugh B. A sensitive liquid chromatography/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:738-46. [PMID: 23495020 DOI: 10.1002/rcm.6505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/26/2023]
Abstract
RATIONALE Trace levels of natural and synthetic steroid estrogens estrone (E1), 17β-estradiol (E2) and 17α-ethynyl estradiol (EE2) have been demonstrated to exert adverse effects in exposed organisms. E2 and EE2 have been proposed for inclusion in the Water Framework Directive (WFD) list of priority pollutants; however, the detection and accurate quantification of these compounds provide significant challenges, due to the low detection limits required. METHODS A sensitive method combining ultrasonication, solid-phase extraction (SPE) and liquid chromatography/tandem mass spectrometry, with electrospray ionisation in negative mode (LC/ESI-MS/MS), capable of determining E1, E2 and EE2 at concentrations between 0.07 and 60 ng/L for seawater and between 0.4 and 200 ng/g wet weight in Mytilus spp. is reported. Recoveries at the limit of quantification (LOQ) ranged from 95 to 102% and 88 to 100% for water and tissue, respectively. Salinity (12 to 35‰) and typical marine particulate matter loadings (between 10 and 100 mg/L) were not found to affect analyte recoveries. RESULTS The first detection of E1 by LC/MS/MS in Irish marine waters (Dublin Bay, at 0.76 ng/L) is reported. Steroids were not detected in Galway Bay, or in any mussel samples from Dublin, Galway and Clare. The level of E2 detected in the dissolved water phase was below the proposed WFD Environmental Quality Standard (EQS) in other surface waters. CONCLUSIONS The proposed method is suitable for the detection of E1, E2 and EE2 at biologically relevant concentrations and, due to the specificity offered, is not subject to potential interferences from endogenous E1 and E2 which often complicate the interpretation of estrogenic biomarker assays.
Collapse
Affiliation(s)
- Jenny M Ronan
- School of Natural Sciences, University of Dublin, Trinity College, Dublin, 2, Ireland.
| | | |
Collapse
|
25
|
Cubero-Leon E, Minier C, Rotchell JM, Hill EM. Metabolomic analysis of sex specific metabolites in gonads of the mussel, Mytilus edulis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:212-9. [DOI: 10.1016/j.cbd.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 12/24/2022]
|
26
|
Bachelot M, Li Z, Munaron D, Le Gall P, Casellas C, Fenet H, Gomez E. Organic UV filter concentrations in marine mussels from French coastal regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 420:273-279. [PMID: 22330425 DOI: 10.1016/j.scitotenv.2011.12.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The accumulation of EHMC, OCT and OD-PABA, three common UV filter compounds, was investigated in marine mussels. Wild Mytilus edulis and Mytilus galloprovincialis were sampled in ten sites along the French Atlantic and Mediterranean coasts from June to November. In mussel tissues, 100% of the samples had quantifiable EHMC concentrations ranging from 3 to 256ngg(-1) dry weight, while 55% of the samples had detectable OCT concentrations ranging from under 2 to 7 112ngg(-1) dry weight. These concentrations significantly increased with the rising air temperature in summer, the recreational pressure and the geomorphological structure of the sampling sites (its lack of openness to the wide). This is the first study to report bioaccumulation of UV filters in marine mussels, thus highlighting the need for further monitoring and assessment.
Collapse
|
27
|
Fernandes D, Loi B, Porte C. Biosynthesis and metabolism of steroids in molluscs. J Steroid Biochem Mol Biol 2011; 127:189-95. [PMID: 21184826 DOI: 10.1016/j.jsbmb.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/22/2010] [Accepted: 12/15/2010] [Indexed: 01/13/2023]
Abstract
Molluscs are the second most diverse animal group, they are ecologically important and they are considered excellent indicators of ecosystem health. Some species have been widely used in pollution biomonitoring programs; however, their endocrinology is still poorly known. Despite some studies reporting the presence of (vertebrate-type) steroids in molluscs, information regarding enzymatic pathways involved in steroid synthesis and further catabolism of those steroids is still fragmentary. Regarding steroidogenesis, a number of excellent studies were performed in the 70s using different radio-labelled steroid precursors and detecting the formation of different metabolites. But, since then a long gap of research exist until the late 90s when the 'endocrine disruption' issue raised the need of a better knowledge of mollusc (and invertebrate) endocrinology in order to assess alterations caused by pollutants. Here we summarize past and recent studies dealing with steroid biosynthesis and metabolism in different mollusc species. Most of these studies suggest the involvement of steroids in mollusc reproduction. However, the knowledge is still fragmentary and many questions remain to be answered.
Collapse
Affiliation(s)
- Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | |
Collapse
|
28
|
Kotula-Balak M, Pochec E, Hejmej A, Duda M, Bilinska B. Octylphenol affects morphology and steroidogenesis in mouse tumor Leydig cells. Toxicol In Vitro 2011; 25:1018-26. [DOI: 10.1016/j.tiv.2011.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
29
|
Vihma V, Tikkanen MJ. Fatty acid esters of steroids: synthesis and metabolism in lipoproteins and adipose tissue. J Steroid Biochem Mol Biol 2011; 124:65-76. [PMID: 21277977 DOI: 10.1016/j.jsbmb.2011.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
At the end of the last century ideas concerning the physiological role of the steroid fatty acid ester family were emerging. Estrogens, fatty acylated at C-17 hydroxyl group and incorporated in lipoproteins were proposed to provide antioxidative protection to these particles. A large number of studies involving non-estrogenic adrenal steroids, and their fatty acylated forms, demonstrated their lipoprotein-mediated transport into cells and subsequent intracellular activation, suggesting a novel transport mechanism for lipophilic steroid derivatives. After these important advances the main focus of interest has shifted away from C-19 and C-21 steroids to fatty acylated estrogens. However, interest in their lipoprotein-mediated transport has decreased because only minute amounts of these derivatives were detected in circulating lipoproteins, and their antioxidative activity remained unconfirmed under physiological circumstances. It now appears that the overwhelming majority of estradiol in postmenopausal women resides in adipose tissue, most of it in esterified form. This is poorly reflected in plasma levels which are very low. Recent data suggest that estrogen fatty acid esters probably represent a storage form. The future focus of investigation is likely to be on firstly, the enzymatic mechanisms regulating the esterification and de-esterification of estradiol and other steroids residing in adipose tissue and secondly, on the role of insulin and other hormones in the regulation of these enzymatic mechanisms. Thirdly, as a large proportion of fatty acid esterified C-19 and C-21 non-estrogenic steroids is transported in lipoproteins and as they are important precursors of androgens and estrogens, this field should be investigated further.
Collapse
Affiliation(s)
- Veera Vihma
- Institute of Clinical Medicine, Department of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | |
Collapse
|
30
|
Fernandes D, Navarro JC, Riva C, Bordonali S, Porte C. Does exposure to testosterone significantly alter endogenous metabolism in the marine mussel Mytilus galloprovincialis? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:313-20. [PMID: 20850876 DOI: 10.1016/j.aquatox.2010.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 05/22/2023]
Abstract
Mussels (Mytilus galloprovincialis) were exposed to different concentrations of testosterone (T: 20, 200 and 2000ng/L) in a semi-static water regime (1-day dosing intervals) for up to 5 days in an attempt to see whether endogenous steroid levels and steroid metabolism were altered by exogenous exposure to testosterone. Whole tissue levels of total testosterone (free+esterified) sharply increased in a concentration-dependent manner, from 2ng/g in controls to 290ng/g in organisms exposed to the highest concentration. In contrast, levels of free testosterone were only significantly elevated at the high-exposure group (5-fold increase with respect to controls). Increased activity of palmitoyl-CoA:testosterone acyltransferase (ATAT) was detected in organisms exposed to the highest concentration of testosterone, while those exposed to low and medium concentrations showed significant alterations in their polyunsaturated fatty acid profiles. The obtained results suggest that esterification of the excess of T with fatty acids might act as a homeostatic mechanism to maintain endogenous levels of free T stable. Interestingly, a decrease in CYP3A-like activity was detected in T-exposed mussels together with a significant decrease in the metabolism of the androgen precursor androstenedione to dihydrotestosterone (5α-DHT). Overall, the work contributes to the better knowledge of androgen metabolism in mussels.
Collapse
Affiliation(s)
- Denise Fernandes
- Environmental Chemistry Department, IDAEA-CSIC, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Riva C, Porte C, Binelli A, Provini A. Evaluation of 4-nonylphenol in vivo exposure in Dreissena polymorpha: Bioaccumulation, steroid levels and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:175-81. [PMID: 20388554 DOI: 10.1016/j.cbpc.2010.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 01/11/2023]
Abstract
Nonylphenol (NP) represents the most critical metabolite of alkylphenols (APs) and alkylphenol ethoxylates (APEs), non-ionic surfactants widely used in the formulation of domestic and industrial products. On the basis of in vitro and in vivo animal studies 4-nonylphenol (4-NP) is considered an endocrine disrupting chemical (EDC). The evidence to date indicates that mollusks are able to synthesize sex steroids from the precursor cholesterol and their endocrine pathways are theoretically susceptible to disruption. The aim of this study was to investigate the endocrine modulating potency of 4-NP in the freshwater mussel Dreissena polymorpha by looking at endogenous steroid levels in control and exposed individuals. 4-NP bioaccumulation in mussels tissues and alterations in the activity of enzymes related both to oxidative stress (catalase - CAT- and glutathione peroxidase - GPX-) and phase II metabolism (glutathione-S-transferase - GST-) were also assessed. The results highlighted a build-up of 4-NP in exposed mussels and an overall decrease of 17-beta-estradiol and testosterone levels. On the other hand this chemical at the tested concentrations does not interfere with the antioxidant defense mechanisms in D. polymorpha. The mechanisms by which 4-NP alter steroids levels are unknown and require more in-depth investigations.
Collapse
Affiliation(s)
- Consuelo Riva
- Department of Biology, University of Milan, via Celoria 33, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
32
|
Dévier MH, Labadie P, Togola A, Budzinski H. Simple methodology coupling microwave-assisted extraction to SPE/GC/MS for the analysis of natural steroids in biological tissues: Application to the monitoring of endogenous steroids in marine mussels Mytilus sp. Anal Chim Acta 2010; 657:28-35. [DOI: 10.1016/j.aca.2009.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 10/11/2009] [Accepted: 10/12/2009] [Indexed: 12/23/2022]
|
33
|
Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:1-132. [PMID: 19957234 DOI: 10.1007/978-1-4419-1440-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is detoxification and bioactivation. Hydrophobic pesticides that are expected to be highly stored in tissues would not be bioconcentrated if susceptible to biotic transformation by aquatic organisms to more rapidly metabolized to hydrophilic entities are generally less toxic. By analogy, pesticides that are metabolized to similar entities by aquatic species surely are les ecotoxicologically significant. One feature of fish and other aquatic species that makes them more relevant as targets of environmental studies and of regulation is that they may not only become contaminated by pesticides or other chemicals, but that they constitute and important part of the human diet. In this chapter, we provide an overview of the enzymes that are capable of metabolizing or otherwise assisting in the removal of xenobiotics from aquatic species. Many studies have been performed on the enzymes that are responsible for metabolizing xenobiotics. In addition to the use of conventional biochemical methods, such studies on enzymes are increasingly being conducted using immunochemical methods and amino acid or gene sequences analysis. Such studies have been performed in algae, in some aquatic macrophytes, and in bivalva, but less information is available for other aquatic species such as crustacea, annelids, aquatic insecta, and other species. Although their catabolizing activity is often lower than in mammals, oxidases, especially cytochrome P450 enzymes, play a central role in transforming pesticides in aquatic organisms. Primary metabolites, formed from such initial enzymatic action, are further conjugated with natural components such as carbohydrates, and this aids removal form the organisms. The pesticides that are susceptible to abiotic hydrolysis are generally also biotically degraded by various esterases to from hydrophilic conjugates. Reductive transformation is the main metabolic pathway for organochlorine pesticides, but less information on reductive enzymology processes is available. The information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of ecotoxicological endpoints. Therefore, more metabolic and tissue distribution information for terminal pesticide residues is needed for aquatic species both in laboratory settings and in higher-tier (microcosm, mesocosm) studies.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, 665-8555, Japan.
| |
Collapse
|
34
|
Lyssimachou A, Ramón M, Porte C. Comparative study on the metabolism of the androgen precursor androstenedione in two gastropod species: in vitro alterations by TBT and TPT. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:409-13. [PMID: 18849009 DOI: 10.1016/j.cbpc.2008.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 01/09/2023]
Abstract
A comparative study was performed to assess the metabolism of the androgen precursor androstenedione (AD) in two gastropod species from the Muricidae family: Bolinus brandaris and Hexaplex trunculus. AD was mainly converted to 5alpha-dihydrotestosterone by microsomal fractions isolated from Bolinus brandaris, whereas it was primarily metabolized to testosterone by Hexaplex trunculus. Sex differences in the metabolism of AD were only detected in Bolinus brandaris and attributed to higher 5alpha-reductase activity in males. Thereafter, the effect of the organotin compounds, tributyltin (TBT) and triphenyltin (TPT), on the metabolism of AD was investigated. A significant interference was only detected in females, and differences between the modes of action of the two compounds were observed: TPT was a strong inhibitor of 5alpha-reductase activity in B. brandaris at a concentration as low as 100 nM whereas only TBT (10 microM) altered the metabolism of AD in H. trunculus by increasing the activity 17beta-hydroxysteroid dehydrogenase (17beta-HSD). Thus, this work shows that the metabolism of the androgen precursor AD strongly differs among gastropod species, both in terms of activity and metabolic profile, and further demonstrates the ability of TBT and TPT to interfere with key enzymatic pathways involved in androgen synthesis.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | | | | |
Collapse
|
35
|
Sundt RC, Baussant T, Beyer J. Uptake and tissue distribution of C4-C7 alkylphenols in Atlantic cod (Gadus morhua): relevance for biomonitoring of produced water discharges from oil production. MARINE POLLUTION BULLETIN 2009; 58:72-79. [PMID: 18945454 DOI: 10.1016/j.marpolbul.2008.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 05/27/2023]
Abstract
The sensitivity of different tissues for assessment of chronic low-dose environmental exposure of fish to alkylphenols (APs) was investigated. We exposed Atlantic cod (Gadus morhua) in the laboratory to tritium labelled 4-tert-butylphenol, 4n-pentylphenol, 4n-hexylphenol, and 4n-heptylphenol via seawater (8 ng/l) and via contaminated feed (5 microg/kg fish per day). Measurements of different fish tissues during eight days of exposure and eight subsequent days of recovery revealed that APs administered via spiked seawater were readily taken up whereas the uptake was far less efficient when APs were administered in spiked feed. AP residues were mainly located in the bile fluid whereas the concentrations in liver were very low, indicating a rapid excretion and the liver-bile axis to be the major route of elimination. The biological half-life of APs in the exposed cod was short, between 10 and 20 h. Our study shows that in connection with biomonitoring of AP exposure in fish, assessment of AP metabolites in bile fluid is a more sensitive tool than detection of parent AP levels in liver or other internal tissues.
Collapse
Affiliation(s)
- Rolf C Sundt
- IRIS-International Research Institute of Stavanger, Stavanger, Norway.
| | | | | |
Collapse
|
36
|
Arukwe A, Nordtug T, Kortner TM, Mortensen AS, Brakstad OG. Modulation of steroidogenesis and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to water-soluble fraction of crude oil. ENVIRONMENTAL RESEARCH 2008; 107:362-370. [PMID: 18396270 DOI: 10.1016/j.envres.2008.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 05/26/2023]
Abstract
The induction of CYP enzyme activities, particularly CYP1A1, through the aryl hydrocarbon receptor (AhR) in most vertebrate species is among the most studied biochemical response to planar and aromatic organic contaminant exposure. Since P450 families play central roles in the oxidative metabolism of a wide range of exogenous and endogenous compounds, interactions between the biotransformation processes and reproductive physiological responses are inevitable. Steroidogenesis is the process by which specialized cells in specific tissues, such as the gonad, brain (neurosteroids) and kidney, synthesize steroid hormones. In the present study, we evaluated the effects of water-soluble fraction (WSF) of crude oil on the xenobiotic biotransformation and steroidogenic processes in the head (brain) and whole-body tissue of a model species by transcript analysis using quantitative (real-time) polymerase chain reaction (qPCR), enzyme activities and steroid hormone (testosterone: T and 17beta-estradiol: E2) levels using enzyme immune assay (EIA). Our data showed that exposure of fish to WSF produced an apparent concentration-specific increase of AhR1, CYP1A1 and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) mRNA levels, and decrease of AhR2. On the activity level, WSF produced concentration-specific increase of ethoxyresorufin O-deethylase (EROD), benzyloxyresorufin (BROD) methoxyresorufin (MROD) and pentoxyresorufin (PROD) activities in whole-body tissue. In the steroidogenic pathway, WSF exposure produced apparent concentration-specific decrease of ER* and ERbeta, steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleavage (P450scc), P450aromA and P450aromB mRNA expression. For steroid hormones, while T levels decreased, E2 levels increased in an apparent WSF concentration-specific manner. In general, the xenobiotic biotransformation and estrogenic responses showed negative relationship after exposure of zebrafish to WSF, suggesting an interaction between these physiological pathways. The relationship between WSF mediated changes in brain StAR, P450scc, 3beta-HSD, ER*alpha, ERbeta, P450aromA, P450aromB and whole-body steroid hormone levels suggests that the experimental animals might be experiencing altered neurosteroidogenesis probably through increased activity level of the biotransformation system. Thus, these responses might represent sensitive diagnostic tools for short-term and acute exposure of fish or other aquatic organisms to WSF.
Collapse
Affiliation(s)
- Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology NTNU, Høgskoleringen 5, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
37
|
Ketata I, Denier X, Hamza-Chaffai A, Minier C. Endocrine-related reproductive effects in molluscs. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:261-70. [PMID: 18282745 DOI: 10.1016/j.cbpc.2007.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/04/2007] [Accepted: 11/26/2007] [Indexed: 01/25/2023]
Abstract
Research on endocrine disruption has been a major topic of the past decade. Although most studies concentrated on vertebrate species, invertebrates are now gaining more attention. In particular, data on molluscs is increasing. One of the best-documented and more relevant examples of endocrine disruption is the imposex phenomenon affecting some gastropod species. But the increasing interest is also due to the fact that molluscs, especially bivalves, are good bioindicators used for decades in environmental studies and that progress have been made in the understanding of the physiology and endocrinology of some mollusc species. Recent results suggest that molluscs can be adversely affected by compounds that alter their reproduction and that vertebrate-type sex-steroids metabolism or mechanism of action could be involved in these effects. Nevertheless, the endocrine system of molluscs appears to be dissimilar in many aspects to those of vertebrates and sex-steroids might not have the same importance in all mollusc species. This diversity constitutes an important opportunity to examine and understand new and alternative mechanisms for endocrine disruption.
Collapse
Affiliation(s)
- Imen Ketata
- Ecotoxicologie Marine, UR 09-03, Université de Sfax, IPEIS, BP 805, 3018 Sfax, Tunisia
| | | | | | | |
Collapse
|
38
|
Martínez AA, Muñoz YR, Serrano FSJ, García PM. Immunolocalization of cholesterol side chain cleavage enzyme (P450scc) in Mytilus galloprovincialis and its induction by nutritional levels. J Comp Physiol B 2008; 178:647-54. [DOI: 10.1007/s00360-008-0256-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 01/05/2023]
|
39
|
Janer G, Porte C. Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:145-60. [PMID: 17219086 DOI: 10.1007/s10646-006-0110-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The review reports on the presence and metabolism of sex steroids in several invertebrate species and provides detailed information on possible mechanisms of endocrine disruption other than the interaction with nuclear receptors. The presence of most vertebrate sex steroids in invertebrate tissues has been demonstrated by liquid or gas chromatography coupled to mass spectrometry. In addition, enzymatic pathways involved in the steroidogenic pathway have been described in at least some invertebrate phyla. Some endocrine disruptors induce alterations in these metabolic pathways and might lead to changes in steroid levels. Growing evidence suggests that estradiol can act through non-genomic pathways in molluscs, and that xenobiotics can as well interfere in these signalling cascades. In spite of these recent advances, most question marks on the action and function of sex steroids in invertebrates remain to be answered.
Collapse
Affiliation(s)
- Gemma Janer
- Environmental Chemistry Department, IIQAB-CSIC, C/ Jordi Girona, 18, 08034 Barcelona, Spain.
| | | |
Collapse
|