1
|
Milano F, Giotta L, Lambreva MD. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109090. [PMID: 39243581 DOI: 10.1016/j.plaphy.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Environmental remediation of heavy metals (HMs) is a crucial aspect of sustainable development, safeguarding natural resources, biodiversity, and the delicate balance of ecosystems, all of which are critical for sustaining life on our planet. The bioremediation of HMs by unicellular phototrophs harnesses their intrinsic detoxification mechanisms, including biosorption, bioaccumulation, and biotransformation. These processes can be remarkably effective in mitigating HMs, particularly at lower contaminant concentrations, surpassing the efficacy of conventional physicochemical methods and offering greater sustainability and cost-effectiveness. Here, we explore the potential of various engineered nanomaterials to further enhance the capacity and efficiency of HM bioremediation based on photosynthetic microorganisms. The critical assessment of the interactions between nanomaterials and unicellular phototrophs emphasised the ability of tailored nanomaterials to sustain photosynthetic metabolism and the defence system of microorganisms, thereby enhancing their growth, biomass accumulation, and overall bioremediation capacity. Key factors that could shape future research efforts toward sustainable nanobioremediation of HM are discussed, and knowledge gaps in the field have been identified. This study sheds light on the potential of nanobioremediation by unicellular phototrophs as an efficient, scalable, and cost-effective solution for HM removal.
Collapse
Affiliation(s)
- Francesco Milano
- Institute of Sciences of Food Production, National Research Council (CNR), Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Maya D Lambreva
- Institute for Biological Systems, National Research Council (CNR), Strada Provinciale 35d, N. 9, 00010, Montelibretti, Rome, Italy.
| |
Collapse
|
2
|
Rizzo A, Ajò A, Kang H, De Cola L, Jesus B. Development of a new kappa-carrageenan hydrogel system to study benthic diatom vertical movements. PLoS One 2024; 19:e0297962. [PMID: 38603710 PMCID: PMC11008860 DOI: 10.1371/journal.pone.0297962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
Benthic diatom vertical movement has been investigated mainly through indirect measurements based on chlorophyll a fluorescence and spectral reflectance signals. The presence of sediment hinders direct imaging and grazers activity renders the work under controlled conditions very difficult. This study provides a tool to study diatoms movement in a 3D hydrogel matrix. Synthetic and natural hydrogels were tested to find the best 3D transparent scaffold where diatoms could grow and freely move in all directions. Polyamidoamines (PAAm) hydrogels were no-cytocompatible and hyaluronic acid (HA) only allowed diatoms to survive for 2-days. Natural hydrogels made of gelatin/Na-alginate, Na-alginate and kappa-carrageenan (KC) were cytocompatible, with KC showing the best properties for diatom growth and movement on a long term (up to 2 months). Comparing Nitzschia spathulata, Gyrosigma limosum and Navicula phyllepta growth in liquid media vs in KC gels, we found that diatoms reached a significantly higher final biomass in the hydrogel condition. Hydrogels were also useful to isolate large size diatom species e.g., Nitzschia elongata, that did not survive in suspension. Finally, we showed three ways to study diatom species-specific movement in KC hydrogels: 1) controlled species mix; 2) natural diatom assemblages with grazers; and 3) natural diatom assemblages without grazers. With our system, single diatoms could be imaged, identified, and counted. In addition, different stimuli, e.g., light intensity and light composition can be applied and their effects on movement and physiology studied without being masked by sediment or impaired by meiofauna.
Collapse
Affiliation(s)
- Arianna Rizzo
- Institut des Substances et Organismes de la Mer–ISOMer UR 2160, Faculté des Sciences et des Techniques, Nantes University, Nantes, France
| | - Alessandro Ajò
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Huixuan Kang
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milano, Italy
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Bruno Jesus
- Institut des Substances et Organismes de la Mer–ISOMer UR 2160, Faculté des Sciences et des Techniques, Nantes University, Nantes, France
| |
Collapse
|
3
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
5
|
Viltres H, López YC, Leyva C, Gupta NK, Naranjo AG, Acevedo–Peña P, Sanchez-Diaz A, Bae J, Kim KS. Polyamidoamine dendrimer-based materials for environmental applications: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Mikula P, Mlnaříková M, Nadres ET, Takahashi H, Babica P, Kuroda K, Bláha L, Sovadinová I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers (Basel) 2021; 13:polym13071025. [PMID: 33810255 PMCID: PMC8036423 DOI: 10.3390/polym13071025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/26/2023] Open
Abstract
Extensive, uncontrolled growth of algae and cyanobacteria is an environmental, public health, economic, and technical issue in managing natural and engineered water systems. Synthetic biomimetic polymers have been almost exclusively considered antimicrobial alternatives to conventional antibiotics to treat human bacterial infections. Very little is known about their applicability in an aquatic environment. Here, we introduce synthetic biomimetic polymethacrylates (SBPs) as a cost-effective and chemically facile, flexible platform for designing a new type of agent suitable for controlling and mitigating photosynthetic microorganisms. Since SBPs are cationic and membranolytic in heterotrophic bacteria, we hypothesized they could also interact with negatively charged cyanobacterial or algal cell walls and membranes. We demonstrated that SBPs inhibited the growth of aquatic photosynthetic organisms of concern, i.e., cyanobacteria (Microcystis aeruginosa and Synechococcus elongatus) and green algae (Chlamydomonas reinhardtii and Desmodesmus quadricauda), with 50% effective growth-inhibiting concentrations ranging between 95 nM and 6.5 μM. Additionally, SBPs exhibited algicidal effects on C. reinhardtii and cyanocidal effects on picocyanobacterium S. elongatus and microcystin-producing cyanobacterium M. aeruginosa. SBP copolymers, particularly those with moderate hydrophobic content, induced more potent cyanostatic and cyanocidal effects than homopolymers. Thus, biomimetic polymers are a promising platform for the design of anti-cyanobacterial and anti-algal agents for water treatment.
Collapse
Affiliation(s)
- Přemysl Mikula
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Marie Mlnaříková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Enrico T. Nadres
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, CZ-60200 Brno, Czech Republic
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (E.T.N.); (H.T.); (K.K.)
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 3, CZ-62500 Brno, Czech Republic; (P.M.); (M.M.); (P.B.); (L.B.)
- Correspondence: ; Tel.: +420-549-494-738
| |
Collapse
|
7
|
Chakraborty D, Ethiraj KR, Chandrasekaran N, Mukherjee A. Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116049. [PMID: 33213955 DOI: 10.1016/j.envpol.2020.116049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/24/2023]
Abstract
The extensive use of semiconducting nanoparticles such as quantum dots in biomedical and industrial products can lead to their inadvertent release into the freshwater system. Natural exudates in the aquatic system comprising extracellular polymeric substance (EPS) and protein-rich metabolites can eventually adsorb onto the quantum dots (QDs) surface and form an eco-corona. The alterations in the physio-chemical and toxicological behavior of CdSe/ZnS QDs under the influence of eco-corona in the freshwater system have not been explored yet. In the present study, lake water medium conditioned with exudate secreted by Scenedesmus obliquus was utilized as an eco-corona forming matrix. The time-based evolution of the eco-corona on the differently charged CdSe/ZnS QDs was analyzed using transmission electron microscopy and dynamic light scattering. Aging of amine-QDs in algal exudate for 72 h showed enhanced aggregation (Mean Hydrodynamic Diameter- 1969 nm) as compared to carboxyl-QDs (1543 nm). Further, eco-coronation tends to impart an overall negative charge to the QDs. The fluorescence intensity of amine-QDs was quenched by 84% due to the accumulation of higher eco-corona. An integrative effect of surface charge and accumulated eco-corona layer influenced the Cd2+ ion leaching from the QDs. An enhancement in the algal cell viability treated with carboxyl - CdSe/ZnS (90%) and amine- CdSe/ZnS QDs (94%) aged for 72 h suggested that eco-corona can effectively mitigate the inherent toxicity of the QDs. The oxidative stress markers in the algal cells (LPO, SOD, and CAT) were in correlation with the cytotoxicity results. The algal photosynthetic efficiency depended on the deposition of eco-coronated QDs on the cell surface. Cellular uptake results indicated low Cd2+ concentration of nearly 13.9 and 11.5% for carboxyl- and amine- CdSe/ZnS QDs respectively. This suggests that eco-coronation directly influences the bioavailability of engineered nanoparticles.
Collapse
Affiliation(s)
| | - K R Ethiraj
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
8
|
Mojiri A, Baharlooeian M, Zahed MA. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030977. [PMID: 33499398 PMCID: PMC7908223 DOI: 10.3390/ijerph18030977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/03/2022]
Abstract
Antibiotics are frequently applied to treat bacterial infections in humans and animals. However, most consumed antibiotics are excreted into wastewater as metabolites or in their original form. Therefore, removal of antibiotics from aquatic environments is of high research interest. In this study, we investigated the removal of sulfamethoxazole (SMX) and ofloxacin (OFX) with Chaetoceros muelleri, a marine diatom. The optimization process was conducted using response surface methodology (RSM) with two independent parameters, i.e., the initial concentration of antibiotics and contact time. The optimum removal of SMX and OFX were 39.8% (0.19 mg L−1) and 42.5% (0.21 mg L−1) at the initial concentration (0.5 mg L−1) and contact time (6.3 days). Apart from that, the toxicity effect of antibiotics on the diatom was monitored in different SMX and OFX concentrations (0 to 50 mg L−1). The protein (mg L−1) and carotenoid (μg L−1) content increased when the antibiotic concentration increased up to 20 mg L−1, while cell viability was not significantly affected up to 20 mg L−1 of antibiotic concentration. Protein content, carotenoid, and cell viability decreased during high antibiotic concentrations (more than 20 to 30 mg L−1). This study revealed that the use of Chaetoceros muelleri is an appealing solution to remove certain antibiotics from wastewater.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
- Correspondence:
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr 64199-34619, Iran;
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| |
Collapse
|
9
|
Abdolahpur Monikh F, Arenas-Lago D, Porcal P, Grillo R, Zhang P, Guo Z, Vijver MG, J G M Peijnenburg W. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae? Nanotoxicology 2019; 14:310-325. [PMID: 31775550 DOI: 10.1080/17435390.2019.1692381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We systematically investigated how the combinations of size, shape and the natural organic matter (NOM)-ecocorona of gold (Au) engineered nanoparticles (ENPs) influence the attachment of the particles to algae and physical toxicity to the cells. Spherical (10, 60 and 100 nm), urchin-shaped (60 nm), rod-shaped (10 × 45, 40 × 60 and 50 × 100 nm), and wire-shaped (75 × 500, 75 × 3000 and 75 × 6000 nm) citrate-coated and NOM-coated Au-ENPs were used. Among the spherical particles only the spherical 10 nm Au-ENPs caused membrane damage to algae. Only the rod-shaped 10 × 45 nm induced membrane damage among the rod-shaped Au-ENPs. Wire-shaped Au-ENPs caused no membrane damage to the algae. NOM ecocorona decreased the membrane damage effects of spherical 10 nm and rod-shaped 10 × 45 nm ENPs. The spherical Au-ENPs were mostly loosely attached to the cells compared to other shapes, whereas the wire-shaped Au-ENPs were mostly strongly attached compared to particles with other shapes. NOM ecocorona determined the strength of Au-ENPs attachment to the cell wall, leading to the formation of loose rather than strong attachment of Au-ENPs to the cells. After removal of the loosely and strongly attached Au-ENPs, some particles remained anchored to the surface of the algae. The highest concentration was detected for spherical 10 nm Au-ENPs followed by rod-shaped 10 × 45 nm Au-ENPs, while the lowest concentration was observed for the wire-shaped Au-ENPs. The combined effect of shape, size, and ecocorona controls the Au-ENPs attachment and physical toxicity to cells.
Collapse
Affiliation(s)
| | - Daniel Arenas-Lago
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Petr Porcal
- Institute of Hydrobiology and Soil & Water Research Infrastructure, Biology Centre CAS, České Budějovice, Czech Republic
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Peng Zhang
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Science, University of Birmingham, Birmingham, UK
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
10
|
Hernández-Zamora M, Martínez-Jerónimo F. Congo red dye diversely affects organisms of different trophic levels: a comparative study with microalgae, cladocerans, and zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11743-11755. [PMID: 30815811 DOI: 10.1007/s11356-019-04589-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Global consumption of synthetic dyes is roughly 7 × 105 tons per year, of which the textile industry expends about two-thirds. Consumption of synthetic dyes produces large volumes of wastewater discharged into aquatic ecosystems. Colored effluents produce toxic effects in the hydrobionts, reduce light penetration, and alter the photosynthetic activity, causing oxygen depletion, among other effects. Some dyes, such as Congo red (CR), are elaborated with benzidine, a known carcinogenic compound. Information regarding dye toxicity in aquatic ecosystems is scarce; therefore, our study was aimed at evaluating the toxicity of CR on a battery of bioassays: the microalga Pseudokirchneriella subcapitata, the cladocerans Daphnia magna and Ceriodaphnia rigaudi, and the zebrafish Danio rerio. P. subcapitata was the most sensitive species to CR (IC50, 3.11 mg L-1); in exposed individuals, population growth was inhibited, but photosynthetic pigments and macromolecule concentrations were stimulated. D. magna was tolerant to high dye concentrations, the determined LC50 (322.9 mg L-1) is not an environmentally relevant value, but for C. rigaudi, LC50 was significantly lower (62.92 mg L-1). In zebrafish embryos, exposure to CR produced yolk sac edema, skeletal deformities, and stopped larvae hatching; lack of heart beating was the only observed lethal effect. CR affected organisms of different trophic levels diversely. Particularly, the effects observed in microalgae confirm the vulnerability of primary producers to dye-polluted wastewaters, because dyes produced toxic effects and interfered with photosynthesis. Different cladoceran species displayed different acute effects; thus, species sensitivity must also be considered when toxicity of dyes is assessed. Inhibition of fish larvae hatching is a significant effect not previously reported that warns about the toxicity of dyes in fish population dynamics. Synthetic azo colorants should be considered as emerging pollutants because they are discharged into the aquatic environment and are not currently included in the environmental regulation of several countries.
Collapse
Affiliation(s)
- Miriam Hernández-Zamora
- Laboratorio de Hidrobiología Experimental, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, C.P, 11340, Mexico City, Mexico
| | - Fernando Martínez-Jerónimo
- Laboratorio de Hidrobiología Experimental, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, C.P, 11340, Mexico City, Mexico.
| |
Collapse
|
11
|
Mikula P, Mlnarikova M, Takahashi H, Babica P, Kuroda K, Blaha L, Sovadinova I. Branched Poly(ethylene imine)s as Anti-algal and Anti-cyanobacterial Agents with Selective Flocculation Behavior to Cyanobacteria over Algae. Macromol Biosci 2018; 18:e1800187. [PMID: 30156762 DOI: 10.1002/mabi.201800187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Indexed: 11/07/2022]
Abstract
Poly(ethylene imine)s (PEIs) have been widely studied for biomedical applications, including antimicrobial agents against potential human pathogens. The interactions of branched PEIs (B-PEIs) with environmentally relevant microorganisms whose uncontrolled growth in natural or engineered environments causes health, economic, and technical issues in many sectors of water management are studied. B-PEIs are shown to be potent antimicrobials effective in controlling the growth of environmentally relevant algae and cyanobacteria with dual-functionality and selectivity. Not only did they effectively inhibit growth of both algae and cyanobacteria, mostly without causing cell death (static activity), but they also selectively flocculated cyanobacteria over algae. Thus, unmodified B-PEIs provide a cost-effective and chemically facile framework for the further development of effective and selective antimicrobial agents useful for control of growth and separation of algae and cyanobacteria in natural or engineered environments.
Collapse
Affiliation(s)
- Premysl Mikula
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marie Mlnarikova
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Haruko Takahashi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Pavel Babica
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Ludek Blaha
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinova
- Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| |
Collapse
|
12
|
Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S. Engineered nanomaterials for plant growth and development: A perspective analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1413-1435. [PMID: 29554761 DOI: 10.1016/j.scitotenv.2018.02.313] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
With the overwhelmingly rapid advancement in the field of nanotechnology, the engineered nanomaterials (ENMs) have been extensively used in various areas of the plant system, including quality improvement, growth and nutritional value enhancement, gene preservation etc. There are several recent reports on the ENMs' influence on growth enhancements, growth inhibition as well as certain toxic impacts on plant. However, translocation, growth responses and stress modulation mechanisms of ENMs in the plant systems call for better and in-depth understanding. Herein, we are presenting a comprehensive and critical account of different types of ENMs, their applications and their positive, negative and null impacts on physiological and molecular aspects of plant growth, development and stress responses. Recent reports revealed mixed effects on plants, ranging from enhanced crop yield, epi/genetic alterations, and phytotoxicity, resulting from the ENMs' exposure. Creditable research in recent years has revealed that the effects of ENMs on plants are species specific and are variable among plant species. ENM exposures are reported to trigger free radical formation, responsive scavenging, and antioxidant armories in the exposed plants. The ENMs are also reported to induce aberrant expressions of microRNAs, the key post-transcriptional regulators of plant growth, development and stress-responses of plants. However, these modulations, if judiciously done, may lead to improved plant growth and yield. A better understanding of the interactions between ENMs and plant responses, including their uptake transport, internalization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. Therefore, in this review, we are presenting a critical account of the different selected ENMs, their uptake by the plants, their positive/negative impacts on plant growth and development, along with the resultant ENM-responsive post-transcriptional modifications, especially, aberrant miRNA expressions. In addition, underlying mechanisms of various ENM-plant cell interactions have been discussed.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India.
| | - Ashok Kumar Das
- Center for Superfunctional Materials, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Manoj Kumar Patel
- School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Ashish Shah
- Department of Biotechnology, Innovate Mediscience India, Vijay Nagar, Indore 452010, Madhya Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India; Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, 411016 Pune, Maharashtra, India
| | - Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia 741235, West Bengal, India; Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
13
|
Roy B, Chandrasekaran H, Palamadai Krishnan S, Chandrasekaran N, Mukherjee A. UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16729-16742. [PMID: 29611124 DOI: 10.1007/s11356-018-1860-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
There has recently been an increase in the usage of TiO2 nanoparticles (NPs). P25 TiO2 NPs, a mixture of anatase and rutile phase in 3:1 ratio, are generally used for photocatalytic applications because both phases exhibit a synergistic effect on the photocatalytic activity of the TiO2 NPs. In the present study, increased toxicity of UVA-pre-irradiated P25 TiO2 NPs on freshwater algae Scenedesmus obliquus was assessed under visible light and dark exposure conditions at actual low concentrations (0.3, 3 and 35 μM of Ti). Photocatalytic property of P25 TiO2 NPs caused disaggregation of UVA-pre-irradiated NPs, thus significantly decreasing the mean hydrodynamic diameter (MHD) (188.74 ± 0.54 nm) than that of non-irradiated NPs (232.26 ± 0.44). This decrease in diameter of UVA-pre-irradiated NPs may increase its biological activity towards algal samples. All concentrations of pre-irradiated NPs, under both light and dark conditions, showed a significantly lesser cell viability (p < 0.001) when compared with non-irradiated NPs. Increased production of ROS, antioxidant enzymes and lipid peroxidation supported the viability data. Higher exopolysaccharide production and more nuclear damage were observed for pre-irradiated NPs. NP uptake was also more for the pre-irradiated NPs on treated samples when compared with non-irradiated NPs on treated samples, which, in turn, established the higher toxic potential of UVA-pre-irradiated TiO2 NPs. This study improves our understanding of the toxic effects of UVA-pre-irradiated TiO2 NPs on freshwater algae, thereby emphasising the need for ecological risk assessments of metal oxide nanoparticles in a natural experimental medium.
Collapse
Affiliation(s)
- Barsha Roy
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | | | | | | | | |
Collapse
|
14
|
Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Fast detection of Listeria monocytogenes through a nanohybrid quantum dot complex. Anal Bioanal Chem 2017; 409:5359-5371. [DOI: 10.1007/s00216-017-0481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
|
16
|
Guo J, Selby K, Boxall ABA. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:589-602. [PMID: 27507418 PMCID: PMC5566184 DOI: 10.1007/s00244-016-0305-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/20/2016] [Indexed: 05/26/2023]
Abstract
The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng L-1 to low µg L-1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradiance-photosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 µmol L-1 compared with an EC50 of 17.6 µmol L-1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 µmol L-1; EC50 0.33 µmol L-1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide useful insights into the impacts of antibiotics on algal species.
Collapse
Affiliation(s)
- Jiahua Guo
- Environment Department, University of York, Wentworth Way, Heslington, York, YO10 5NG, UK
| | - Katherine Selby
- Environment Department, University of York, Wentworth Way, Heslington, York, YO10 5NG, UK
| | - Alistair B A Boxall
- Environment Department, University of York, Wentworth Way, Heslington, York, YO10 5NG, UK.
| |
Collapse
|
17
|
Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M. Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol 2016; 305:83-92. [DOI: 10.1016/j.taap.2016.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
|
18
|
Gonzalo S, Rodea-Palomares I, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F. First evidences of PAMAM dendrimer internalization in microorganisms of environmental relevance: A linkage with toxicity and oxidative stress. Nanotoxicology 2014; 9:706-18. [PMID: 25325159 DOI: 10.3109/17435390.2014.969345] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article reports novel results on the toxic mechanisms of action of amine- and hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers toward microorganisms of environmental relevance, namely a cyanobacterium of the genus Anabaena and the green alga Chlamydomonas reinhardtii. We used PAMAM ethylenediamine core dendrimers from generations G2 to G4, which displayed a positive charge, measured as ζ-potential, in culture media. All amine-terminated and most remarkably the G4 hydroxyl-terminated dendrimer inhibited the growth of both microorganisms. The effect on the growth of the green alga was significantly higher than that on the cyanobacterium. With concentrations expressed in terms of molarity, there was a clear relationship between dendrimer generation and toxicity, with higher toxicity for higher generation. Hormesis was observed for hydroxyl-terminated dendrimers at low concentrations. The cationic dendrimers and G4-OH significantly increased the formation of reactive oxygen species (ROS) in both organisms. ROS formation was not related with the chloroplast or photosynthetic membranes and photosystem II photochemistry was unaffected. Cell damage resulted in cytoplasm disorganization and cell deformities and was associated to an increase in ROS formation and lipid peroxidation in mitochondria in the green alga; cell wall and membrane disruption with apparent loss of cytoplasmic contents was found in the cyanobacterium. It was determined for the first time that cationic PAMAM dendrimers were quickly and largely internalized by both organisms. These results warn against the generalization of the use of dendrimers, which may pose significant risk for the environment and particularly for primary producers which are determinant for the health of natural ecosystems.
Collapse
Affiliation(s)
- Soledad Gonzalo
- Departamento de Ingeniería Química, Universidad de Alcalá , Alcalá de Henares, Madrid , Spain
| | | | | | | | | | | |
Collapse
|
19
|
Zamani H, Moradshahi A, Jahromi HD, Sheikhi MH. Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:176-183. [PMID: 24907922 DOI: 10.1016/j.aquatox.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 06/03/2023]
Abstract
The potential hazards of nanoparticles (NPs) to the environment and to living organisms need to be considered for a safe development of nanotechnology. In the present study, the potential toxic effects of uncoated and gum Arabic-coated lead sulfide nanoparticles (GA-coated PbS NPs) on the growth, lipid peroxidation, reducing capacity and total carotenoid content of the hypersaline unicellular green algae Dunaliella salina were investigated. Coatings of PbS NPs with GA, as confirmed by Fourier transform infrared spectroscopy, reduced the toxicity of PbS NPs. Uncoated PbS NP toxicity to D. salina was attributed to higher algal cell-NP agglomerate formation, higher lipid peroxidation, lower content of total reducing substances and lower total carotenoid content. Low levels of Pb(2+) in the growth culture media indicate that PbS NP dissolution does not occur in the culture. Also, the addition of 100 μM Pb(2+) to the culture media had no significant (P>0.05) effect on algal growth. The shading of light (shading effect) by PbS NPs, when simulated using activated charcoal, did not contribute to the overall toxic effect of PbS NPs which was evident by insignificant (P>0.05) reduction in the growth and antioxidant capacity of the algae. When PbS NP aggregation in culture media (without algal cells) was followed for 60 min, uncoated form aggregated rapidly reaching aggregate sizes with hydrodynamic diameter of over 2500 nm within 60 min. Effective particle-particle interaction was reduced in the GA-coated NPs. Aggregates of about 440 nm hydrodynamic diameter were formed within 35 min. Afterwards the aggregate size remained constant. It is concluded that PbS NPs have a negative effect on aquatic algae and their transformation by GA capping affects NPs aggregation properties and toxicity.
Collapse
Affiliation(s)
- Hajar Zamani
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran
| | - Ali Moradshahi
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz 71454, Iran.
| | | | | |
Collapse
|
20
|
Perreault F, Melegari SP, Fuzinatto CF, Bogdan N, Morin M, Popovic R, Matias WG. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models. ENVIRONMENTAL TOXICOLOGY 2014; 29:328-336. [PMID: 22331655 DOI: 10.1002/tox.21761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/19/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment.
Collapse
Affiliation(s)
- François Perreault
- Laboratory of Environmental Toxicology, LABTOX, Department of Sanitary and Environment Engineering, Federal University of Santa Catarina, CEP 88040-970, Florianópolis, Santa Catarina, Brazil; Department of Chemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, Quebec, Canada, H3C 3P8
| | | | | | | | | | | | | |
Collapse
|
21
|
Santiago-Morales J, Rosal R, Hernando MD, Ulaszewska MM, García-Calvo E, Fernández-Alba AR. Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:102-13. [PMID: 24384376 DOI: 10.1016/j.jhazmat.2013.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/30/2013] [Accepted: 12/14/2013] [Indexed: 06/03/2023]
Abstract
This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1 min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation.
Collapse
Affiliation(s)
- Javier Santiago-Morales
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Advanced Study Institute of Madrid, IMDEA Agua, Parque Científico Tecnológico, 28805 Alcalá de Henares, Madrid, Spain.
| | - María D Hernando
- Spanish National Institute for Agricultural and Food Research and Technology - INIA, Crta. de la Coruña, km 7.5, 28040 Madrid, Spain
| | - Maria M Ulaszewska
- Advanced Study Institute of Madrid, IMDEA Agua, Parque Científico Tecnológico, 28805 Alcalá de Henares, Madrid, Spain
| | - Eloy García-Calvo
- Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; Advanced Study Institute of Madrid, IMDEA Agua, Parque Científico Tecnológico, 28805 Alcalá de Henares, Madrid, Spain
| | - Amadeo R Fernández-Alba
- Advanced Study Institute of Madrid, IMDEA Agua, Parque Científico Tecnológico, 28805 Alcalá de Henares, Madrid, Spain; Pesticide Residue Research Group, Department of Hydrogeology and Analytical Chemistry, University of Almería, 04120 Almería, Spain
| |
Collapse
|
22
|
Oliveira E, Casado M, Faria M, Soares AMVM, Navas JM, Barata C, Piña B. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology 2013; 8 Suppl 1:92-9. [PMID: 24266889 DOI: 10.3109/17435390.2013.858376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progressive practical applications of engineered nanoparticles results in their ever-increasing release into the environment. Accurate assessment of their environmental and health risks requires the development of methods allowing their monitoring in different environmental compartments and the evaluation of their potential toxicity at different levels of organization. Toxic effects of third-generation (G3) and fourth-generation (G4) poly(amidoamine) dendrimers (ethylenediamine cored, imine-terminated) were assessed on zebrafish embryos during the first two days post-fertilization. Particle characterization by dynamic light scattering showed no tendency to form aggregates in the assay conditions. G3 particles showed somewhat a higher acute toxicity than G4 particles, with LC50 values of 1.8 and 2.3 mg/L, respectively. At sublethal concentrations, both particles affected the zebrafish transcriptome following similar patterns, suggesting a similar mode of action. About 700 transcripts were affected by at least one of the treatments, following a pattern with significant correlations to the effects of bacterial infection in zebrafish embryos. We concluded that the response to G3 and G4 dendrimers was consistent with the activation of the innate immune response, a still unreported potential effect of these particles. These data may contribute to the characterization of hazards of these nanomaterials for both human health and the environment.
Collapse
|
23
|
Dalai S, Pakrashi S, Joyce Nirmala M, Chaudhri A, Chandrasekaran N, Mandal AB, Mukherjee A. Cytotoxicity of TiO₂ nanoparticles and their detoxification in a freshwater system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:1-11. [PMID: 23680676 DOI: 10.1016/j.aquatox.2013.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 05/03/2023]
Abstract
In the current study, two aspects concerning (i) the cytotoxicity potential of TiO₂ nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO₂ NPs. The electron micrographs demonstrated adsorption of the NPs onto the cell surface and substantiated their internalization/uptake. The fluorescence micrographs and the confocal laser scanning (CLSM) images suggested the absence of a definite/intact nucleus in the light treated cells pointing toward the probable genotoxic effects of NPs. In a separate three cycle experiment, a continuous decrease in the cytotoxicity was observed, whereas, at the end of each cycle only fresh algae were added to the supernatant containing NPs from the previous cycle. The decreasing concentrations of the NPs in the subsequent cycles owing to agglomeration-sedimentation processes exacerbated by the algal interactions played a crucial role in the detoxification. In addition, the exo-polymeric substances produced by the cells could have rendered the available NPs less reactive, thereby, enhancing the detoxification effects.
Collapse
|
24
|
Qualitative and quantitative analysis of poly(amidoamine) dendrimers in an aqueous matrix by liquid chromatography–electrospray ionization-hybrid quadrupole/time-of-flight mass spectrometry (LC-ESI-QTOF-MS). Anal Bioanal Chem 2013; 405:5901-14. [DOI: 10.1007/s00216-012-6673-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/03/2012] [Accepted: 12/18/2012] [Indexed: 02/02/2023]
|
25
|
Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR. Potential environmental implications of nano-enabled medical applications: critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:123-144. [PMID: 24592432 DOI: 10.1039/c2em30640a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of nanotechnology and nanoscience for medical purposes is anticipated to make significant contributions to enhance human health in the coming decades. However, the possible future mass production and use of these medical innovations exhibiting novel and multifunctional properties will very likely lead to discharges into the environment giving rise to potentially new environmental hazards and risks. To date, the sources, the release form and environmental fate and exposure of nano-enabled medical products have not been investigated and little or no data exists, although there are a small number of currently approved medical applications and a number in clinical trials. This paper discusses the current technological and regulatory landscape and potential hazards and risks to the environment of nano-enabled medical products, data gaps and gives tentative suggestions relating to possible environmental hotspots.
Collapse
|
26
|
Macken A, Byrne HJ, Thomas KV. Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramium tenuicorne. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 86:101-110. [PMID: 23036305 DOI: 10.1016/j.ecoenv.2012.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/06/2012] [Accepted: 08/28/2012] [Indexed: 05/29/2023]
Abstract
The toxic effects of polyvinylpyrrolidone (PVP) coated silver nanoparticles (Ag-NP(PVP)) and ionic Ag, to Tisbe battagliai (Tb) and Ceramium tenuicorne (Ct) were investigated and the usefulness of standardised marine guidelines for ENP risk assessment were assessed. The toxicity of Ag-NP(PVP) [CtEC(50)=26.6μg/L, TbEC(50)=7.9μg/L] and Ag(+) [CtEC(50)=2312.2μg/L, Tb EC(50)=90.9μg/L] to both test species differed, with the silver ENPs being more toxic. In contrast to Ag(+) the toxicity of Ag-NP(PVP) increased significantly with increasing salinity, however, after thorough characterisation it was not possible to correlate the behaviour of the particles with an increase in toxicity and salinity. The results suggest that the observed toxicity is being elicited by the free ionic silver complexing in solution and also from an unknown potential particle related effect.
Collapse
Affiliation(s)
- Ailbhe Macken
- Focas Research Institute, Dublin Institute of Technology, Dublin 8, Ireland.
| | | | | |
Collapse
|
27
|
Wang ZH, Nie XP, Yue WJ, Li X. Physiological responses of three marine microalgae exposed to cypermethrin. ENVIRONMENTAL TOXICOLOGY 2012; 27:563-572. [PMID: 21374785 DOI: 10.1002/tox.20678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/25/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
The effects of cypermethrin on physiological responses of three typical marine microalgal species Skeletonema costatum (Bacillariophyceae), Scrippsiella trochoidea (Dinophyceae), and Chattonella marina (Raphidophyceae), were investigated by 96-h growth tests in a batch-culture system. The 96-h median inhibition concentrations (IC(50)) were 71.4, 205, and 191 μg L(-1) for S. costatum, S. trochoidea, and C. marina, respectively. Quick and significant physiological responses occurred when algal cells were exposed to cypermethrin, and all biochemical parameters varied significantly within 6- or 12-h exposure. Cypermethrin affected algal growth, protein content, and superoxide dismutase (SOD) activity by stimulation at low concentrations (1, 5 μg L(-1)) and inhibition at high concentrations (>50 μg L(-1)). A general increase in malondialdehyde (MDA) level was observed in all test groups, which suggested that the toxic effects of cypermethrin were probably exerted through free radical generation. These results suggest that the activation of SOD and promotion of protein at early exposure are important to counteract the oxidative stress induced by cypermethrin, and the inactivation of SOD may be crucial to the growth inhibition of microalgae by cypermethrin.
Collapse
Affiliation(s)
- Zhao-Hui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:155-162. [PMID: 22883605 DOI: 10.1016/j.ecoenv.2012.07.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/26/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage.
Collapse
Affiliation(s)
- Lanzhou Chen
- State Key Laboratory of Fresh water Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Wang ZH, Nie XP, Yue WJ. Toxicological effects of cypermethrin to marine phytoplankton in a co-culture system under laboratory conditions. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1258-1267. [PMID: 21499869 DOI: 10.1007/s10646-011-0674-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
The growth of three marine phytoplankton species Skeletonema costatum, Scrippsiella trochoidea and Chattonella marina and the response of the antioxidant defense system have been investigated on exposure to commercial cypermethrin for 96 h and 32 days in a co-culture system. Growth of the three species was generally comparable over 96 h with an inoculation of 1:3:6.5 (C. marina:S. trochoidea:S. costatum), with stimulation at 5 μg l(-1) and inhibition under higher concentrations (50, 100 μg l(-1)). However, when inoculating at ratios of 1:1:1 during a 32 day test, S. costatum became the most sensitive species and was significantly inhibited in all test groups under the dual stresses of cypermethrin and interspecies competition. The growth of C. marina was significantly inhibited at the concentrations higher than 5 μg l(-1), while the growth of S. trochoidea was significantly promoted at low concentrations. Superoxide dismutase (SOD) activities significantly increased during 6-12 h exposure periods in test treatments at low concentrations, and enhanced in the control as well due to interspecies competition. The lipid peroxidation product malondialdehyde was enhanced at high concentrations, but did not increase in control and low concentration cultures with high SOD activities, indicating that algal cells activated the antioxidant enzymes promptly to protect the cells from lipid membrane damage. Results from this study suggested that cypermethrin pollution in maricultural sea waters might lead to a shift in phytoplankton community structure from diatom to harmful dinoflagellate species, and thus potentially stimulatory for harmful algal blooms.
Collapse
Affiliation(s)
- Zhao-Hui Wang
- Institute of Hydrobiology College of Life Science and Technology, Jinan University, Guangzhou, 510632, People's Republic of China.
| | | | | |
Collapse
|
30
|
Petit AN, Debenest T, Eullaffroy P, Gagné F. Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii. Nanotoxicology 2011; 6:315-26. [PMID: 21554014 DOI: 10.3109/17435390.2011.579628] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers hold great promises for biomedicine. This study sought to examine the toxicity of generation 4 (G4) cationic PAMAM dendrimer to the green microalga, Chlamydomonas reinhardtii, using physiological and molecular biomarkers. Results revealed that the G4 dendrimer at 15 and 25 nM stimulated the photosynthetic process and the production of reactive oxygen species (ROS) in algae. However, the over-production of ROS did not induce the expression of antioxidant enzyme genes, catalase and glutathione peroxidase. In addition, genes encoding light-harvesting proteins (lhca and lhcb), a ferredoxin (fdx) and an oxygen-evolving enhancer protein (psb) involved in photosynthesis were repressed after treatment. Nevertheless, the expression of the lhcbm9 gene, encoding a major light harvesting polypeptide, was increased. These results suggest that the strong modulation of photosynthesis induced by the dendrimer could lead to elevated ROS levels in microalgae.
Collapse
Affiliation(s)
- Anne-Noëlle Petit
- Environment Canada, Fluvial Ecosystem Research, Aquatic Ecosystem Protection Division, 105 McGill, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
31
|
Perreault F, Bogdan N, Morin M, Claverie J, Popovic R. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 2011; 6:109-20. [DOI: 10.3109/17435390.2011.562325] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Suarez I, Rosal R, Rodriguez A, Ucles A, Fernandez-Alba A, Hernando M, García-Calvo E. Chemical and ecotoxicological assessment of poly(amidoamine) dendrimers in the aquatic environment. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|