1
|
Vellingiri B. A deeper understanding about the role of uranium toxicity in neurodegeneration. ENVIRONMENTAL RESEARCH 2023; 233:116430. [PMID: 37329943 DOI: 10.1016/j.envres.2023.116430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Zhang L, Chu J, Xia B, Xiong Z, Zhang S, Tang W. Health Effects of Particulate Uranium Exposure. TOXICS 2022; 10:575. [PMID: 36287855 PMCID: PMC9610560 DOI: 10.3390/toxics10100575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Uranium contamination has become a nonnegligible global health problem. Inhalation of particulate uranium is one of the predominant routes of occupational and environmental exposure. Uranium particle is a complex two-phase flow of matter that is both particulate and flowable. This particular physicochemical property may alter its biological activity. Epidemiological studies from occupationally exposed populations in the uranium industry have concluded that there is a possible association between lung cancer risk and uranium exposure, while the evidence for the risk of other tumors is not sufficient. The toxicological effects of particulate uranium exposure to animals have been shown in laboratory tests to focus on respiratory and central nervous system damage. Fibrosis and tumors can occur in the lung tissue of the respiratory tract. Uranium particles can also induce a concentration-dependent increase in cytotoxicity, targeting mitochondria. The understanding of the health risks and potential toxicological mechanisms of particulate uranium contamination is still at a preliminary stage. The diversity of particle parameters has limited the in-depth exploration. This review summarizes the current evidence on the toxicology of particulate uranium and highlights the knowledge gaps and research prospects.
Collapse
|
3
|
Hettiarachchi E, Das M, Cadol D, Frey BA, Rubasinghege G. The fate of inhaled uranium-containing particles upon clearance to gastrointestinal tract. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1257-1266. [PMID: 35916312 PMCID: PMC11360387 DOI: 10.1039/d2em00209d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Uranium-bearing respirable dust can cause various health problems, such as cardiovascular and neurological disorders, cancers, immunosuppression, and autoimmunity. Exposure to elevated levels of uranium is linked to many such health conditions in Navajo Nation residents in northwestern New Mexico. Most studies have focused on the fate of inhaled dust particles (<4 μm) in the lungs. However, larger-sized inhaled particles (10-20 μm) can be cleared to the human gastrointestinal tract (GIT), thereby enabling them to interact with stomach and intestinal fluids. Despite the vital importance of understanding the fate of uranium-bearing solids entering the human GIT and their impact on body tissues, cells, and gut microbiota, our understanding remains limited. This study investigated uranium solubility from dust and sediment samples collected near two uranium mines in the Grants Mining District in New Mexico in two simulated gastrointestinal fluids representing fasting conditions in the GIT: Simulated Gastric Fluid (SGF) and Simulated Intestinal Fluid (SIF). The dissolution of uranium from dust depends on its mineralogy, fluid pH, and composition. The dust samples from the Jackpile mine favored higher solubility in the SIF solution, whereas the sediment samples from the St. Anthony Mine favored higher solubility in the SGF solution. Further, geochemical calculations performed with the PHREEQC modeling program suggested that samples rich in the minerals andersonite, tyuyamunite, and/or autunite have higher uranium dissolution in the SIF solution than in the SGF solution. We also tested the effect of added kaolinite and microcline, which are both present in some samples. The ratio of dissolved uranium in SGF relative to SIF decreases with the addition of kaolinite for all mineral phases but andersonite. With the addition of microcline, the ratio of dissolved uranium in SGF relative to SIF decreases for all the tested uranium minerals. The most prevalent oxidation state of dissolved uranium was computationally determined as +6, U(VI). The geochemical calculations made with PHREEQC agree with the experimentally observed results. Therefore, this study gives insight into the mineralogy-controlled toxicological assessment of uranium-containing inhaled dust cleared to the gastrointestinal tract.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.
| | - Milton Das
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.
| | - Daniel Cadol
- Department of Earth & Environmental Sciences, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Bonnie A Frey
- New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA.
| |
Collapse
|
4
|
Guéguen Y, Frerejacques M. Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment. Int J Mol Sci 2022; 23:ijms23084397. [PMID: 35457214 PMCID: PMC9030063 DOI: 10.3390/ijms23084397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed.
Collapse
|
5
|
Canedo A, de Jesus LWO, Bailão EFLC, Rocha TL. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): Past, present, and future trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118019. [PMID: 34670334 DOI: 10.1016/j.envpol.2021.118019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
6
|
Wlodkowic D, Czerw A, Karakiewicz B, Deptała A. Recent progress in cytometric technologies and their applications in ecotoxicology and environmental risk assessment. Cytometry A 2021; 101:203-219. [PMID: 34652065 DOI: 10.1002/cyto.a.24508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Environmental toxicology focuses on identifying and predicting impact of potentially toxic anthropogenic chemicals on biosphere at various levels of biological organization. Presently there is a significant drive to gain deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity. Most notable is increased focus on elucidation of cellular-response networks, interactomes, and greater implementation of cell-based biotests using high-throughput procedures, while at the same time decreasing the reliance on standard animal models used in ecotoxicity testing. This is aimed at discovery and interpretation of molecular pathways of ecotoxicity at large scale. In this regard, the applications of cytometry are perhaps one of the most fundamental prospective analytical tools for the next generation and high-throughput ecotoxicology research. The diversity of this modern technology spans flow, laser-scanning, imaging, and more recently, Raman as well as mass cytometry. The cornerstone advantages of cytometry include the possibility of multi-parameter measurements, gating and rapid analysis. Cytometry overcomes, thus, limitations of traditional bulk techniques such as spectrophotometry or gel-based techniques that average the results from pooled cell populations or small model organisms. Novel technologies such as cell imaging in flow, laser scanning cytometry, as well as mass cytometry provide innovative and tremendously powerful capabilities to analyze cells, tissues as well as to perform in situ analysis of small model organisms. In this review, we outline cytometry as a tremendously diverse field that is still vastly underutilized and often largely unknown in environmental sciences. The main motivation of this work is to highlight the potential and wide-reaching applications of cytometry in ecotoxicology, guide environmental scientists in the technological aspects as well as popularize its broader adoption in environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health, Department of Social Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention. Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Joseph SJ, Arunachalam KD, Murthy PB, Ramalingam R, Musthafa MS. Uranium induces genomic instability and slows cell cycle progression in human lymphocytes in acute toxicity study. Toxicol In Vitro 2021; 73:105149. [DOI: 10.1016/j.tiv.2021.105149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
|
8
|
Canedo A, Rocha TL. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144084. [PMID: 33383303 DOI: 10.1016/j.scitotenv.2020.144084] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Genotoxic pollutants lead to both DNA damage and changes in cell repair mechanisms. Selecting suitable biomonitors is a fundamental step in genotoxicity studies. Thus, zebrafish have become a popular model used to assess the genotoxicity of different pollutants in recent years. They have orthologous genes with humans and hold almost all genes involved in different repair pathways. Therefore, the aim of the current study is to summarize the existing literature on zebrafish using as model system to assess the genotoxicity of different pollutants. Revised data have shown that comet assay is the main technique adopted in these studies. However, it is necessary standardizing the technique applied to zebrafish in order to enable better result interpretation and comparisons. Overall, pollutants lead to single-strand breaks (SSB), double-strand breaks (DSB), adduct formation, as well as to changes in the expression of genes involved in repair mechanisms. Although analyzing repair mechanisms is essential to better understand the genotoxic effects caused by pollutants, few studies have analyzed repair capacity. The current review reinforces the need of conducting further studies on the role played by repair pathways in zebrafish subjected to DNA damage. Revised data have shown that zebrafish are a suitable model to assess pollutant-induced genotoxicity.
Collapse
Affiliation(s)
- Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil..
| |
Collapse
|
9
|
Mehra S, Chadha P. Naphthalene-2-sulfonate induced toxicity in blood cells of freshwater fish Channa punctatus using comet assay, micronucleus assay and ATIR-FTIR approach. CHEMOSPHERE 2021; 265:129147. [PMID: 33302202 DOI: 10.1016/j.chemosphere.2020.129147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Present inquisition was undertaken to evaluate the genotoxicity of naphthalene-2-sulfonate (2NS), a sulfonated aromatic compound and a momentous intermediate involved in the synthesis of dyes and surfactants, in fresh water fish, Channa punctatus. After LC50 determination, two sublethal concentrations i.e. 2.38 g/15 g b.w. (1/4 of LC50) and 4.77 g/15 g b.w. (1/2 of LC50) were selected for studying acute exposure. For evaluating sub chronic exposure 1/10th (0.238 g/L) and 1/20th (0.119 g/L) of safe application rate (SAR) were reckoned. Blood samples were collected after 24, 48, 72, and 96 h exposure period to study acute effect, and after 30 and 60 days exposure period for sub-chronic effect. Symbolic elevation in time and dose dependent DNA damage was observed by comet assay as well as micronucleus test revealing maximum damage after 60 days of exposure. After cessation of exposure to 2NS, evident recovery was observed after 30 days. Along with comet assay and micronucleus test, spectroscopic evaluation of DNA damage was also noted using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR). The biomolecular range (800 cm-1 - 1800cm-1) in lyophilized red blood cell's extracted from 60 days exposed as well as control group exhibit significant alterations in their nucleic acid indicated through multivariate analysis i.e. Principal Component Analysis (PCA). Further structural analysis of erythrocytes in maximally damaged group using Scanning Electron Microscopy was performed. Thus the study proposed the genotoxic impact of 2NS which is further supported by other toxicity markers like ATR-FTIR and Scanning Electron Microscopy.
Collapse
Affiliation(s)
- Sukanya Mehra
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
10
|
Hao Y, Huang J, Ran Y, Wang S, Li J, Zhao Y, Ran X, Lu B, Liu J, Li R. Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells. J Biochem Mol Toxicol 2020; 35:e22669. [PMID: 33274826 DOI: 10.1002/jbt.22669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/07/2022]
Abstract
The kidney is the target of the acute toxicity of depleted uranium (DU). However, the mechanism of DU-induced cytotoxicity is not clear. The study was to demonstrate the role of autophagy in DU-induced cytotoxicity and to determine the potential mechanism. We confirmed that after a 4-h exposure to DU, the autophagic vacuoles and the autophagy marker light chain 3-II in the human embryonic kidney 293 cells (HEK293) increased, and cytotoxicity decreased by abrogation of excessive autophagy using autophagy inhibitor. We also found activation of nucleus p53 and inhibiting mTOR pathways in DU-treated HEK293 cells. Meanwhile, ethylmalonic encephalopathy 1 (ETHE1) decreased as the exposure dose of DU increased, with increasing autophagy flux. We suggested that by reducing ETHE1, activation of the p53 pathway, and inhibiting mTOR pathways, DU might induce overactive autophagy, which affected the cytotoxicity. This study will provide a novel therapeutic target for the treatment of DU-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jiawei Huang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Binghui Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Rong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Institute of Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Ma M, Wang R, Xu L, Xu M, Liu S. Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. ENVIRONMENT INTERNATIONAL 2020; 145:106107. [PMID: 32932066 DOI: 10.1016/j.envint.2020.106107] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Uranium contamination is a global health concern. Regarding natural or anthropogenic uranium contamination, the major sources of concern are groundwater, mining, phosphate fertilizers, nuclear facilities, and military activities. Many epidemiological and laboratory studies have demonstrated that environmental and occupational uranium exposure can induce multifarious health problems. Uranium exposure may cause health risks because of its chemotoxicity and radiotoxicity in natural or anthropogenic scenarios: the former is generally thought to play a more significant role with regard to the natural uranium exposure, and the latter is more relevant to enriched uranium exposure. The understanding of the health risks and underlying toxicological mechanisms of uranium remains at a preliminary stage, and many controversial findings require further research. In order to present state-of-the-art status in this field, this review will primarily focus on the chemotoxicity of uranium, rather than its radiotoxicity, as well as the involved toxicological mechanisms. First, the natural or anthropogenic uranium contamination scenarios will be briefly summarized. Second, the health risks upon natural uranium exposure, for example, nephrotoxicity, bone toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and pulmonary toxicity, will be discussed based on the reported epidemiological cases and laboratory studies. Third, the recent advances regarding the toxicological mechanisms of uranium-induced chemotoxicity will be highlighted, including oxidative stress, genetic damage, protein impairment, inflammation, and metabolic disorder. Finally, the gaps and challenges in the knowledge of uranium-induced chemotoxicity and underlying mechanisms will be discussed.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Carmona A, Porcaro F, Somogyi A, Roudeau S, Domart F, Medjoubi K, Aubert M, Isnard H, Nonell A, Rincel A, Paredes E, Vidaud C, Malard V, Bresson C, Ortega R. Cytoplasmic aggregation of uranium in human dopaminergic cells after continuous exposure to soluble uranyl at non-cytotoxic concentrations. Neurotoxicology 2020; 82:35-44. [PMID: 33166614 DOI: 10.1016/j.neuro.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 μg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 μM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.
Collapse
Affiliation(s)
- Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France.
| | | | - Andrea Somogyi
- Nanoscopium, Synchrotron SOLEIL Saint-Aubin, Gif-sur-Yvette Cedex, France
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Florelle Domart
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Kadda Medjoubi
- Nanoscopium, Synchrotron SOLEIL Saint-Aubin, Gif-sur-Yvette Cedex, France
| | - Michel Aubert
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Hélène Isnard
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Anthony Nonell
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Anaïs Rincel
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Eduardo Paredes
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Claude Vidaud
- CEA, BIAM, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA-Marcoule, 30207 Bagnols Sur Cèze, France
| | - Véronique Malard
- Aix Marseille Univ., CEA, CNRS, BIAM, IPM, Saint Paul-Lez-Durance F-13108, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques Et De Réactivité Des Surfaces, 91191 Gif-sur-Yvette, France
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France.
| |
Collapse
|
13
|
Hurault L, Creff G, Hagège A, Santucci-Darmanin S, Pagnotta S, Farlay D, Den Auwer C, Pierrefite-Carle V, Carle GF. Uranium Effect on Osteocytic Cells In Vitro. Toxicol Sci 2020; 170:199-209. [PMID: 31120128 DOI: 10.1093/toxsci/kfz087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Once absorbed in the body, natural uranium [U(VI)], a radionucleotide naturally present in the environment, is targeted to the skeleton which is the long-term storage organ. We and others have reported the U(VI) negative effects on osteoblasts (OB) and osteoclasts (OC), the main two cell types involved in bone remodeling. In the present work, we addressed the U(VI) effect on osteocytes (OST), the longest living bone cell type and the more numerous (> 90%). These cells, which are embedded in bone matrix and thus are the more prone to U(VI) long-term exposure, are now considered as the chief orchestrators of the bone remodeling process. Our results show that the cytotoxicity index of OST is close to 730 µM, which is about twice the one reported for OB and OC. However, despite this resistance potential, we observed that chronic U(VI) exposure as low as 5 µM led to a drastic decrease of the OST mineralization function. Gene expression analysis showed that this impairment could potentially be linked to an altered differentiation process of these cells. We also observed that U(VI) was able to trigger autophagy, a highly conserved survival mechanism. Extended X-ray absorption fine structure analysis at the U LIII edge of OST cells exposed to U(VI) unambiguously shows the formation of an uranyl phosphate phase in which the uranyl local structure is similar to the one present in Autunite. Thus, our results demonstrate for the first time that OST mineralization function can be affected by U(VI) exposure as low as 5 µM, suggesting that prolonged exposure could alter the central role of these cells in the bone environment.
Collapse
Affiliation(s)
- Lucile Hurault
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Gaelle Creff
- UMR7272 Institut de Chimie de Nice, Université Côte d'Azur, CNRS, Nice
| | - Agnès Hagège
- Institut des Sciences Analytiques, UMR 5280, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Nice Sophia Antipolis, Nice
| | | | | | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Université Côte d'Azur 06107 Nice
| |
Collapse
|
14
|
Vernon EL, Jha AN. Assessing relative sensitivity of marine and freshwater bivalves following exposure to copper: Application of classical and novel genotoxicological biomarkers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:60-71. [DOI: 10.1016/j.mrgentox.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
15
|
Žegura B, Filipič M. The application of the Comet assay in fish cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:72-84. [DOI: 10.1016/j.mrgentox.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
|
16
|
Hettiarachchi E, Paul S, Cadol D, Frey B, Rubasinghege G. Mineralogy Controlled Dissolution of Uranium from Airborne Dust in Simulated Lung Fluids (SLFs) and Possible Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2019; 6:62-67. [PMID: 30775400 PMCID: PMC6372124 DOI: 10.1021/acs.estlett.8b00557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The recent increase in cardiovascular and metabolic disease in the Navajo population residing close to the Grants Mining District (GMD) in New Mexico is suggested to be due to exposure to environmental contaminants, in particular uranium in respirable dusts. However, the chemistry of uranium-containing-dust dissolution in lung fluids and the role of mineralogy are poorly understood, as is their impact on toxic effects. The current study is focused on the dissolution of xcontaining-dust, collected from several sites near Jackpile and St. Anthony mines in the GMD, in two simulated lung fluids (SLFs): Gamble's solution (GS) and Artificial Lysosomal Fluid (ALF). We observe that the respirable dust includes uranium minerals that yield the uranyl cation, UO2 2+, as the primary dissolved species in these fluids. Dust rich in uraninite and carnotite is more soluble in GS, which mimics interstitial conditions of the lungs. In contrast, dust with low uraninite and high kaolinite is more soluble in ALF, which simulates the alveolar macrophage environment during phagocytosis. Moreover, geochemical modeling, performed using PHREEQC, is in good agreement with our experimental results. Thus, the current study highlights the importance of site-specific toxicological assessments across mining districts with the focus on their mineralogical differences.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, New Mexico 87801, United States
| | - Shaylene Paul
- Department of Environmental Science, Navajo Technical University, Lowerpoint Road, Crownpoint, New Mexico 87313, United States
| | - Daniel Cadol
- Department of Earth and Environmental Science, New Mexico Tech, 801 LeRoy Pl, Socorro, New Mexico 87801, United States
| | - Bonnie Frey
- New Mexico Bureau of Geology, New Mexico Tech, 801 LeRoy Pl, Socorro, New Mexico 87801, United States
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Tech, 801 Leroy Place, Socorro, New Mexico 87801, United States
- Corresponding Author: G. Rubasinghege. .
| |
Collapse
|
17
|
Pannetier P, Fuster L, Clérandeau C, Lacroix C, Gourves PY, Cachot J, Morin B. Usefulness of RTL-W1 and OLCAB-e3 fish cell lines and multiple endpoint measurements for toxicity evaluation of unknown or complex mixture of chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:40-48. [PMID: 29268113 DOI: 10.1016/j.ecoenv.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Fish are currently used for the assessment of chemical toxicity. The REACh regulation and the European directive on the protection of animals used for scientific purposes both recommend the use of methods other than animal testing. In view of this, fish cell lines are increasingly used to provide fast and reliable toxic and ecotoxic data on new chemicals. The sensitivity of the Rainbow trout liver cell line RTL-W1 and Japanese medaka embryos cell line OLCAB-e3 were used with different toxicity endpoints, namely cytotoxicity, EROD activity, ROS production and DNA damage for various classes of pollutants displaying different modes of action but also with complex environmental mixtures. Toxicity tests were coupled with chemical analysis to quantify the chemical concentrations in cell cultures. Differences in sensitivity were found between fish cell lines. MTT reduction assay revealed that OLCAB-e3 cells were more sensitive than RTL-W1 cells. On the contrary, RTL-W1 gave higher response levels for the Fpg-modified comet assay and ROS assay. The OLCAB-e3 cell line did not express EROD activity unlike RTL-W1. This study highlights the capacity of the two different fish cell lines to measure the toxicity of individual toxicants but also environmental mixtures. Then, results obtained here illustrate the interest of using different cell lines and toxicity endpoints to assess the toxicity of complex or unknown mixture of chemicals.
Collapse
Affiliation(s)
| | - Laura Fuster
- Univ, Bordeaux, EPOC, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Cedre, Centre de Documentation, de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux, Brest Cedex 2, France
| | | | - Jérôme Cachot
- Univ, Bordeaux, EPOC, UMR 5805, F-33400 Talence, France
| | | |
Collapse
|
18
|
Simon O, Gagnaire B, Camilleri V, Cavalié I, Floriani M, Adam-Guillermin C. Toxicokinetic and toxicodynamic of depleted uranium in the zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:9-18. [PMID: 29425915 DOI: 10.1016/j.aquatox.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/12/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
This study investigated the accumulation pattern and biological effects (genotoxicity and histopathology) to adult zebrafish (male and female) exposed to a nominal waterborne concentration of 20 μg L-1 of depleted uranium (DU) for 28 days followed by 27 days of depuration. Accumulation pattern showed that (i) DU accumulated in brain, (ii) levels in digestive tract were higher than those measured in gills and (iii) levels remained high in kidney, brain and ovary despite the 27 days of depuration period. Genotoxicity, assessed by comet assay, was significant not only during DU exposure, but also during depuration phase. Gonads, in particular the testes, were more sensitive than gills. The histology of gonads indicated severe biological damages in males. This study improved knowledge of ecotoxic profile of uranium, for which a large range of biological effects has already been demonstrated.
Collapse
Affiliation(s)
- Olivier Simon
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France.
| | - Béatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Isabelle Cavalié
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| |
Collapse
|
19
|
He W, Ma J, Qian J, Liu H, Hua D. Adsorption-assistant detection of trace uranyl ion with high sensitivity and selectivity in the presence of SBA-15. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5749-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Lourenço J, Marques S, Carvalho FP, Oliveira J, Malta M, Santos M, Gonçalves F, Pereira R, Mendo S. Uranium mining wastes: The use of the Fish Embryo Acute Toxicity Test (FET) test to evaluate toxicity and risk of environmental discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:391-404. [PMID: 28672228 DOI: 10.1016/j.scitotenv.2017.06.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 05/28/2023]
Abstract
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity.
Collapse
Affiliation(s)
- J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - S Marques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - M Santos
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal.
| | - F Gonçalves
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - R Pereira
- Department of Biology, Faculty of Sciences of the University of Porto & CIIMAR - Interdisciplinary Centre of Marine and Environmental Research & GreenUP/CITAB-UP, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Armant O, Gombeau K, Murat El Houdigui S, Floriani M, Camilleri V, Cavalie I, Adam-Guillermin C. Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels. PLoS One 2017; 12:e0177932. [PMID: 28531178 PMCID: PMC5439696 DOI: 10.1371/journal.pone.0177932] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals.
Collapse
Affiliation(s)
- Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
- * E-mail:
| | - Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Sophia Murat El Houdigui
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
22
|
Sharma M, Chadha P. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure. Drug Chem Toxicol 2016; 40:320-325. [DOI: 10.1080/01480545.2016.1223096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Madhu Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
23
|
Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Gritsaenko T, Vidaud C, Creff G, Solari PL, Pagnotta S, Al-Sahlanee R, Auwer CD, Carle GF. Effect of natural uranium on the UMR-106 osteoblastic cell line: impairment of the autophagic process as an underlying mechanism of uranium toxicity. Arch Toxicol 2016; 91:1903-1914. [DOI: 10.1007/s00204-016-1833-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
|
24
|
Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:270-279. [PMID: 27100007 DOI: 10.1016/j.scitotenv.2016.03.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological (radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70mGy external Gamma dose delivered over the first 5h of a 48h period (14mGy/h), 0.25mg/L DU were exposed continuously for 48h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological changes. The results show that bioaccumulation of DU was observed after both single DU and the combined exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no direct linkage was successfully established between molecular responses and adverse effects at the organism level, the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences (NMBU), Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management (INA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
25
|
Ng CYP, Cheng SH, Yu KN. Hormetic effect induced by depleted uranium in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:184-191. [PMID: 27060238 DOI: 10.1016/j.aquatox.2016.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/12/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.
Collapse
Affiliation(s)
- C Y P Ng
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - S H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
26
|
Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H. Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:427-37. [PMID: 26187266 DOI: 10.1016/j.jenvrad.2015.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 05/21/2023]
Abstract
Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 μM up to 150 μM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 μM, 7.7-16.4 μM and 19.4-37.2 μM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan gebouw D, B-3590, Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Arne Van Hoeck
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Valérie Smolders
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | |
Collapse
|
27
|
Li MH, Wang YS, Cao JX, Chen SH, Tang X, Wang XF, Zhu YF, Huang YQ. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification. Biosens Bioelectron 2015; 72:294-9. [DOI: 10.1016/j.bios.2015.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 11/15/2022]
|
28
|
Augustine S, Pereira S, Floriani M, Camilleri V, Kooijman SALM, Gagnaire B, Adam-Guillermin C. Effects of chronic exposure to environmentally relevant concentrations of waterborne depleted uranium on the digestive tract of zebrafish, Danio rerio. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:45-53. [PMID: 25633624 DOI: 10.1016/j.jenvrad.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Uranium is a naturally occurring element, but activities linked to the nuclear fuel cycle can increase background levels in the surrounding waters. For this reason it is important to understand how this affects organisms residing in the water column. The objective of this study was to assess histopathological effects of uranium on the gut wall of a widely used model organism: zebrafish, Danio rerio. To this end we exposed zebrafish to 84 and 420 nM depleted uranium for over a month and then examined the histology of intestines of exposed individuals compared to controls. The gut wall of individuals exposed to 84 and 420 nM of uranium had large regions of degraded mucosa. Using transmission electron microscopy (TEM) coupled to energy-dispersive X-ray spectroscopy microanalysis (EDX) we found that uranium induced a decrease in the amount of calcium containing mitochondrial matrix granules per mitochondria. This is suggestive of perturbations to cellular metabolism and more specifically to cellular calcium homeostasis. TEM-EDX of the gut wall tissue further showed that some uranium was internalized in the nucleus of epithelial cells in the 420 nM treatment. Fluorescent in situ hybridization using specific probes to detect all eubacteria was performed on frozen sections of 6 individual fish in the 84 nM and 420 nM treatments. Bacterial colonization of the gut of individuals in the 420 nM seemed to differ from that of the controls and 84 nM individuals. We suggest that host-microbiota interactions are potentially disturbed in response to uranium induced stress. The damage induced by waterborne uranium to the gut wall did not seem to depend on the concentration of uranium in the media. We measure whole body residues of uranium at the end of the experiment and compute the mean dose rate absorbed for each condition. We discuss why effects might be uncoupled from external concentration and highlight that it is not so much the external concentration but the dynamics of internalization which are important players in the game.
Collapse
Affiliation(s)
- Starrlight Augustine
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Sandrine Pereira
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; CRCL, UMR INSERM 1052, CNRS 5286 Equipe de Radiobiologie, Cheney A- 1er étage, 28 Rue Laennec, 69373 Lyon Cedex 08, France
| | - Magali Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | | | - Béatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
29
|
Gagnaire B, Bado-Nilles A, Sanchez W. Depleted uranium disturbs immune parameters in zebrafish, Danio rerio: an ex vivo/in vivo experiment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:426-435. [PMID: 24723161 DOI: 10.1007/s00244-014-0022-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system in the zebrafish, Danio rerio, using flow cytometry. Several immune cellular parameters were followed on kidney leucocytes: cell proportion, cell mortality, phagocytosis activity and associated oxidative burst and lysosomal membrane integrity (LMI). Effects of DU were tested ex vivo after 17 h of contact between DU and freshly isolated leucocytes from 0 to 500 µg DU/L. Moreover, adult zebrafish were exposed in vivo during 3 days at 20 and 250 µg DU/L. Oxidative burst results showed that DU increased reactive oxygen species (ROS) basal level and therefore reduced ROS stimulation index in both ex vivo and in vivo experiments. ROS PMA-stimulated level was also increased at 250 µg DU/L in vivo only. Furthermore, a decrease of LMI was detected after in vivo experiments. Cell mortality was also decreased at 20 µg DU/L in ex vivo experiment. However, phagocytosis activity was not modified in both ex vivo and in vivo experiments. A reduction of immune-related parameters was demonstrated in zebrafish exposed to DU. DU could therefore decrease the ability of fish to stimulate its own immune system which could, in turn, enhance the susceptibility of fish to infection. These results encourage the development and the use of innate immune analysis by flow cytometry in order to understand the effects of DU and more generally radionuclides on fish immune system and response to infectious diseases.
Collapse
Affiliation(s)
- Béatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Centre de Cadarache, Bât 186, B.P. 3, 13115, Saint-Paul-lez-Durance, France,
| | | | | |
Collapse
|
30
|
Bourrachot S, Brion F, Pereira S, Floriani M, Camilleri V, Cavalié I, Palluel O, Adam-Guillermin C. Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:1-11. [PMID: 24846854 DOI: 10.1016/j.aquatox.2014.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/01/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 μg/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive capability of fish and impair the genetic integrity of F1 embryos raising further concern regarding its effect at the population level.
Collapse
Affiliation(s)
- Stéphanie Bourrachot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte, France
| | - Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| |
Collapse
|
31
|
A sensitive resonance light scattering assay for uranyl ion based on the conformational change of a nuclease-resistant aptamer and gold nanoparticles acting as signal reporters. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1267-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
33
|
Plaire D, Bourdineaud JP, Alonzo A, Camilleri V, Garcia-Sanchez L, Adam-Guillermin C, Alonzo F. Transmission of DNA damage and increasing reprotoxic effects over two generations of Daphnia magna exposed to uranium. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:231-43. [PMID: 24035969 DOI: 10.1016/j.cbpc.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
This study aimed to examine the mechanisms involved in the transgenerational increase in Daphnia magna sensitivity to waterborne depleted uranium (DU) under controlled laboratory conditions. Daphnids were exposed to concentrations ranging from 2 to 50 μg L(-1) over two successive generations. Genotoxic effects were assessed using random amplified polymorphic DNA and real time PCR (RAPD-PCR). Effects on life history (survival, fecundity and somatic growth) were monitored from hatching to release of brood 5. Different exposure regimes were tested to investigate the specific sensitivity of various life stages to DU. When daphnids were exposed continuously or from hatching to deposition of brood 5, results demonstrated that DNA damage accumulated in females and were transmitted to offspring in parallel with an increase in severity of effects on life history across generations. When daphnids were exposed during the embryo stage only, DU exposure induced transient DNA damage which was repaired after neonates were returned to a clean medium. Effects on life history remained visible after hatching and did not significantly increase in severity across generations. The present results suggest that DNA damage might be an early indicator of future effects on life history.
Collapse
Affiliation(s)
- Delphine Plaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:55-60. [DOI: 10.1016/j.mrgentox.2013.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
|
35
|
Hao Y, Ren J, Li R, Liu J, Yang Z, Su Y. Immunological Changes Associated with Chronic Ingestion of Depleted Uranium in Rats. HEALTH PHYSICS 2013; 105:3-10. [PMID: 35606992 DOI: 10.1097/hp.0b013e31828730a9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of this study was to evaluate the effect of depleted uranium (DU) on the rat immune system. Three-wk-old, specific pathogen-free Sprague-Dawley rats that received dietary DU for 4 mo were divided into four groups (30 rats per group) according to exposure dose: 0 (control group), 1.3 (DU1.3 group), 13 (DU13 group), and 130 mg U kg-1 (DU130 group). After 4 mo of exposure, the splenic tissues of the rats presented elevated uranium content in accordance with increasing dosage. The rats in the DU130 group exhibited immunological damage characterized by pathomorphological changes of immune organs and significantly lower thymic and splenic relative weight, whereas the influences of DU on the immune system were slight in the other groups. In addition, higher uranium exposure also resulted in reduced numbers of peripheral lymphocytes, lower lymphocyte proliferation, and reduced paw swelling. The authors concluded that the influences of DU on the immune system were slight after ingestion of DU at lower doses but severe after exposure to DU at higher doses.
Collapse
Affiliation(s)
- Yuhui Hao
- *State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
36
|
Kienzler A, Bony S, Devaux A. DNA repair activity in fish and interest in ecotoxicology: a review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:47-56. [PMID: 23571068 DOI: 10.1016/j.aquatox.2013.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 05/20/2023]
Abstract
The knowledge of DNA repair in a target species is of first importance as it is the primary line of defense against genotoxicants, and a better knowledge of DNA repair capacity in fish could help to interpret genotoxicity data and/or assist in the choice of target species, developmental stage and tissues to focus on, both for environmental biomonitoring studies and DNA repair testing. This review focuses in a first part on what is presently known on a mechanistic basis, about the various DNA repair systems in fish, in vivo and in established cell lines. Data on base excision repair (BER), direct reversal with O⁶-alkylguanine transferase and double strand breaks repair, although rather scarce, are being reviewed, as well as nucleotide excision repair (NER) and photoreactivation repair (PER), which are by far the most studied repair mechanisms in fish. Most of these repair mechanisms seem to be strongly species and tissue dependent; they also depend on the developmental stage of the organisms. BER is efficient in vivo, although no data has been found on in vitro models. NER activity is quite low or even inexistent depending on the studies; however this lack is partly compensated by a strong PER activity, especially in early developmental stage. In a second part, a survey of the ecotoxicological studies integrating DNA repair as a parameter responding to single or mixture of contaminant is realized. Three main approaches are being used: the measurement of DNA repair gene expression after exposure, although it has not yet been clearly established whether gene expression is indicative of repair capacity; the monitoring of DNA damage removal by following DNA repair kinetics; and the modulation of DNA repair activity following exposure in situ, in order to assess the impact of exposure history on DNA repair capacity. Since all DNA repair processes are possible targets for environmental pollutants, we can also wonder at which extent such a modulation of repair capacities in fish could be the base for the development of new biomarkers of genotoxicity. Knowing the importance of the germ cell DNA integrity in the reproductive success of aquatic organisms, the DNA repair capacity of such cells deserve to be more studied, as well as DNA repair capacities of established fish cell lines. The limited amount of available data, which shows low/slow DNA repair capacities of fish cell lines compared with mammalian cell lines, concerned mainly the NER system; thus this point merits to be explored more deeply. Additionally, since some of the DNA repair systems appear more efficient in embryo larval stages, it would be of interest to consider embryonic cell lineages more closely.
Collapse
Affiliation(s)
- Aude Kienzler
- UMR LEHNA 5023, Université de Lyon, F-69518 Vaulx-en-Velin, France.
| | | | | |
Collapse
|
37
|
Augustine S, Gagnaire B, Adam-Guillermin C, Kooijman SALM. Effects of uranium on the metabolism of zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 118-119:9-26. [PMID: 22494962 DOI: 10.1016/j.aquatox.2012.02.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
The increasing demand for nuclear energy results in heightened levels of uranium (U) in aquatic systems which present a potential health hazard to resident organisms. The aim of this study was to mechanistically assess how chronic exposure to environmentally relevant concentrations of U perturbs the complex interplay between feeding, growth, maintenance, maturation and reproduction throughout the life-cycle of an individual. To this end we analysed literature-based and original zebrafish toxicity data within a same mass and energy balancing conceptual framework. U was found to increase somatic maintenance leading to inhibition of spawning as well as increase hazard rate and costs for growth during the early life stages. The fish's initial conditions and elimination through reproduction greatly affected toxico-kinetics and effects. We demonstrate that growth and reproduction should be measured on specific individuals since mean values were hardly interpretable. The mean food level differed between experiments, conditions and individuals. This last 'detail' contributed substantially to the observed variability by its combined effect on metabolism, toxic effects and toxico-kinetics. The significance of this work is that we address exactly how these issues are related and derive conclusions which are independent of experimental protocol and coherent with a very large body of literature on zebrafish eco-physiology.
Collapse
Affiliation(s)
- Starrlight Augustine
- Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| | - Béatrice Gagnaire
- Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| | - Christelle Adam-Guillermin
- Laboratory of Radionuclide Ecotoxicology, PRP-ENV/SERIS/LECO, Institute of Radioprotection and Nuclear Safety (IRSN), Caradache, Building 186, BP3, 13115 St-Paul-lez-Durance Cedex, France.
| | - Sebastiaan A L M Kooijman
- Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|