1
|
Mkuye R, Yang C, Masanja F, Ibrahim S, Yang X, Mwemi H, Mrope P, Salman M, Alfatat A, Deng Y. Omics insights in responses of bivalves exposed to plastic pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107224. [PMID: 39799760 DOI: 10.1016/j.aquatox.2024.107224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies. Through an examination of omics data, this review sheds light on how bivalves react to plastic pollution, informing strategies for conservation and food safety. Furthermore, theoretical pathways have been formulated to decipher how bivalves respond to environmental stressors from microplastics or nanoplastics through the integration of diverse biological fields. In this review, we report that microplastics and nanoplastics in marine ecosystems primarily stem from human activities on land and in marine domains. Bivalves are negatively influenced by plastic contamination, impacting their health and economic worth. Exposure to plastic particles disrupts bivalve behavior, metabolism, and reproduction, precipitating health concerns. Integration of omics data is instrumental in unraveling molecular interactions and devising biomarkers for monitoring purposes. Ingestion of plastics by bivalves poses risks to human health. Additionally, mitigation tactics involve bans, levies, and advocating for biodegradable alternatives to curtail plastic pollution. The amalgamation of omics findings aids in the comprehension of bivalve responses and effectively addressing plastic pollution. Moreover, addressing plastic pollution necessitates a multidisciplinary approach encompassing scientific inquiry, regulatory frameworks, and collaboration with stakeholders. These strategies are paramount in safeguarding bivalves, marine ecosystems, food safety, and human health.
Collapse
Affiliation(s)
- Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | | | - Salifu Ibrahim
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiuyan Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Happiness Mwemi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peter Mrope
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Muhammed Salman
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Alma Alfatat
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Razali NSM, Ikhwanuddin M, Maulidiani M, Gooderham NJ, Alam M, Kadir NHA. Ecotoxicological impact of heavy metals on wild mud crabs (Scylla olivacea) in Malaysia: An integrative approach of omics, molecular docking and human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174210. [PMID: 38914323 DOI: 10.1016/j.scitotenv.2024.174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Mud crab, one of the aquatic organisms found in estuary areas, has become a significant economic source of seafood for communities due to its delectable taste. However, they face the threat of heavy metal contamination, which may adversely affect their biological traits. This study explored the comparison of the mud crabs collected from Setiu Wetland as a reference site, while Kuala Sepetang is an area that contains a higher concentration of heavy metals than Setiu Wetlands. Heavy metal levels were quantified using inductively coupled plasma mass spectrometry (ICP-MS), while proteomes were assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 1H nuclear magnetic resonance (NMR)-based metabolomics, respectively. Heavy metal contamination affects the proteome, metabolome, and putative molecular targets in mud crabs (Scylla olivacea), leading to oxidative stress. Mud crabs collected from the metal-polluted area of Kuala Sepetang in Perak had considerably elevated concentrations of nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), chromium (Cr), and cadmium (Cd) in comparison to the reference site of Setiu Wetlands in Terengganu. The proteome analysis revealed an upregulation of the stress-response protein Hsp70, which triggered superoxide dismutase (SOD) and increased arginine kinase expression (5.47 fold) in the muscle tissue, results in the alteration of metabolite regulation in the mud crab from Kuala Sepetang. Additionally, in the muscle tissues of mud crabs obtained from Kuala Sepetang, uncharacterized myosin-tail 1 domain proteins and sarcoplasmic calcium-binding proteins were downregulated. The metabolomic investigation identified changes in metabolites associated with energy metabolism and osmoregulation. Exploration of docking analysis suggests potential connections between methylarsonic acid and essential proteins in mud crabs. These findings suggest that the presence of heavy metals disrupts physiological processes and highlights potential molecular targets that warrant further investigation.
Collapse
Affiliation(s)
- Nur Syafinaz Mohd Razali
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - M Maulidiani
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Nigel J Gooderham
- Department of Metabolism, Digestion, Reproduction, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju-si, Gyeongbuk 780714, Republic of Korea.
| | - Nurul Huda Abd Kadir
- Faculty of Science and Environmental Marine, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia; RIG BIOSES, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
3
|
Bi X, Qiu M, Li D, Zhang Y, Zhan W, Wang Z, Lv Z, Li H, Chen G. Transcriptomic and metabolomic analysis of the mechanisms underlying stress responses of the freshwater snail, Pomacea canaliculata, exposed to different levels of arsenic. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106835. [PMID: 38219501 DOI: 10.1016/j.aquatox.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Arsenic (As) pollution poses an important problem, but limited information is available about the physiological effects of As on freshwater invertebrates. Here, we investigated the physiological effects of chronic As exposure on Pomacea canaliculata, a freshwater invertebrate. High level of As (Ⅲ, 5 mg/L) inhibited the growth of P. canaliculata, whereas low level of As (Ⅲ, 2 mg/L) promoted growth. Pathological changes in shell and cellular ultrastructure due to As accumulation likely explain the growth inhibition at high As level. Low level of As simulated the expression of genes related to DNA replication and chitosan biosynthesis, potentially accounting for the growth promotion observed. High level of As enrichment pathways primarily involved cytochrome P450, glutathione, and arachidonic acid-mediated metabolism of xenobiotics. ATP-binding cassette (ABC) transporters, specifically the ABCB and ABCC subfamilies, were involved in As transport. Differential metabolites were mainly associated with the metabolism and biosynthesis of amino acids. These findings elucidate the dose-dependent effects of As stress on P. canaliculata growth, with low levels promoting and high levels inhibiting. Additionally, our findings also provide insights into As metabolism and transport in P. canaliculata.
Collapse
Affiliation(s)
- Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Danni Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenhui Zhan
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Zhixiong Wang
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Zhaowei Lv
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu H, Tian X, Jiang L, Han D, Hu S, Cui Y, Jiang F, Liu Y, Xu Y, Li H. Sources, bioaccumulation, and toxicity mechanisms of cadmium in Chlamys farreri. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131395. [PMID: 37058935 DOI: 10.1016/j.jhazmat.2023.131395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The Potentially toxic elements (PTEs) cadmium (Cd) is one of the most serious stressors polluting the marine environment. Marine bivalves have specific high enrichment capacity for Cd. Previous studies have investigated the tissue distribution changes and toxic effects of Cd in bivalves, but the sources of Cd enrichment, migration regulation during growth, and toxicity mechanisms in bivalves have not been fully explained. Here, we used stable-isotope labeling to investigate the contributions of Cd from different sources to scallop tissues. We sampled the entire growth cycle of Chlamys farreri, which is widely cultured in northern China, from juveniles to adult scallops. We found tissue variability in the bioconcentration-metabolism pattern of Cd in different bound states, with Cd in the aqueous accounting for a significant contribution. The accumulation pattern of Cd in all tissues during growth was more significant in the viscera and gills. Additionally, we combined a multi-omics approach to reveal a network of oxidative stress-induced toxicity mechanisms of Cd in scallops, identifying differentially expressed genes and proteins involved in metal ion binding, oxidative stress, energy metabolism, and apoptosis. Our findings have important implications for both ecotoxicology and aquaculture. They also provide new insights into marine environmental assessment and mariculture development.
Collapse
Affiliation(s)
- Huan Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiuhui Tian
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lisheng Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Dianfeng Han
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Shunxin Hu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Fang Jiang
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yongchun Liu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yingjiang Xu
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| | - Huanjun Li
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| |
Collapse
|
5
|
Barbosa H, Soares AMVM, Pereira E, Freitas R. Are the consequences of lithium in marine clams enhanced by climate change? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121416. [PMID: 36906057 DOI: 10.1016/j.envpol.2023.121416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Coastal areas, such as estuaries and coastal lagoons, are among the most endangered aquatic ecosystems due to the intense anthropogenic activities occurring in their vicinity. These areas are highly threatened by climate change-related factors as well as pollution, especially due to their limited water exchange. Ocean warming and extreme weather events, such as marine heatwaves and rainy periods, are some of the consequences of climate change, inducing alterations in the abiotic parameters of seawater, namely temperature and salinity, which may affect the organisms as well as the behaviour of some pollutants present in water. Lithium (Li) is an element widely used in several industries, especially in the production of batteries for electronic gadgets and electric vehicles. The demand for its exploitation has been growing drastically and is predicted a large increase in the coming years. Inefficient recycling, treatment and disposal results in the release of Li into the aquatic systems, the consequences of which are poorly understood, especially in the context of climate change. Considering that a limited number of studies exist about the impacts of Li on marine species, the present study aimed to assess the effects of temperature rise and salinity changes on the impacts of Li in clams (Venerupis corrugata) collected from the Ria de Aveiro (coastal lagoon, Portugal). Clams were exposed for 14 days to 0 μg/L of Li and 200 μg/L of Li, both conditions under different climate scenarios: 3 different salinities (20, 30 and 40) at 17 °C (control temperature); and 2 different temperatures (17 and 21 °C) at salinity 30 (control salinity). Bioconcentration capacity and biochemical alterations regarding metabolism and oxidative stress were investigated. Salinity variations had a higher impact on biochemical responses than temperature increase, even when combined with Li. The combination of Li with low salinity (20) was the most stressful treatment, provoking increased metabolism and activation of detoxification defences, suggesting possible imbalances in coastal ecosystems in response to Li pollution under extreme weather events. These findings may ultimately contribute to implement environmentally protective actions to mitigate Li contamination and preserve marine life.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Kwon YS, Park CB, Lee SM, Zee S, Kim GE, Kim YJ, Sim HJ, Kim JH, Seo JS. Proteomic analysis of zebrafish (Danio rerio) embryos exposed to benzyl benzoate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26375-26386. [PMID: 36367642 PMCID: PMC9995408 DOI: 10.1007/s11356-022-24081-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Benzyl benzoate (BB) is widely used in the food, cosmetics, agriculture, and pharmaceutical industries and is discharged into the aquatic environment via various water sources, including wastewater. Research on the bioaccumulation and possible toxicity of BB has been conducted, but the biochemical responses to BB toxicity are not fully understood, and the specific molecular pathways by which BB causes toxicity remain unknown. In this study, label-free quantitative proteomics based on mass spectrometry was applied to investigate protein profiles in zebrafish (Danio rerio) embryos exposed to BB (1 µg/mL) for 7 days. A total of 83 differentially expressed proteins (DEPs) were identified, including 49 up-regulated and 34 down-regulated proteins. The biological functions of proteins regulated by BB were grouped into functional categories and subcategories, including the biosynthesis of organonitrogen compound biosynthetic process, translation, amide biosynthetic process, lipid transport, stress response, and cytoskeletal activity. The results provide novel insight into the molecular basis of the ecotoxicity of BB in aquatic ecosystems.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Chang-Beom Park
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seung-Min Lee
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Seonggeun Zee
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Go-Eun Kim
- Environmental Exposure and Toxicology Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Yeong-Jin Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Hee-Jung Sim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Safety Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea.
| |
Collapse
|
7
|
Influence of Ecological Factors on the Metabolomic Composition of Fish Lenses. BIOLOGY 2022; 11:biology11121709. [PMID: 36552218 PMCID: PMC9774591 DOI: 10.3390/biology11121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Multiple stressors related to changes in environmental conditions (such as water temperature, salinity, and natural and anthropogenic pollution) may cause biological responses of aquatic organisms that lead to significant variations in the biochemical reactions in their tissues and thereby change the concentrations of metabolites. We used a quantitative NMR-based metabolomic analysis of the fish lens for the evaluation of the influence of environmental factors on metabolic processes in aquatic animals. For this purpose, three species of freshwater fish-Perca fluviatilis, Rutilus rutilus lacustris, and Gymnocephalus cernua-were caught at approximately the same time at three locations in Siberia (Russia) that differed in levels of dissolved oxygen (LDO) and water purity, and the concentrations of 57 major metabolites in the fish lenses were determined. We found that the metabolomic profiles of the fish lenses strongly depended on the location. The obtained data demonstrated that two typical stressors for aquatic animals-a reduced LDO and anthropogenic water pollution-caused a largely similar metabolic response in the fish lenses that led to an increase in the concentrations of several amino acids and a decrease in sarcosine and phosphoethanolamine. At the same time, the composition of the major lens osmolytes depended mostly on the oxygen level, while variations in AMP (decrease) and NAD (increase) corresponded to the water pollution. We suggest that the eye lens is a very convenient tissue for studying the impact of ecological factors on the metabolic state of aquatic animals, fish in particular.
Collapse
|
8
|
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101009. [PMID: 35777161 DOI: 10.1016/j.cbd.2022.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chinese mitten crab (Eriocheir sinensis) is a typical euryhaline crustacean to study osmotic regulation of crustaceans. Osmotic-regulation of Chinese mitten crab is a complex process. In order to study the osmotic-regulation related proteins of Chinese mitten crab, we domesticated Chinese mitten crab for 144 h with 25 salinity sea water (SW) and 0 salinity fresh water (FW) respectively, and then analyzed the proteome of its posterior gills. A total of 1453 proteins were identified by label free proteomics. Under the threshold of 2 fold change (FC), 242 differentially expressed proteins (DEPs) were screened, including 122 up-regulated DEPs and 120 down-regulated DEPs. GO database and KEGG database were used to annotate and enrich DEPs. It was found that DEPs were significantly enriched in energy metabolism, signal transduction, ion transport, actin cytoskeleton, immunity, lipid metabolism, amino acid metabolism and other biological functions. After 144 h of high salinity stress, the energy metabolism of Chinese mitten crab decreased and the expression of actin and cytoskeleton protein increased. In order to cope with oxidative damage caused by high salinity, Chinese mitten crab improved its immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Yanagihara M, Nakajima F, Tobino T. Development and application of a metabolomic tool to assess exposure of an estuarine amphipod to pollutants in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141988. [PMID: 33207530 DOI: 10.1016/j.scitotenv.2020.141988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Identifying major adverse effects on aquatic organisms in environmental samples is still challenging, and metabolomic approaches have been utilized as non-target screening techniques in the context of ecotoxicology. While existing methods have focused on statistical tests or univariate analysis, there is the need to further explore a multivariate analytical method that captures synergetic effects and associations among metabolites and toxicants. Here we show a new tool for screening sediment toxicity in the environment. First, we constructed predictive models using the metabolomic profiles and the result of exposure tests, to discriminate the toxic effects of target substances. The developed models were then applied to sediment samples collected from an actual urban area that contain chromium, nickel, copper, zinc, cadmium, fluoranthene, nicotine, and osmotic stress, incorporated with exposure tests of the benthic amphipod Grandidierella japonica. As a result, the fitted models showed high predictive power (Q2 > 0.71) and could detect toxicants from mixed chemical samples across a wide range of concentrations in test datasets. The application of the constructed models to river sediment and road dust samples indicated that almost all target substances were less toxic compared with the effects at LC50 levels. Only zinc showed slight increasing trends among samples, suggesting that the proposed method can be used for prioritization of toxicants. The present work made a direct connection between chemical exposures and metabolomic responses, and draws attention to the need for further studies on interactive mechanisms of metabolites in toxicological assessments.
Collapse
Affiliation(s)
- Miina Yanagihara
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Utermann C, Blümel M, Busch K, Buedenbender L, Lin Y, Haltli BA, Kerr RG, Briski E, Hentschel U, Tasdemir D. Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms 2020; 8:microorganisms8122022. [PMID: 33348696 PMCID: PMC7767289 DOI: 10.3390/microorganisms8122022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island (PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order to gain first insights into so far unexplored factors that may contribute to the invasiveness of C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions (Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics revealed clear location- and tissue-specific patterns showing that biogeography and the sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated in the global ascidian metabolome, of which 18 were only detected in the invasive PEI population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study provides a basis for future studies on factors underlying the global invasiveness of Ciona species.
Collapse
Affiliation(s)
- Caroline Utermann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Kathrin Busch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
| | - Larissa Buedenbender
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Yaping Lin
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China
| | - Bradley A. Haltli
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Elizabeta Briski
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
| | - Ute Hentschel
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
11
|
Nong Q, Zhang C, Liu Q, Xie R, Dong M. Effect of daunorubicin on acute promyelocytic leukemia cells using nuclear magnetic resonance spectroscopy-based metabolomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103382. [PMID: 32344291 DOI: 10.1016/j.etap.2020.103382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine several key metabolites as potential biomarkers of daunorubicin (DNR) treatment of acute promyelocytic leukemia (APL) using APL blasts and NB4 cells. Samples which were obtained from 16 newly diagnosed APL patients and human APL NB4 cell lines were exposed to increasing concentrations of DNR (0 μM, 0.1 μM, 0.5 μM and 1.0 μM). Electron microscopy and Nuclear Magnetic Resonance (NMR) spectroscopy confirmed that there were clear differences between controls and DNR-treated groups, with the resultant models having excellent predictive and discriminative abilities. Four metabolites meeting the biomarker requirements were identified. KEGG analyses revealed that these biomarkers were associated with the metabolism of fat, choline, and glucose. These findings offered vital information about the effects of chemotherapies on the whole body biochemistry which might be important for monitoring apoptosis and injury to cells in order to reduce chemotherapies-induced side effects.
Collapse
Affiliation(s)
- Qingwei Nong
- Department of Hematology, The Affiliated Hospital of Gulin Medical University, Guilin, China
| | - Cong Zhang
- Department of Ultrasonic Medicine, The Affiliated First Hospital of Harbin Medical University, Harbin, China
| | - Qinghao Liu
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Xie
- Department of Digestive Internal Medicine & Photodynamic Therapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Min Dong
- Department of Hematology, The Affiliated Hospital of Gulin Medical University, Guilin, China.
| |
Collapse
|
12
|
Xu L, Lu Z, Ji C, Cong M, Li F, Shan X, Wu H. Toxicological effects of As (V) in juvenile rockfish Sebastes schlegelii by a combined metabolomic and proteomic approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113333. [PMID: 31610518 DOI: 10.1016/j.envpol.2019.113333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a metalloid element that is ubiquitous in the marine environment and its contamination has received worldwide attention due to its potential toxicity. Arsenic can induce multiple adverse effects, such as lipid metabolism disorder, immune system dysfunction, oxidative stress and carcinogenesis, in animals. Inorganic arsenic includes two chemical forms, arsenite (As (III)) and arsenate (As (V)), in natural environment. As (V) is the dominant form in natural waters. In the present study, metabolomic and proteomic alterations were investigated in juvenile rockfish Sebastes schlegelii exposed to environmentally relevant concentrations of As (V) for 14 d. The analysis of iTRAQ-based proteomics combined with untargeted NMR-based metabolomics indicated apparent toxicological effects induced by As (V) in juvenile rockfish. In details, the metabolites, including lactate, alanine, ATP, inosine and phosphocholine were significantly altered in As-treated groups. Proteomic responses suggested that As (V) could not only affected energy and primary metabolisms and signal transduction, but also influenced cytoskeleton structure in juvenile rockfish. This work suggested that the combined proteomic and metabolomic approach could shed light on the toxicological effects of pollutants in rockfish S. schlegelii.
Collapse
Affiliation(s)
- Lanlan Xu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhen Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Ming Cong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
13
|
De Marchi L, Pretti C, Chiellini F, Morelli A, Neto V, Soares AMVM, Figueira E, Freitas R. Impacts of ocean acidification on carboxylated carbon nanotube effects induced in the clam species Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20742-20752. [PMID: 31104242 DOI: 10.1007/s11356-019-05306-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Although the increased production of nanoparticles (NPs) has raised extensive concerns about the potential toxic effects on aquatic organisms, as well as the increasing evidences which documented the impact of ocean acidification (OA) on the physiology and fitness of marine invertebrates, limited number of studies reported their combined toxic effects. For these reasons, in the present study, we investigated the physiological and biochemical responses of one of the most economically important bivalve species in the World, the Manila clam Ruditapes philippinarum, after the exposure to an environmnetally relevant concentration of carboxylated carbon nanotubes and predicted OA conditions. The results showed that the organisms were not only susceptible to NPs but also to seawater acidification. Different responses between low pH and NPs for most tested biomarkers were observed, both in terms of physiological (respiration rate) and biochemical responses (metabolic capacity, oxitative status and neurotoxicity). Acidified pH significantly decreased the respiration rate and metabolism and increased the energy reserves consumption. Moreover, increase of the oxidative damage was also detected under this condition confirming that the mechanism of enhanced toxicity in the organisms should be attributed to lower aggregation state with more suspended NPs in acidified seawater, indicating that seawater acidification significantly influenced the impact of the used NPs in the exposed organisms.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology and Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Mechanical Engineering and Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
- Consortium for the Interuniversity Center of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Leghorn, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126, Pisa, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126, Pisa, Italy
| | - Victor Neto
- Department of Mechanical Engineering and Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology and Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology and Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Jiang W, Tian X, Fang Z, Li L, Dong S, Li H, Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:465-474. [PMID: 30412891 DOI: 10.1016/j.scitotenv.2018.10.404] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Salinity is an important environmental factor affecting fish physiology. Tongue sole (Cynoglossus semilaevis) is a euryhaline species that can survive in a wide range of salinity, and might be used as a promising model animal for environmental science. In this study, by using the nuclear magnetic resonance (1H NMR)-based metabolomics, amino acids analysis and real-time quantitative PCR assay, we investigated the metabolic responses in the gills and plasma of tongue sole subjected to hypo- (0 ppt, S0) and hyper-osmotic stress (50 ppt, S50) from isosmotic environment (30 ppt, S30). The results showed that the metabolic profiles of S50 were significantly different from those of S0 and S30 groups, and a clear overlap was found between the latter two groups. Ten metabolites were significantly different between the salt stress groups and the isosmotic group. Taurine and creatine elevated in both S0 and S50 groups. Choline decreased in S50 group while increased in S0 group. Amino acids and energy compounds were higher in the gills of S50 group. The metabolic network showed that ten metabolic pathways were all found in S50 group, while seven pathways were observed in S0 group. Meanwhile, the transcript levels of the Tau-T and ATP synthase in the gills increased with increasing salinity. Aspartate and methionine exhibited significant differences in the plasma among the groups, but did not show differences in the gills. Comparatively, glutamate exhibited significant differences both in the plasma and the gills. Overall, these findings provide a preliminary profile of osmotic regulation in euryhaline fish.
Collapse
Affiliation(s)
- Wenwen Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China.
| | - Ziheng Fang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Li Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266100, People's Republic of China
| | - Haidong Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| | - Kun Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong Province, People's Republic of China
| |
Collapse
|
15
|
Lu Z, Wang S, Shan X, Ji C, Wu H. Differential biological effects in two pedigrees of clam Ruditapes philippinarum exposed to cadmium using iTRAQ-based proteomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 65:66-72. [PMID: 30562664 DOI: 10.1016/j.etap.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/27/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Due to the industrial discharges, cadmium (Cd) has been one of typical heavy metal pollutants in the Bohai Sea. Manila clam Ruditapes philippinarum is frequently used for pollution biomonitoring and consists of several pedigrees, of which White and Zebra clams are the dominant pedigrees along the Bohai Sea coast. However, limited attention has been paid on the differential biological effects in different pedigrees of clam to heavy metals. In this work, the proteome profiling analysis was performed to reveal the differential proteomic responses in White and Zebra clams to Cd exposure (200 μg/L) for 48 h, followed by bioinformatical analysis. The proteomic investigations showed that Cd treatment induced more differentially expressed proteins (DEPs) in White clam samples than in Zebra clam samples. Based on the DEPs, we found that some key biological processes consisting of immune response and metabolism were commonly induced in both two pedigrees of clam. Uniquely, some processes related to cellular signaling, proteolysis and energy production were enhanced in Cd-treated White clam samples. Comparatively, the depletion in some unique processes on proteolysis and energy production was elicited in Cd-treated Zebra clam samples, as well as disorder in gene expression. Moreover, Cd exposure caused increases in CAT and POD activities in White clam samples and decreases in SOD and CAT activities in Zebra clams samples, which were consistent with the proteomic responses. Overall, these findings confirmed the differential biological effects of White and Zebra clams to Cd treatment, suggesting that the pedigree of animal should be taken into consideration in ecotoxicology studies.
Collapse
Affiliation(s)
- Zhen Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shuang Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiujuan Shan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Huifeng Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|
16
|
iTRAQ-based proteome profiling of hyposaline responses in zygotes of the Pacific oyster Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 30:14-24. [PMID: 30771561 DOI: 10.1016/j.cbd.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022]
Abstract
Low salinity treatment is proven to be the practical polyploidy inducing method for shellfish with advantages of lower cost, higher operability and reliable food security. However, little is known about the possible molecular mechanism of hypotonic induction. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) based proteomic profiling was pursued to investigate the responses of zygotes of the Pacific oyster Crassostrea gigas to low salinity. A total of 2235 proteins were identified and 87 proteins were considered differentially expressed, of which 14 were up-regulated and 69 were down-regulated. Numerous functional proteins including ADP ribosylation factor 2, DNA repair protein Rad50, splicing factor 3B, tubulin-specific Chaperone D were significantly changed in abundance, and were involved in various biology processes including energy generation, vesicle trafficking, DNA/RNA/protein metabolism and cytoskeleton modification, indicating the prominent modulation of cell division and embryonic development. Parallel reaction monitoring (PRM) analyses were carried out for validation of the expression levels of differentially expressed proteins (DEPs), which indicated high reliability of the proteomic results. Our study not only demonstrated the proteomic alterations in oyster zygotes under low salinity, but also provided, in part, clues to the relatively lower hatching rate and higher mortality of induced larvae. Above all, this study presents a valuable foundation for further studies on mechanisms of hypotonic induction.
Collapse
|
17
|
Ouali N, Belabed BE, Chenchouni H. Modelling environment contamination with heavy metals in flathead grey mullet Mugil cephalus and upper sediments from north African coasts of the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:156-174. [PMID: 29783116 DOI: 10.1016/j.scitotenv.2018.04.377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals are a serious hazard for aquatic ecosystems and human health. They negatively affect aquatic life functioning through accumulation resulting physiological/growth disturbances in aquatic lifeforms. This survey focused on the assessment of heavy metal pollution in the Gulf of Annaba (northeastern Algeria), the largest and most diversified industrial hub in Africa, using a multi-compartment approach (water-sediment-biota). The study aims to characterize the spatiotemporal variation of trace metal (TM) contamination and its effects on the growth of the Flathead grey mullet (Mugil cephalus). It reviewed TM concentrations in upper sediments and organs of M. cephalus from various hydrosystems worldwide. Five sites distributed along the Gulf were sampled to determine water physicochemical parameters as well as the contamination of surficial sediments and muscles of M. cephalus by zinc, copper, lead, cadmium and mercury. The spatiotemporal variations of the measured parameters were tested and discussed following the synergetic effects of water, sediment and muscle variables on fish biometrics. The sediments at the Port, Joinoville and Sidi-Salem sites were classified as heavily polluted by lead, copper, zinc and cadmium, whereas only at the Port by mercury. Muscular lead concentrations exceeded international standard values in Joinoville and Port, and zinc in Port. The increase of water dissolved oxygen induced a significant decrease in sediment TM. The increase of sediment TM caused a significant increase in muscle TM levels. The S-shaped logistic models indicated that muscle contaminations reached a saturation plateaus following the current sediment pollution. TM concentrations in fish muscles negatively affected fish weight, but only copper and cadmium significantly influenced fish length. The consumption of fish from the Port, Joinoville and Sidi-Salem can be dangerous because concentrations of lead, zinc and cadmium exceeded the international standards. This study validates the effectiveness of biomonitoring using M. cephalus as bioindicator in polluted coasts.
Collapse
Affiliation(s)
- Naouel Ouali
- Department of Marine Sciences, University of El-Tarf, 36000, El-Tarf, Algeria; Aquaculture & Pathology Research Lab, Marine Sciences Department, Annaba University, 23000 Annaba, Algeria.
| | - Bourhane-Eddine Belabed
- Aquaculture & Pathology Research Lab, Marine Sciences Department, Annaba University, 23000 Annaba, Algeria.
| | - Haroun Chenchouni
- Department of Natural and Life Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, 12002, Tebessa, Algeria; Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, 04000, Oum-El-Bouaghi, Algeria.
| |
Collapse
|
18
|
Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. AQUACULTURE 2018; 495:106-114. [DOI: 10.1016/j.aquaculture.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Chen H, Diao X, Wang H, Zhou H. An integrated metabolomic and proteomic study of toxic effects of Benzo[a]pyrene on gills of the pearl oyster Pinctada martensii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:330-336. [PMID: 29573723 DOI: 10.1016/j.ecoenv.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the most important polycyclic aromatic hydrocarbons (PAHs), which are widely present in the marine environment. Because of its teratogenic, mutagenic, and carcinogenic effects on various organisms, the toxicity of BaP is of great concern. In this study, we focused on the toxic effects of BaP (1 µg/L and 10 µg/L) on gills of the pearl oyster Pinctada martensii using combined metabolomic and proteomic approaches. At the metabolome level, the high concentration of BaP mainly caused abnormal energy metabolism, osmotic regulation and immune response marked by significantly altered metabolites in gills. At the proteome level, both concentrations of BaP mainly induced signal transduction, transcription regulation, cell growth, stress response, and energy metabolism. Overall, the research demonstrated that the combination of proteomic and metabolomic approaches could provide a significant way to elucidate toxic effects of BaP on P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
20
|
De Marchi L, Neto V, Pretti C, Figueira E, Chiellini F, Morelli A, Soares AMVM, Freitas R. Effects of multi-walled carbon nanotube materials on Ruditapes philippinarum under climate change: The case of salinity shifts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:199-211. [PMID: 29655118 DOI: 10.1016/j.aquatox.2018.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The toxicity of carbon nanotubes (CNTs) is closely related to their physico-chemical characteristics as well as the physico-chemical parameters of the media where CNTs are dispersed. In a climate change scenario, changes in seawater salinity are becoming a topic of concern particularly in estuarine and coastal areas. Nevertheless, to our knowledge no information is available on how salinity shifts may alter the sensitivity (in terms of biochemical responses) of bivalves when exposed to different CNTs. For this reason, a laboratory experiment was performed exposing the Manila clam Ruditapes philippinarum, one of the most dominant bivalves of the estuarine and coastal lagoon environments, for 28 days to unfunctionalized multi-walled carbon nanotube MWCNTs (Nf-MWCNTs) and carboxylated MWCNTs (f-MWCNTs), maintained at control salinity (28) and low salinity 21. Concentration-dependent toxicity was demonstrated in individuals exposed to both MWCNT materials and under both salinities, generating alterations of energy reserves and metabolism, oxidative status and neurotoxicity compared to non-contaminated clams. Moreover, our results showed greater toxic impacts induced in clams exposed to f-MWCNTs compared to Nf-MWCNTs. In the present study it was also demonstrated how salinity shifts altered the toxicity of both MWCNT materials as well as the sensitivity of R. philippinarum exposed to these contaminates in terms of clam metabolism, oxidative status and neurotoxicity.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, 56122, Italy
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa, 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
21
|
Rodríguez-Moro G, García-Barrera T, Trombini C, Blasco J, Gómez-Ariza JL. Combination of HPLC with organic and inorganic mass spectrometry to study the metabolic response of the clam Scrobicularia plana to arsenic exposure. Electrophoresis 2017; 39:635-644. [PMID: 29125650 DOI: 10.1002/elps.201700318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
Abstract
Arsenic is a toxic element extensively studied in the marine environment due to differential toxicological effects of inorganic and organic species. In the present work, the bivalve Scrobicularia plana was exposed to AsV (10 and 100 μg/L) for 14 days to evaluate the metabolic perturbations caused by this element. Arsenic speciation and metabolomic analysis were performed in the digestive gland of the bivalve using two complementary analytical platforms based on inorganic and organic mass spectrometry. It has been observed the greater presence of the innocuous specie arsenobetaine produced in this organism as defense mechanism against arsenic toxicity, although significant concentrations of methylated and inorganic arsenic were also present, depending on the level of arsenic in aqueous media. Complementarily, a metabolomic study based on mass spectrometry and statistical discriminant analysis allows a good classification of samples associated to low and high As(V) exposure in relation to controls. About 15 metabolites suffer significant changes of expression by the presence of As(V): amino acids, nucleotides, energy-related metabolites, free fatty acids, phospholipids and triacylglycerides, which can be related to membrane structural and functional damage. In addition, perturbation of the methylation cycle, associated with the increase of homocysteine and methionine was observed, which enhance the methylation of toxic inorganic arsenic to less toxic dimethylarsenic.
Collapse
Affiliation(s)
- Gema Rodríguez-Moro
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| | - Chiara Trombini
- Institute for Marine Sciences of Andalucía (ICMAN), Ciudad Real, Spain
| | - Julián Blasco
- Institute for Marine Sciences of Andalucía (ICMAN), Ciudad Real, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry. Faculty of Experimental Sciences. University of Huelva, Huelva, Spain.,International Agrofood Campus of Excellence International ceiA3, University of Huelva, Huelva, Spain.,Research Center of Health and Environment (CYSMA). University of Huelva, Huelva, Spain
| |
Collapse
|
22
|
Cao C, Wang WX. Copper-induced metabolic variation of oysters overwhelmed by salinity effects. CHEMOSPHERE 2017; 174:331-341. [PMID: 28183059 DOI: 10.1016/j.chemosphere.2017.01.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
In estuarine environments, Cu (copper) contamination is simultaneously coupled with salinity variation. In this study, 1H NMR was applied to investigate the metabolic disturbance of estuarine oysters Crassostrea hongkongensis under both Cu and salinity stresses. Oysters were exposed to dissolved Cu (50 μg L-1) at different salinities (10, 15 and 25 psu) for six weeks, and the Cu accumulation in the oyster tissues was higher at lowered salinity. Based on the NMR-metabolomics results, disturbances induced by Cu and salinity was mainly related to osmotic regulation, energy metabolism and glycerophospholipid metabolism, as indicated by the alteration of important metabolic biomarkers such as alanine, citrate, glucose, glycogen, betaine, taurine, hypotaurine and homarine in the gills. At lower salinity, oysters accumulated higher energy related compounds (e.g., glucose and glycogen) and amino acids (e.g., aspartate, dimethylglycine and lysine), with the enhancement of ATP/ADP production and accumulation of oxidizable amino acids catabolized from protein breakdown. With Cu exposure, the synthesis from glycine to dimethylglycine was observed to cope with severe osmotic stress, together with the elevation of lysine and homarine. The effects induced by Cu were much similar for each salinity treatment, but the combination of Cu and salinity turned out to be consistent with the singular salinity effects. Therefore, salinity played a dominant role in affecting the metabolites of oysters when combined with Cu exposure. This study indicated that salinity should be taken into consideration in order to predict the Cu toxicity in estuarine organisms.
Collapse
Affiliation(s)
- Chen Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Wu H, Liu J, Lu Z, Xu L, Ji C, Wang Q, Zhao J. Metabolite and gene expression responses in juvenile flounder Paralichthys olivaceus exposed to reduced salinities. FISH & SHELLFISH IMMUNOLOGY 2017; 63:417-423. [PMID: 28245987 DOI: 10.1016/j.fsi.2017.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Seawater salinity is one of the most important changeable environmental factors influencing the behavior, survival, growth and production of marine organisms. In this work, metabolite and gene expression profiles were used to elucidate the biological effects of reduced salinities in juvenile flounder Paralichthys olivaceus. Metabolic profiling indicated that both reduced salinities (23.3‰ and 15.6‰) enhanced proteolysis and disturbed osmotic regulation and energy metabolism in juvenile flounder P. olivaceus. Furthermore, the low salinity (15.6‰) enhanced anaerobic metabolism indicated by the elevated lactate in flounder tissue extracts. Gene expression profiles exhibited that reduced salinities could induce immune stress and oxidative stress and disturb energy metabolism in juvenile flounder P. olivaceus. In addition, reduced salinities might promote the growth and gonadal differentiation in juvenile flounder P. olivaceus.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Jialin Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhen Lu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lanlan Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
24
|
Vincenzetti S, Felici A, Ciarrocchi G, Pucciarelli S, Ricciutelli M, Ariani A, Polzonetti V, Polidori P. Comparative proteomic analysis of two clam species: Chamelea gallina and Tapes philippinarum. Food Chem 2017; 219:223-229. [PMID: 27765220 DOI: 10.1016/j.foodchem.2016.09.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
Clams have long been a fisheries and aquaculture sector of great importance in Italy, the main resource of fisheries is the Chamelea gallina of indigenous origin, whereas clams breeding is supported almost entirely by the Tapes philippinarum, a species of Indo-Pacific origin. Bivalve molluscs quality depends mainly on the water quality, and then by a series of factors such as water temperature and salinity, gametogenic cycle, food availability, and environmental conditions, that affect the Condition Index. In this work crude extracts obtained from the edible part of Chamelea gallina and Tapes philippinarum were analyzed by a proteomic approach based on a two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry, in order to detect biomarkers useful for identification of the two kinds of clams and to assess their nutritional characteristics. As a result, four differentially expressed spots were found and identified, namely enolase, cyclophilin-A, ribosomal protein L13 and actin-1.
Collapse
Affiliation(s)
- Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy.
| | - Alberto Felici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Giorgio Ciarrocchi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Ambra Ariani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Valeria Polzonetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
25
|
Lu J, Feng J, Cai S, Chen Z. Metabolomic responses of Haliotis diversicolor to organotin compounds. CHEMOSPHERE 2017; 168:860-869. [PMID: 27839877 DOI: 10.1016/j.chemosphere.2016.10.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/24/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
Organotin compounds, especially tributyltin (TBT) and triphenyltin (TPT), are a group of hazardous pollutants in marine environments. Haliotis diversicolor is an important marine model organism for environmental science. In this study, 1H NMR spectroscopy together with pattern recognition methods was used to investigate the responses of hepatopancreas and gill of Haliotis diversicolor to TBT and TPT exposure. It was found that obvious gender-, tissue- and compound-specific metabolomic alterations were induced after a 28-day exposure. TBT and TPT exposure not only caused the disturbance in energy metabolism and osmotic balance in hepatopancreas and gill tissues with different mechanisms, but also induced oxidative stresses. These metabolic alterations were highlighted in the accumulation of aspartate, uridine diphosphate-N-acetylglucosamine, uridine diphosphate glucose, guanosine and the depletion of leucine, isoleucine, valine, malonate, homarine, trigonelline in all exposure gills, as well as in the depletion of ATP, AMP, betaine in male exposure gills and pantothenate in male exposure hepatopancreases. The significant decreased aromatic amino acids (AAAs), lysine and glutamate in gills and increased betaine in hepatopancreases for TPT exposure together with increased glutamate and decreased betaine in gills and increased glutamate and glycine in hepatopancreases for TBT exposure demonstrated their specific metabolic characteristics. Among these characteristic metabolites, AAAs, lysine and glutamate in the gill as well as pantothenate in the hepatopancreas might be identified as potential biomarkers for TPT or TBT exposure in Haliotis diversicolor. The results provide a useful insight into the toxicological mechanisms of organotin compounds on Haliotis diversicolor.
Collapse
Affiliation(s)
- Jie Lu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China.
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
26
|
Huang SSY, Benskin JP, Veldhoen N, Chandramouli B, Butler H, Helbing CC, Cosgrove JR. A multi-omic approach to elucidate low-dose effects of xenobiotics in zebrafish (Danio rerio) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:102-112. [PMID: 27886581 DOI: 10.1016/j.aquatox.2016.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Regulatory-approved toxicity assays such as the OECD Fish Embryo Toxicity Assay (TG236) allow correlation of chemical exposure to adverse morphological phenotypes. However, these assays are ineffective in assessing sub-lethal (i.e. low-dose) effects, or differentiating between similar phenotypes induced by different chemicals. Inclusion of multi-omic analyses in studies investigating xenobiotic action provides improved characterization of biological response, thereby enhancing prediction of toxicological outcomes in whole animals in the absence of morphological effects. In the current study, we assessed perturbations in both the metabolome and transcriptome of zebrafish (Danio rerio; ZF) larvae exposed from 96 to 120h post fertilization to environmental concentrations of acetaminophen (APAP), diphenhydramine (DH), carbamazepine (CBZ), and fluoxetine (FLX); common pharmaceuticals with known mechanisms of action. Multi-omic responses were evaluated independently and integrated to identify molecular interactions and biological relevance of the responses. Results indicated chemical- and dose-specific changes suggesting differences in the time scale of transcript abundance and metabolite production. Increased impact on the metabolome relative to the transcriptome in FLX-treated animals suggests a stronger post-translational effect of the treatment. In contrast, the transcriptome showed higher sensitivity to perturbation in DH-exposed animals. Integration of 'omic' responses using multivariate approaches provided additional insights not obtained by independent 'omic' analyses and demonstrated that the most distinct overall response profiles were induced following low-dose exposure for all 4 pharmaceuticals. Importantly, changes in transcript abundance corroborated with predictions from metabolomic enrichment analyses and the identified perturbed biological pathways aligned with known xenobiotic mechanisms of action. This work demonstrates that a multi-omic toxicological approach, coupled with a sensitive animal model such as ZF larvae, can help characterize the toxicological relevance of acute low-dose chemical exposures.
Collapse
Affiliation(s)
- Susie S Y Huang
- SGS AXYS, Sidney, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Jonathan P Benskin
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | | | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
27
|
Xu L, Ji C, Wu H, Tan Q, Wang WX. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis. MARINE POLLUTION BULLETIN 2016; 112:436-442. [PMID: 27402499 DOI: 10.1016/j.marpolbul.2016.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution.
Collapse
Affiliation(s)
- Lanlan Xu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P.R. China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, P.R. China.
| | - Qiaoguo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen 361102, P.R. China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong
| |
Collapse
|
28
|
Velez C, Figueira E, Soares AMVM, Freitas R. The impacts of As accumulation under different pH levels: Comparing Ruditapes decussatus and Ruditapes philippinarum biochemical performance. ENVIRONMENTAL RESEARCH 2016; 151:653-662. [PMID: 27619210 DOI: 10.1016/j.envres.2016.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Marine bivalves have been used to assess environmental As contamination and the effects of seawater acidification when both factors are acting alone, but limited information is available regarding the impacts of both factors acting in combination. The aim of this study was to compare physiological (glycogen) and biochemical (lipid peroxidation, superoxide dismutase, catalase, glutathione-S-transferase and alkaline phosphatase) responses in both native (Ruditapes decussatus) and introduced (R. philippinarum) clams, when exposed to the combined effects of pH (7.8, control; 7.3) and As concentrations (0 and 4mg/L). The combined effect of As and pH on the health risks associated with clam consumption was also analyzed. Results revealed that both species were able to accumulate As under both pH levels, although higher As concentrations where observed under low pH. Thus, predicted pH decrease will potentiate health risks associated with the consumption of such species, since less amount of clams exposed to As is needed for an adult to exceed the provisional tolerable weekly intake (PTWI). Low pH, As exposure and the combination of both factors did not negatively affect the native species, since clams were able to maintain their physiological and biochemical performance among all conditions. On the other hand, R. philippinarum was negatively affected by As exposure at control pH (7.8), inducing biotransformation and antioxidant defense mechanisms against As toxicity. R. philippinarum exposed and non-exposed to As presented similar responses under low pH although at this condition the introduced species accumulated twice the amount of As than R. decussatus.
Collapse
Affiliation(s)
- Catia Velez
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Jiang X, Qiu L, Zhao H, Song Q, Zhou H, Han Q, Diao X. Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing. CHEMOSPHERE 2016; 163:125-132. [PMID: 27522184 DOI: 10.1016/j.chemosphere.2016.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Liguo Qiu
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China.
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
30
|
Bao Y, Liu X, Zhang W, Cao J, Li W, Li C, Lin Z. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model. Sci Rep 2016; 6:35704. [PMID: 27760991 PMCID: PMC5071765 DOI: 10.1038/srep35704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd.
Collapse
Affiliation(s)
- Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| | - Xiao Liu
- Department of Systems biology, GFK, Shanghai Biotech Inc., Shanghai, 201112, P.R. China
| | - Weiwei Zhang
- School of Marine Scienes, Ningbo University, Ningbo, Zhejiang, 315010, P.R. China
| | - Jianping Cao
- Ningbo Yinzhou Measurement and Test Center for Quality and Technique Supervising, Ningbo, Zhejiang, 315100, P.R. China
| | - Wei Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| | - Chenghua Li
- School of Marine Scienes, Ningbo University, Ningbo, Zhejiang, 315010, P.R. China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, P.R. China
| |
Collapse
|
31
|
Aru V, Sarais G, Savorani F, Engelsen SB, Cesare Marincola F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. MARINE POLLUTION BULLETIN 2016; 107:292-299. [PMID: 27058966 DOI: 10.1016/j.marpolbul.2016.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of 48h heavy metal exposure upon the metabolic profiles of Ruditapes decussatus and Ruditapes philippinarum using (1)H NMR metabolomics. Both species were exposed to increasing concentrations of lead nitrate (10, 40, 60 and 100μg/L) and zinc chloride (20, 50, 100 and 150μg/L), under laboratory conditions. ICP-OES analysis was further performed on the clams' samples in order to verify the occurrence of heavy metal bioaccumulation. With respect to the controls, the metabolic profiles of treated R. decussatus exhibited higher levels of organic osmolytes and lower contents of free amino acids. An opposite behavior was shown by R. philippinarum. In terms of heavy metal, the exposure effects were more evident in the case of Pb rather than Zn. These findings show that NMR-based metabolomics has the required sensitivity and specificity for the identification of metabolites that can act as sensitive indicators of contaminant-induced stress.
Collapse
Affiliation(s)
- Violetta Aru
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy
| | - Giorgia Sarais
- Departement of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Francesco Savorani
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Applied Science and Technology (DISAT), Polytechnic University of Turin, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Søren Balling Engelsen
- Quality & Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Flaminia Cesare Marincola
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
32
|
Chen H, Song Q, Diao X, Zhou H. Proteomic and metabolomic analysis on the toxicological effects of Benzo[a]pyrene in pearl oyster Pinctada martensii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:81-9. [PMID: 26999675 DOI: 10.1016/j.aquatox.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/15/2023]
Abstract
Benzo[a]pyrene (BaP) is one of the typical toxic polycyclic aromatic hydrocarbons (PAHs) that are widely present in marine environment. BaP has diverse toxic effects, including teratogenic, carcinogenic, mutagenic effects and so on, in various organisms. In this work, we focused on the differential proteomic and metabolomic responses in the digestive gland of pearl oyster Pinctada martensii exposed to two doses of BaP (1 and 10μg/L). Metabolic responses revealed that the high dose of BaP (10μg/L) mainly caused disturbances in osmotic regulation and energy metabolism in the digestive gland. Proteomic responses indicated that both doses of BaP induced disturbances in energy metabolism, cytoskeleton, cell injury, oxidative stress and signal transduction based on the differential proteomic biomarkers. Overall, these results demonstrated a number of potential biomarkers that were characterized by an integrated proteomic and metabolomic approach and provided a useful insight into the toxicological effects on pearl oyster P. martensii.
Collapse
Affiliation(s)
- Hao Chen
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environmental Toxicology, Haikou 570228, China.
| |
Collapse
|
33
|
Velez C, Teixeira M, Wrona FJ, Soares AMVM, Figueira E, Freitas R. Clam Ruditapes philippinarum recovery from short-term exposure to the combined effect of salinity shifts and Arsenic contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:154-164. [PMID: 26889773 DOI: 10.1016/j.aquatox.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The current study assessed the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure to salinity shifts (14, 28 and 42) and arsenic (As) contamination (0 and 2mg/L). The capacity of this species to recover (96h and 28 days) after exposure (96h) to both stressors, acting alone and in combination, was also evaluated. After exposure, regardless of the salinity tested, clams contaminated with As showed higher concentrations than non-contaminated specimens. After recovery, As concentration in clams decreased, with contaminated and non-contaminated specimens presenting similar values. The results obtained further demonstrated that exposure to As (2mg/L) at different salinities (salinities 14, 28 and 42) and salinity 42 (As 0mg/L) lead to an increase of lipid peroxidation and detoxification mechanisms in clams, compared with non-contaminated clams at salinities of 14 and 28. After recovery, at salinities 14 and 28, clams previously exposed to As were capable to decrease their oxidative stress to levels found in non-contaminated clams. Nevertheless, at salinity 42 both contaminated and non-contaminated clams did not survive. Overall results of measured energy-related parameters, indicators of oxidative stress, antioxidant and biotransformation enzymes indicated that As exposure and salinity shifts caused biochemical alterations in R. philippinarum, with stronger impacts when both stressors were acting in combination.
Collapse
Affiliation(s)
- Catia Velez
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Teixeira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Li C, Li P, Tan YM, Lam SH, Chan ECY, Gong Z. Metabolomic Characterizations of Liver Injury Caused by Acute Arsenic Toxicity in Zebrafish. PLoS One 2016; 11:e0151225. [PMID: 26967897 PMCID: PMC4788152 DOI: 10.1371/journal.pone.0151225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022] Open
Abstract
Arsenic is one of the most common metalloid contaminants in groundwater and it has both acute and chronic toxicity affecting multiple organs. Details of the mechanism of arsenic toxicity are still lacking and profile studies at metabolic level are very limited. Using gas chromatography coupled with mass spectroscopy (GC/MS), we first generated metabolomic profiles from the livers of arsenic-treated zebrafish and identified 34 significantly altered metabolite peaks as potential markers, including four prominent ones: cholic acid, glycylglycine, glycine and hypotaurine. Combined results from GC/MS, histological examination and pathway analyses suggested a series of alterations, including apoptosis, glycogenolysis, changes in amino acid metabolism and fatty acid composition, accumulation of bile acids and fats, and disturbance in glycolysis related energy metabolism. The alterations in glycolysis partially resemble Warburg effect commonly observed in many cancer cells. However, cellular damages were not reflected in two conventional liver function tests performed, Bilirubin assay and alanine aminotransferase (ALT) assay, probably because the short arsenate exposure was insufficient to induce detectable damage. This study demonstrated that metabolic changes could reflect mild liver impairments induced by arsenic exposure, which underscored their potential in reporting early liver injury.
Collapse
Affiliation(s)
- Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ping Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yee Min Tan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Eric C. Y. Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Velez C, Freitas R, Antunes SC, Soares AMVM, Figueira E. Clams sensitivity towards As and Hg: A comprehensive assessment of native and exotic species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:43-54. [PMID: 26655232 DOI: 10.1016/j.ecoenv.2015.11.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
To assess the environmental impact of As and Hg, bioindicator organisms such as bivalves have been used. Nevertheless, few studies have assessed the impacts of As and Hg in Ruditapes decussatus and Ruditapes philippinarum, which are native and exotic species in Europe, respectively. The main goal of the present study was to assess elements' partitioning and detoxification strategies of R. decussatus and R. philippinarum. Both clams showed a higher capacity to bioconcentrate Hg (BCF 2.29-7.49), when compared to As (0.59-1.09). Furthermore, As accumulation in both species was similar in the soluble and insoluble fractions, while in both species the majority of Hg was found in the insoluble fraction. Clams exposed to As showed different detoxification strategies, since R. decussatus had higher ability to enhance antioxidant enzymes and metallothioneins in order to reduce toxicity, and R.philippinarum increased glutathione S-transferase Ω activity, that catalyzes monomethyl arsenate reduction, the rate-limiting reaction in arsenic biotransformation. When exposed to Hg, R. decussatus presented, higher synthesis of antioxidant enzymes and lower LPO, being able to better tolerate Hg than the exotic species R. philippinarum. Thus under relevant levels of As and Hg contamination our work evidenced the higher ability of R. decussatus to survive and inhabit coastal environments not heavily contaminated by Hg and As.
Collapse
Affiliation(s)
- Cátia Velez
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Sara C Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas 289, 450-123 Porto, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Campos A, Danielsson G, Farinha AP, Kuruvilla J, Warholm P, Cristobal S. Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm. J Proteomics 2016; 137:97-106. [PMID: 26820222 DOI: 10.1016/j.jprot.2016.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Pharmaceuticals, among them the β-adrenoceptor blocker propranolol, are an important group of environmental contaminants reported in European waters. Laboratory exposure to pharmaceuticals on marine species has been performed without considering the input of the ecosystem flow. To unravel the ecosystem response to long-term exposure to propranolol we have performed long-term exposure to propranolol and low salinity in microcosms. We applied shotgun proteomic analysis to gills of Mytilus edulis from those Baltic Sea microcosms and identified 2071 proteins with a proteogenomic strategy. The proteome profiling patterns from the 587 highly reproductive proteins among groups define salinity as a key factor in the mussel's response to propranolol. Exposure at low salinity drives molecular mechanisms of adaptation based on a decrease in the abundance of several cytoskeletal proteins, signalling and intracellular membrane trafficking pathway combined with a response towards the maintenance of transcription and translation. The exposure to propranolol combined with low salinity modulates the expression of structural proteins including cilia functions and decreases the expression of membrane protein transporters. This study reinforces the environment concerns of the impact of low salinity in combination with anthropogenic pollutants and anticipates critical physiological conditions for the survival of the blue mussel in the northern areas. BIOLOGICAL SIGNIFICANCE Applying shotgun proteomic analysis to M. edulis gills samples from a long-term microcosm exposure to propranolol and following a proteogenomic identification strategy, we have identified 2071 proteins. The proteomic analysis unrevealed which molecular mechanisms drive the adaptation to low salinity stress and how salinity modulates the effects of exposure to propranolol. These results reinforce the idea of the impact of low salinity in combination with anthropogenic pollutants and anticipate critical physiological condition.
Collapse
Affiliation(s)
- Alexandre Campos
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Gabriela Danielsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ana Paula Farinha
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Jacob Kuruvilla
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Per Warholm
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country UPV/EHU, Bizkaia, Spain.
| |
Collapse
|
37
|
Freitas R, Salamanca L, Velez C, Wrona FJ, Soares AMVM, Figueira E. Multiple stressors in estuarine waters: Effects of arsenic and salinity on Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1106-1114. [PMID: 26473712 DOI: 10.1016/j.scitotenv.2015.09.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Marine organisms are constantly exposed to multiple stressors creating a range of associated environmental and ecotoxicological risks. Several stressors have been identified as key drivers of environmental change that may significantly influence marine near-shore systems. These include increased frequency and duration of extreme rainy events and drought periods, arising from climate change, and the constant discharge of contaminants into aquatic systems. A growing body of evidence demonstrates that climate change can have direct and indirect impacts on marine organisms although the combined effects with other stressors, namely with metals and metalloids, have received very little attention to date. The present study evaluated the biochemical alterations induced in the clam Ruditapes philippinarum, also known as Manila clam, when simultaneously exposed (96 h) to different arsenic concentrations (0, 4 and 17 mg/L) and a range of salinities (14, 21, 28, 35 and 42 g/L). Results obtained revealed that, when acting alone, both stressors induced oxidative stress in clams, with higher LPO levels and lower GSTs activity induced by As contamination, and a stronger inhibition of the antioxidant defenses induced by salinity increase. Furthermore, when exposed to the combination of both stressors, clams experienced stronger biochemical alterations, presenting higher LPO increases and greater decreases of antioxidant enzymes, especially noticed at higher salinities. The present findings may indicate that climate change, including predicted drought periods that will increase salinities in aquatic systems, will seriously affect the clam R. philippinarum, especially those inhabiting contaminated ecosystems.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Cátia Velez
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Frederick J Wrona
- Department of Geography, University of Victoria, National Water Research Institute, STN CSC, Victoria, BC, Canada
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Ji C, Xu H, Wang Q, Zhao J, Wu H. Comparative investigations on the biological effects of As (III) and As (V) in clam Ruditapes philippinarum using multiple biomarkers. FISH & SHELLFISH IMMUNOLOGY 2015; 47:79-84. [PMID: 26327115 DOI: 10.1016/j.fsi.2015.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
Inorganic arsenic is a known pollutant with two chemical forms, arsenite (As (III)) and arsenate (As (V)), in marine environment. Clam Ruditapes philippinarum is an important fishery species along the Bohai coast. In this study, the biological effects induced by the two arsenic chemical forms (arsenite and arsenate) were compared using multiple biochemical indices in the digestive glands of clam R. philippinarum. The production of reactive oxygen species, antioxidant enzyme activities and metabolic responses exhibited that both As (III) and As (V) induced immune, oxidative and osmotic stresses in clam digestive glands. The differential metabolic biomarkers, histidine and taurine, indicated the differential responsive mechanisms in osmotic regulation in clam digestive glands. In addition, both arsenic treatments enhanced the anaerobiosis metabolism in clam digestive glands. Overall, this work illustrated that arsenite and arsenate induced similar biological effects in clams, which might be accounted for the biological transformation of arsenate to arsenite in clams.
Collapse
Affiliation(s)
- Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Hai'e Xu
- Clinical Nutrition, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China.
| |
Collapse
|
39
|
Chen S, Zhang C, Xiong Y, Tian X, Liu C, Jeevithan E, Wu W. A GC-MS-based metabolomics investigation on scallop (Chlamys farreri) during semi-anhydrous living-preservation. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Campillo JA, Sevilla A, Albentosa M, Bernal C, Lozano AB, Cánovas M, León VM. Metabolomic responses in caged clams, Ruditapes decussatus, exposed to agricultural and urban inputs in a Mediterranean coastal lagoon (Mar Menor, SE Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 524-525:136-147. [PMID: 25897722 DOI: 10.1016/j.scitotenv.2015.03.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
The Mar Menor is a coastal lagoon affected by the growth of intensive agriculture and urban development in the surrounding area. Large amounts of chemical pollutants from these areas are discharged into El Albujón, a permanent water-course flowing into the lagoon. Biomarkers such as the activity of acetylcholinesterase or antioxidant enzymes have been previously tested in this lagoon demonstrating the presence of neurotoxicity and oxidative stress in clams transplanted in sites affected by the dispersion of the effluent from El Albujón. To complete this traditional toxicology work, a metabolomic profiling of these transplanted organisms has been carried out for the detection of metabolic biomarkers induced by agricultural/urban pollutants. More than 70 metabolites have been quantified using a targeting metabolomics platform based on HPLC-MS. The intracellular metabolic pattern was analyzed by PCA from the digestive gland of clams after 7 and 22 days of transplantation. Results showed a different profile of metabolite between organisms collected from control and exposed sites. At the shorter exposure time, there was an increase in several metabolites in the latter when compared with those from control sites, whereas metabolic profiling at 22 days showed that those metabolites were drastically diminished, with even lower levels than at control sites. These metabolites included: (i) 12 amino acids from the 21 proteogenic and HomoSer, (ii) osmotic protectants such as γ-butyrobetaine and taurine and (iii) nucleotides such as ITP. Regarding sulfur-containing molecules, taurine could be highlighted as a potential biomarker since its concentration was reduced by more than 30 times after 22 days of exposure, whereas the antioxidant glutathione remained constant in the organisms from both control and exposed sites. Although targeted metabolomics has been shown as an early technique of pollutant effect detection, the two-phase pattern could highlight a more complicated metabolite response to pollutants than classical biomarkers.
Collapse
Affiliation(s)
- Juan A Campillo
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain.
| | - Angel Sevilla
- Department of Biotechnology, Delft University of Technology, Julianalaan, 67, Delft 2628 BC, The Netherlands; Inbionova Biotech S.L., Edif. CEEIM, University of Murcia, 30100 Murcia, Spain
| | - Marina Albentosa
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| | - Cristina Bernal
- Dept. of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, E-30100 Murcia, Spain
| | - Ana B Lozano
- Dept. of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, E-30100 Murcia, Spain
| | - Manuel Cánovas
- Dept. of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, E-30100 Murcia, Spain
| | - Víctor M León
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, Varadero 1, E-30740 San Pedro del Pinatar, Murcia, Spain
| |
Collapse
|
41
|
Li Y, Liu H, Zhou H, Ma W, Han Q, Diao X, Xue Q. Concentration distribution and potential health risk of heavy metals in Mactra veneriformis from Bohai Bay, China. MARINE POLLUTION BULLETIN 2015; 97:528-534. [PMID: 26130526 DOI: 10.1016/j.marpolbul.2015.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
To investigate the pollution level and evaluate the potential health risks of heavy metals, the concentrations of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), antimony (Sb), and lead (Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 198 clams (Mactra veneriformis) collected from 11 sites of the Bohai Bay. The results showed that heavy metal concentrations in the clams were different at different sites (p<0.05). Mn was dominant with a percentage of 22.08-77.03% in heavy metals, followed by Zn with 12.66-57.11%, and the concentration of Pb was the lowest with 0.45-1.04%. The potential health risk to consumers was evaluated by the target hazard quotient (THQ) and the maximum daily consumption rate (CRmax). The results indicated that the THQs of Co were the highest with the values of 1.125, 1.665, and 1.144 at three sections; the values of other individual metals were <1, which indicated that consumption of clams from the study areas caused health risks due to Co. Moreover, the CRmax values also indicated the potential health risk caused by Co in clams consumed in this area. Pearson correlation analysis and principal component analysis (PCA) indicated that there were significantly positive or negative correlations between the heavy metals (p<0.05), and the studied metals were divided into four groups. The results indicated that the concentrations of heavy metals in clams were affected not only by pollution sources but also by the characteristics of clams that could absorb selectively and accumulate special metals. This study offers important information on the pollution levels of heavy metals in clams and warns consumers of the health risks associated with the consumption of clams in the area.
Collapse
Affiliation(s)
- Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hui Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17, Chunhui Road, Laishan District, Yantai 264003, Shandong Province, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17, Chunhui Road, Laishan District, Yantai 264003, Shandong Province, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Wandong Ma
- Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Qinzhao Xue
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17, Chunhui Road, Laishan District, Yantai 264003, Shandong Province, China.
| |
Collapse
|
42
|
Wu H, Cao L, Li F, Lian P, Zhao J. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells. CHEMOSPHERE 2015; 126:32-39. [PMID: 25697951 DOI: 10.1016/j.chemosphere.2015.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame-retardants in a variety of industrial products. Among these PBDEs, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is one of the most predominant congeners inducing multiple toxicities, including hepatotoxicity, neurotoxicity, cytotoxicity, genotoxicity, carcinogenecity and immunotoxicity in human body. In this study, the cytotoxicity of BDE-47 in human embryonic kidney cells (HEK293) was investigated by a set of bioassays, including cell proliferation, apoptosis, oxidative stress and metabolic responses as well as gene expressions related to apoptosis. Results showed that BDE-47 induced an inverted U-shaped curve of cell proliferation in HEK293 cells from 10(-6) to 10(-4) M. Cell apoptosis and ROS overproduction were detected at 10(-5) M of BDE-47 (p<0.05). In addition, the expressions of Bcl-2 family-encoding genes (Bad, Hrk and Bcl-2) increased significantly in 10(-4)M group (p<0.05). Metabolic responses indicated that BDE-47 mainly caused disturbance in energy metabolism marked by differentially altered ethanol, glutathione, creatine, aspartate, UDP-glucose and NAD(+). The increased lactate/alanine ratios indicated the higher reductive state induced by BDE-47 in all exposures confirmed by the overproduction of ROS.
Collapse
Affiliation(s)
- Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China
| | - Lulu Cao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China.
| | - Peiwen Lian
- Department of Center Laboratory, Yantai Yuhuangding Hospital, Yuhuangdingdong Road 20, Yantai 264000, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai, Shandong 264003, PR China
| |
Collapse
|
43
|
Liu S, Wang W, Zhou X, Ding Z, Gu R. A 2-DE-based proteomic study on the toxicological effects of cisplatin in L02 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:167-175. [PMID: 25528407 DOI: 10.1016/j.etap.2014.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Cisplatin is a chemotherapeutic agent for the treatment of various cancers. In this study, cisplatin-induced effects were characterized in vitro model of human liver cells (L02) using 2-DE-based proteomics. Results indicated that different cisplatin treatments primarily induced disturbances in protein synthesis and oxidative stress via differential mechanisms. Since the experimental concentrations of cisplatin described a hormesis effect in cell proliferation of L02 cells, it was expected to reveal the hormesis effects using proteomic markers. However, only confilin-1 was commonly up-regulated in three concentrations of cisplatin treatments showing a hormesis effects with a U-shape regulation. These results were highly consistent with many other toxico-proteomic studies, indicating that the toxico-proteomic responses based on dose-dependent protein responses were incongruent with the theoretically linear or hormetic concentration-effect relationship. Our findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could not be reflected by proteomic responses induced by cisplatin treatments.
Collapse
Affiliation(s)
- Shu Liu
- The 2nd People's Hospital of Huaian, No. 62, Huaihainan Road, Huaian 223002, PR China
| | - Wei Wang
- The 2nd People's Hospital of Huaian, No. 62, Huaihainan Road, Huaian 223002, PR China.
| | - Xueyi Zhou
- The 2nd People's Hospital of Huaian, No. 62, Huaihainan Road, Huaian 223002, PR China
| | - Zongli Ding
- The 2nd People's Hospital of Huaian, No. 62, Huaihainan Road, Huaian 223002, PR China
| | - Runhuan Gu
- The 2nd People's Hospital of Huaian, No. 62, Huaihainan Road, Huaian 223002, PR China
| |
Collapse
|
44
|
Abstract
Gas chromatography-mass spectrometry (GC-MS) has been widely used in metabonomics analyses of biofluid samples. Biofluids provide a wealth of information about the metabolism of the whole body and from multiple regions of the body that can be used to study general health status and organ function. Blood serum and blood plasma, for example, can provide a comprehensive picture of the whole body, while urine can be used to monitor the function of the kidneys, and cerebrospinal fluid (CSF) will provide information about the status of the brain and central nervous system (CNS). Different methods have been developed for the extraction of metabolites from biofluids, these ranging from solvent extracts, acids, heat denaturation, and filtration. These methods vary widely in terms of efficiency of protein removal and in the number of metabolites extracted. Consequently, for all biofluid-based metabonomics studies, it is vital to optimize and standardize all steps of sample preparation, including initial extraction of metabolites. In this chapter, recommendations are made of the optimum experimental conditions for biofluid samples for GC-MS, with a particular focus on blood serum and plasma samples.
Collapse
|
45
|
Wei L, Wang Q, Wu H, Ji C, Zhao J. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure. J Proteomics 2015; 112:83-94. [DOI: 10.1016/j.jprot.2014.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 08/11/2014] [Indexed: 01/11/2023]
|
46
|
Wei L, Wang Q, Ning X, Mu C, Wang C, Cao R, Wu H, Cong M, Li F, Ji C, Zhao J. Combined metabolome and proteome analysis of the mantle tissue from Pacific oyster Crassostrea gigas exposed to elevated pCO2. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 13:16-23. [PMID: 25559488 DOI: 10.1016/j.cbd.2014.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Ocean acidification (OA) has been found to affect an array of normal physiological processes in mollusks, especially posing a significant threat to the fabrication process of mollusk shell. In the current study, the impact of exposure to elevated pCO2 condition was investigated in mantle tissue of Crassostrea gigas by an integrated metabolomic and proteomic approach. Analysis of metabolome and proteome revealed that elevated pCO2 could affect energy metabolism in oyster C. gigas, marked by differentially altered ATP, succinate, MDH, PEPCK and ALDH levels. Moreover, the up-regulated calponin-2, tropomyosins and myosin light chains indicated that elevated pCO2 probably caused disturbances in cytoskeleton structure in mantle tissue of oyster C. gigas. This work demonstrated that a combination of proteomics and metabolomics could provide important insights into the effects of OA at molecular levels.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xuanxuan Ning
- Yantai Oceanic Environmental Monitoring Central Station of SOA, Yantai 264006, PR China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Faculty of Life Science and Biotechnology, Ningbo University, Ningbo 315211, PR China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Faculty of Life Science and Biotechnology, Ningbo University, Ningbo 315211, PR China
| | - Ruiwen Cao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Ming Cong
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Fei Li
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China.
| |
Collapse
|
47
|
Hu X, Kang J, Lu K, Zhou R, Mu L, Zhou Q. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 2014; 4:6122. [PMID: 25134726 PMCID: PMC4137339 DOI: 10.1038/srep06122] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023] Open
Abstract
Graphene oxide (GO) is widely used in various fields and is considered to be relatively biocompatible. Herein, "indirect" nanotoxicity is first defined as toxic amplification of toxicants or pollutants by nanomaterials. This work revealed that GO greatly amplifies the phytotoxicity of arsenic (As), a widespread contaminant, in wheat, for example, causing a decrease in biomass and root numbers and increasing oxidative stress, which are thought to be regulated by its metabolisms. Compared with As or GO alone, GO combined with As inhibited the metabolism of carbohydrates, enhanced amino acid and secondary metabolism and disrupted fatty acid metabolism and the urea cycle. GO also triggered damage to cellular structures and electrolyte leakage and enhanced the uptake of GO and As. Co-transport of GO-loading As and transformation of As(V) to high-toxicity As(III) by GO were observed. The generation of dimethylarsinate, produced from the detoxification of inorganic As, was inhibited by GO in plants. GO also regulated phosphate transporter gene expression and arsenate reductase activity to influence the uptake and transformation of As, respectively. Moreover, the above effects of GO were concentration dependent. Given the widespread exposure to As in agriculture, the indirect nanotoxicity of GO should be carefully considered in food safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jia Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Kaicheng Lu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ruiren Zhou
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Carregosa V, Figueira E, Gil AM, Pereira S, Pinto J, Soares AMVM, Freitas R. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:36-43. [PMID: 24556070 DOI: 10.1016/j.cbpa.2014.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
Abstract
In the last few decades, attention has been focused on the impacts of contamination in marine benthic populations, while the responses of aquatic organisms to natural alterations, namely changes in salinity, have received little attention. In fact, salinity is one of the dominant environmental factors affecting marine bivalves. The ebb and flood of the tide, combined with fresh water inputs from rivers or heavy rainy events, and with extremely dry and hot seasons, can dramatically alter water salinity. Therefore, the salinity of a certain environment can restrict the spatial distribution of a given population, which is especially important when assessing the spread of an invasive species into a new environment. In the present study, the main objective was to understand how clam Venerupis philippinarum copes with salinity changes and, hence biochemical and metabolomic alterations, taking place in individuals submitted to a wide range of salinities were investigated. The results showed that V. philippinarum presented high mortality at lower salinities (0 and 7 g/L) but tolerated high salinities (35 and 42 g/L). The quantification of ionic content revealed that, clams had the capacity to maintain ionic homeostasis along the salinity gradient, mainly changing the concentration of Na, but also with the influence of Mg and Ca. The results showed a decrease in protein content at lower salinities (0 to 21 g/L). Glycogen and glucose increased with increasing salinity gradient. (1)H Nuclear Magnetic Resonance (NMR) spectra of clam aqueous extracts revealed different metabolite profiles at 7, 28 and 42 g/L salinities, thus enabling metabolite changes to be measured in relation to salinity.
Collapse
Affiliation(s)
- Vanessa Carregosa
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Pereira
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Pinto
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
49
|
Liu S, Wang W, Zhou X, Gu R, Ding Z. Dose responsive effects of cisplatin in L02 cells using NMR-based metabolomics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:150-157. [PMID: 24322623 DOI: 10.1016/j.etap.2013.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Cisplatin is an effective chemotherapeutic agent for the treatment of various cancers, such as bladder cancer, epithelial ovarian cancer, cervical cancer, and so on. However, cisplatin can cause various side effects. In this study, the dose-responsive effects of cisplatin were investigated in an in vitro model of human liver cells (L02) using NMR-based metabolomics. The inverted U-shaped curve of cell proliferation confirmed the hormetic effects of cisplatin (from 1 nM to 1 mM) in L02 cells. However, the metabolite changes revealed both U-shaped (ethanol, lactate, aspartate, choline, etc.) and inverted U-shaped (glutamate, glutamine, 4-aminobutyrate, myo-inositol, etc.) curves induced by three typical concentrations of cisplatin which covered the inverted U-shaped curve as indicated by the cell proliferation assay. These findings suggested that a macroscopic hormesis phenomenon on the cell proliferation could be reflected by both stimulated and inhibited metabolites and corresponding metabolic pathways to cisplatin treatments. Therefore, a global analysis using metabolomics may give a broader view into the dose-response relationship than using a single endpoint at molecular levels.
Collapse
Affiliation(s)
- Shu Liu
- The 2nd People's Hospital of Huaian, Huaian 223002, PR China
| | - Wei Wang
- The 2nd People's Hospital of Huaian, Huaian 223002, PR China.
| | - Xueyi Zhou
- The 2nd People's Hospital of Huaian, Huaian 223002, PR China
| | - Runhuan Gu
- The 2nd People's Hospital of Huaian, Huaian 223002, PR China
| | - Zongli Ding
- The 2nd People's Hospital of Huaian, Huaian 223002, PR China
| |
Collapse
|