1
|
Wang J, Li M, Gu L, Sun Y, Zhu X, Yang Z. Transgenerational Effects of Atrazine on Daphnia magna Based on Life-History Traits and Population Dynamics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 114:15. [PMID: 39720962 DOI: 10.1007/s00128-024-03983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024]
Abstract
Atrazine is a predominant herbicide globally, and its residues are commonly found in natural water bodies due to its extensive use. Atrazine is known for its detrimental effects on the reproductive abilities of aquatic plants and animals. Our study explored the impact of maternal exposure to atrazine on the survival and performance of offspring using the water flea Daphnia magna as a model organism. We investigated how the life-history traits and population dynamics of maternal D. magna and their offspring are influenced by atrazine. We hypothesized that exposure to atrazine in mothers would negatively affect the survival and performance of their offspring. The findings revealed that short-term exposure to atrazine adversely affects fitness-related traits, manifesting as decreased survivorship and reduced fecundity. Offspring from atrazine-exposed mothers displayed a limited recovery in fitness; no mortality was observed during the 14-day experiment, yet fecundity remained significantly reduced. At the population level, maternal exposure to atrazine led to a decreased population carrying capacity. The notable maternal effects on offspring reproduction underscore the long-term toxicity of atrazine to D. magna populations, suggesting prolonged consequences even after the cessation of atrazine pollution. This study underscores the transgenerational effects of atrazine, highlighting its persistent threat to D. magna populations.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Meng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lei Gu
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xuexia Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
2
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
3
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
4
|
Jenkins JA, Draugelis-Dale RO, Hoffpauir NM, Baudoin BA, Matkin C, Driver L, Hodges S, Brown BL. Flow cytometric assessments of metabolic activity in bacterial assemblages provide insight into ecosystem condition along the Buffalo National River, Arkansas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170462. [PMID: 38311076 DOI: 10.1016/j.scitotenv.2024.170462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The Buffalo National River (BNR), on karst terrain in Arkansas, is considered an extraordinary water resource. Water collected in Spring 2017 along BNR was metagenomically analyzed using 16S rDNA, and for 17 months (5/2017-11/2018), bacterial responses were measured in relation to nutrients sampled along a stretch of BNR near a concentrated animal feed operation (CAFO) on Big Creek. Because cell count and esterase activity can increase proportionally with organic enrichment, they were hypothesized to be elevated near the CAFO. Counts (colony forming units; CFUs) were different among sites for 73 % of the months; Big Creek generated highest CFUs 27 % of the time, with the closest downstream site at 13.3 %. Esterase activity was different among sites 94 % of the time, with Big Creek exhibiting lowest activity 71 % of the time. Over the months, activity was similar across sites at ~70 % active, except at Big Creek (56 %). The α-diversity of BNR microbial consortia near a wastewater treatment plant (WWTP) and the CAFO was related to distance from the WWTP and CAFO. The inverse relationship between high CFUs and low esterase activity at Big Creek (r = -0.71) actuated in vitro exposures of bacteria to organic wastewater contaminants (OWC) previously identified in the watershed. Exponential-phase Escherichia coli (stock strain), Streptococcus suis (avirulent, from swine), and S. dysgalactiae (virulent, from silver carp, Hypophthalmichthys molitrix) were incubated with atrazine, pharmaceuticals (17 α-ethynylestradiol and trenbolone), and antimicrobials (tylosin and butylparaben). Bacteria were differentially responsive. Activity varied with exposure time and OWC type, but not concentration; atrazine decreased it most. Taken together - the metagenomic taxonomic similarities along BNR, slightly higher bacterial growth and lower bacterial esterase at the CAFO, and the lab exposures of bacterial strains showing that OWC altered metabolism - the results indicated that bioactive OWC entering the watershed can strongly influence microbial processes in the aquatic ecosystem.
Collapse
Affiliation(s)
- Jill A Jenkins
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA.
| | - Rassa O Draugelis-Dale
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA
| | - Nina M Hoffpauir
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA
| | - Brooke A Baudoin
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA
| | - Caroline Matkin
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA.
| | - Lucas Driver
- U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, 401 Hardin Rd., Little Rock, AR 72211, USA.
| | - Shawn Hodges
- Buffalo National River, National Park Service, 402 N. Walnut St., Harrison, AR 72601, USA.
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, 105 Main St., Durham, NH 03824, USA.
| |
Collapse
|
5
|
Ikari FL, Viriato C, França FM, Marcantonio AS, Bach EE, Badaró-Pedroso C, Ferreira CM. Behavioral and biochemical consequences after chronic exposition to the herbicide atrazine in tadpoles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:215-222. [PMID: 38459769 DOI: 10.1080/03601234.2024.2326401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 μg/L, 200 μg/L, 2000 μg/L, 20000 μg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.
Collapse
Affiliation(s)
| | - Cristina Viriato
- Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
de Mello ME, França FM, Vieira E, Bach EE, Marcantônio AS, Ferreira CM. Atrazine contaminated sites and bullfrog tadpoles: evasive trends and biochemical consequences. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:344-356. [PMID: 36964299 DOI: 10.1007/s10646-023-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATZ) is one of the most used active principles in agricultural systems. This pesticide has the ability to easily accumulate in terrestrial and aquatic environments, causing impacts with chronic adverse effects. Avoidance tests are tests that seek to assess the concentration from which a given organism escapes, that is, migrates to another habitat. They are being used as a modality of innovative and minimally invasive ecotoxicological tests. Our objective was to evaluate the sensitivity and possible toxic effects of ATZ in bullfrog tadpoles (Lithobates catesbeianus), through avoidance tests and oxidative stress analyses. We performed the behavioral avoidance test lasting 12 h, with observations every 60 min in a linear multi-compartment system with seven compartments. Each compartment corresponded to a concentration: negative control, 1, 2, 20, 200, 2000, 20,000 µg L-1. After the selection of habitat, organisms were forcedly maintained in the chosen concentrations for 48 h and then, metabolic effects were measured assessing the blood plasma amino acid profile and liver protein degradation. We also determined the effective concentrations of ATZ tested at 0 h and 48 h. The results showed that there was an effect of the treatment on the distribution of tadpoles, but not on the hours or on the combined effect (interaction). The biochemical analyses also showed a concentration-dependent relationship which caused significant toxic effects even in a short period of time. In conclusion, these frogs were able to avoid places with high concentrations of ATZ in the first hours of exposure, which suggests that in the natural environment these animals can migrate or avoid areas contaminated by this herbicide; however, depending on the selected concentration, serious biochemical consequences can occur.
Collapse
Affiliation(s)
| | | | - Eliane Vieira
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | - Erna E Bach
- Biological Institute - APTA - SAA, São Paulo, SP, Brazil
| | | | | |
Collapse
|
7
|
Impact of Chronic Multi-Generational Exposure to an Environmentally Relevant Atrazine Concentration on Testicular Development and Function in Mice. Cells 2023; 12:cells12040648. [PMID: 36831314 PMCID: PMC9954248 DOI: 10.3390/cells12040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
A common herbicide, atrazine, is associated with poor health. Atrazine acts as an endocrine disruptor at supra-environmental levels. Little research, however, has been conducted regarding chronic exposure to environmental atrazine concentrations across generations. This study utilized comprehensive endpoint measures to investigate the effects of chronic exposure to a conservative atrazine concentration (0.02 ng/mL), measured in Australian waterways, on male mice fertility across two generations. Mice were exposed through the maternal line, from the pre-conception period and through the F1 and F2 generations until three or six months of age. Atrazine did not impact sperm function, testicular morphology nor germ cell parameters but did alter the expression of steroidogenic genes in the F1, down-regulating the expression of Cyp17a1 (Cytochrome P450 family 17, subfamily A member 1; p = 0.0008) and Ddx4 (DEAD-box helicase 4; p = 0.007), and up-regulating the expression of Star (Steroidogenic acute regulatory protein; p = 0.017). In the F2, atrazine induced up-regulation in the expression of Star (p = 0.016). The current study demonstrates that chronic exposure to an environmentally relevant atrazine concentration perturbs testicular steroid-associated gene expression that varies across generations. Future studies through the paternal and combined parental lineages should be undertaken to further elucidate the multigenerational effects of atrazine on male fertility.
Collapse
|
8
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
9
|
Yin J, Hong X, Wang J, Li W, Shi Y, Wang D, Liu R. DNA methylation 6 mA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114348. [PMID: 36508798 DOI: 10.1016/j.ecoenv.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.
Collapse
Affiliation(s)
- Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Miranda LA, Somoza GM. Effects of Anthropic Pollutants Identified in Pampas Lakes on the Development and Reproduction of Pejerrey Fish Odontesthes bonariensis. Front Physiol 2022; 13:939986. [PMID: 35899023 PMCID: PMC9310068 DOI: 10.3389/fphys.2022.939986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Anthropic activities can seriously affect the health of the organisms inhabiting them, and the observation of any alteration in the reproduction of fish could be associated with the presence of endocrine disruptors. In this manuscript we have collected information on the adverse effects of pollutants (heavy metals, environmental steroids, and agrochemicals), present in Chascomús lake, Argentina, either at environmentally relevant and pharmacological concentrations on reproduction, embryonic development, and larval survival of pejerrey fish Odontesthes bonariensis. During development, it has been reported that 17β-estradiol (E2) feminized and reduced larval survival, while 17α-ethinyl-estradiol (EE2) not only feminized but also affected both embryo and larval survival. In adult male fish, treatments with EE2 and E2 + EE2 were able to increase mRNA abundance of gnrh3 and cyp19a1b and decreased those of gonadotropin receptors (fshr and lhcgr). Heavy metals such as cadmium, chromium, and copper negatively affected sperm quality, diminishing the motility. Also, a decrease in the percentage of hatching rate and larval survival was also observed with the same metals, highlighting zinc as the most detrimental metal. Furthermore, all these metals altered the expression of hypothalamic and pituitary genes related to reproduction in male pejerrey (gnrh1,2,3; cyp19a1b; fshb; lhb; fshr and, lhcgr). Moreover, in all cases pyknotic cells, corresponding to the degeneration of the germ cells, were observed in the testes of exposed fish. For agrochemicals, exposure of male pejerrey to environmental concentrations of glyphosate did not cause alterations on the endocrine reproductive axis. However, male pejerrey with gonadal abnormalities such as the presence of intersex (testis-ova) gonads were found in other Pampa´s lakes with high concentrations of atrazine and glyphosate associated with soybean and corn crops near their coasts. These types of studies demonstrate that pejerrey, an endemic species with economic importance inhabiting the Pampas shallow lakes, can be used as a sentinel species. It should be noted that increased pollution of aquatic ecosystems and the effects on the reproduction of organisms can lead to a decline in fish populations worldwide. Which, added to overfishing and other external factors such as global warming, could cause an eventual extinction of an emblematic species.
Collapse
Affiliation(s)
- Leandro A. Miranda
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
- *Correspondence: Leandro A. Miranda,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| |
Collapse
|
11
|
Souza AM, Maciel JC, Barroso GM, Silva RS, Garraffoni ARS, Neves CA, Soares MA, Santos JB. Ecotoxicological effects of commercial herbicides on the reproductive system of aquatic arthropod Limnocoris submontandoni (Hemiptera: Naucoridae). BRAZ J BIOL 2021; 84:e247487. [PMID: 34730696 DOI: 10.1590/1519-6984.247487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Worldwide, conventional agriculture makes extensive use of pesticides. Although the effects of herbicides are relatively well known in terms of environmental impacts on non-target organisms, there is very little scientific evidence regarding the impacts of herbicide residues on aquatic arthropods from tropical conservation areas. This study evaluates for the first time the toxicity of the herbicides ametryn, atrazine, and clomazone on the aquatic insect Limnocoris submontandoni (Hemiptera: Naucoridae). The lethal concentration (LC50) of herbicides was evaluated for these insects, as well as the effect of the herbicides on the insects' tissues and testicles. The estimated LC50 was 1012.41, 192.42, and 46.09 mg/L for clomazone, atrazine, and ametryn, respectively. Spermatocyte and spermatid changes were observed under the effect of atrazine, and effects on spermatogenesis were observed for some concentrations of clomazone, with apparent recovery after a short time. Our results provide useful information on the effects of herbicide residues in aquatic systems. This information can help minimize the risk of long-term reproductive effects in non-target species that have been previously overlooked in ecotoxicology studies.
Collapse
Affiliation(s)
- A M Souza
- Universidade Federal de São João Del-Rei - UFSJ, Departamento de Ciências Exatas e Biológicas, Sete Lagoas, MG, Brasil
| | - J C Maciel
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - G M Barroso
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Engenharia Florestal, Diamantina, MG, Brasil
| | - R S Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - A R S Garraffoni
- Universidade Estadual de Campinas - UNICAMP, Departamento de Biologia Animal, Campinas, SP, Brasil
| | - C A Neves
- Universidade Federal de Viçosa - UFV, Departamento de Biologia Geral, Viçosa, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - J B Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| |
Collapse
|
12
|
Yang C, Lim W, Song G. Reproductive toxicity due to herbicide exposure in freshwater organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109103. [PMID: 34129918 DOI: 10.1016/j.cbpc.2021.109103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
Excessively used pesticides in agricultural areas are spilled into aquatic environments, wherein they are suspended or sedimented. Owing to climate change, herbicides are the fastest growing sector of the pesticide industry and are detected in surface water, groundwater, and sediments near agricultural areas. In freshwater, organisms, including mussels, snails, frogs, and fish, are exposed to various types and concentrations of herbicides. Invertebrates are sensitive to herbicide exposure because their defense systems are incomplete. At the top of the food chain in freshwater ecosystems, fish show high bioaccumulation of herbicides. Herbicide exposure causes reproductive toxicity and population declines in freshwater organisms and further contamination of fish used for consumption poses a risk to human health. In addition, it is important to understand how environmental factors are physiologically processed and assess their impacts on reproductive parameters, such as gonadosomatic index and steroid hormone levels. Zebrafish is a good model for examining the effects of herbicides such as atrazine and glyphosate on embryonic development in freshwater fish. This review describes the occurrence and role of herbicides in freshwater environments and their potential implications for the reproduction and embryonic development of freshwater organisms.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Sadeghnia H, Shahba S, Ebrahimzadeh-Bideskan A, Mohammadi S, Malvandi AM, Mohammadipour A. Atrazine neural and reproductive toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1966637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamidreza Sadeghnia
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Shabnam Mohammadi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Smith PN, Armbrust KL, Brain RA, Chen W, Galic N, Ghebremichael L, Giddings JM, Hanson ML, Maul J, Van Der Kraak G, Solomon KR. Assessment of risks to listed species from the use of atrazine in the USA: a perspective. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:223-306. [PMID: 34219616 DOI: 10.1080/10937404.2021.1902890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine.Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.
Collapse
Affiliation(s)
- Philip N Smith
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - Kevin L Armbrust
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenlin Chen
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - Nika Galic
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | | | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ont, Canada
| | - Keith R Solomon
- Centre for Toxicology, University of Guelph, Guelph, Ont, Canada
| |
Collapse
|
15
|
Supe Tulcan RX, Ouyang W, Gu X, Lin C, Tysklind M, Wang B. Typical herbicide residues, trophic transfer, bioconcentration, and health risk of marine organisms. ENVIRONMENT INTERNATIONAL 2021; 152:106500. [PMID: 33714869 DOI: 10.1016/j.envint.2021.106500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Atrazine, a potent herbicide for weeds removal during the growing season, has been widely used in China. It is known to be distributed in aquatic ecosystems with a long half-life, thus presenting a potential risk to species and consumers. This study analyzed the concentrations of degraded atrazine residues in marine organisms (N = 129) including 3 species of mollusks, 2 species of crustaceans, and 15 species of fish from a semi-enclosed bay, Jiaozhou Bay (JZB), adjacent to the Northwest Pacific Ocean in China. The corresponding trophic magnification factors (TMF), bioaccumulation factors (BCFs), and subsequent risks to final consumers were also determined. The results showed an average atrazine concentration of (0.301 ± 0.03) ng g-1 and (0.305 ± 0.04) ng g-1 in fish and invertebrates, respectively. The BCFs were (5.23 ± 1.75) L kg-1 and (5.81 ± 1.31) L kg-1 for fish and invertebrates, respectively. Atrazine was significantly bio-diluted in JZB through the sampled marine organisms with increasing trophic levels, with a TMF value below 1 (P < 0.01). An analysis of the species sensitivity distribution (SSD) predicted that<0.02% of species were exposed to a dissolved concentration of atrazine (57.88 ng L-1) that would lead to detrimental effects, while risk quotients predicted low long-term risks for species in the bay. Finally, people with a diet limited to species from JZB were found to face no associated health risk due to a significantly small daily intake and target hazard quotient of atrazine. The corresponding non-carcinogenic effect showed no significant risk from seafood consumption.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao 266061, China
| |
Collapse
|
16
|
Smalling KL, Devereux OH, Gordon SE, Phillips PJ, Blazer VS, Hladik ML, Kolpin DW, Meyer MT, Sperry AJ, Wagner T. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145687. [PMID: 33609846 DOI: 10.1016/j.scitotenv.2021.145687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
If not managed properly, modern agricultural practices can alter surface and groundwater quality and drinking water resources resulting in potential negative effects on aquatic and terrestrial ecosystems. Exposure to agriculturally derived contaminant mixtures has the potential to alter habitat quality and negatively affect fish and other aquatic organisms. Implementation of conservation practices focused on improving water quality continues to increase particularly in agricultural landscapes throughout the United States. The goal of this study was to determine the consequences of land management actions on the primary drivers of contaminant mixtures in five agricultural watersheds in the Chesapeake Bay, the largest watershed of the Atlantic Seaboard in North America where fish health issues have been documented for two decades. Surface water was collected and analyzed for 301 organic contaminants to determine the benefits of implemented best management practices (BMPs) designed to reduce nutrients and sediment to streams in also reducing contaminants in surface waters. Of the contaminants measured, herbicides (atrazine, metolachlor), phytoestrogens (formononetin, genistein, equol), cholesterol and total estrogenicity (indicator of estrogenic response) were detected frequently enough to statistically compare to seasonal flow effects, landscape variables and BMP intensity. Contaminant concentrations were often positively correlated with seasonal stream flow, although the magnitude of this effect varied by contaminant across seasons and sites. Land-use and other less utilized landscape variables including biosolids, manure and pesticide application and percent phytoestrogen producing crops were inversely related with site-average contaminant concentrations. Increased BMP intensity was negatively related to contaminant concentrations indicating potential co-benefits of BMPs for contaminant reduction in the studied watersheds. The information gained from this study will help prioritize ecologically relevant contaminant mixtures for monitoring and contributes to understanding the benefits of BMPs on improving surface water quality to better manage living resources in agricultural landscapes inside and outside the Chesapeake Bay watershed.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ 08648, USA.
| | | | - Stephanie E Gordon
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA.
| | - Patrick J Phillips
- U.S. Geological Survey New York Water Science Center, Troy, NY 12180, USA.
| | - Vicki S Blazer
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Michelle L Hladik
- U.S. Geological Survey California Water Science Center Sacramento, CA 95819, USA.
| | - Dana W Kolpin
- U.S. Geological Survey Central Midwest Water Science Center Iowa City, IA 52240, USA.
| | - Michael T Meyer
- U.S. Geological Survey Kansas Water Science Center, Lawrence, KS 66046, USA.
| | - Adam J Sperry
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Yang C, Lim W, Song G. Mechanisms of deleterious effects of some pesticide exposure on pigs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104850. [PMID: 33993968 DOI: 10.1016/j.pestbp.2021.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in the size of the global population increases the food and energy demand, making the use of pesticides in agricultural and livestock industries unavoidable. Exposure to pesticides can be toxic to the non-target species, such as humans, wildlife, and livestock, in addition to the target organisms. Various chemicals are used in the livestock industry to control harmful organisms, such as insects, weeds, and parasites. Pigs are one of the most important food sources for humans. In addition, pigs can be used as promising models for assessing the risk of absorption of environmental pollutants through the skin and oral exposure since they are physiologically similar to humans. Exposure to numerous environmental pollutants, such as mycotoxins, persistent organic pollutants, and heavy metals, has been reported to adversely affect growth, fertility, and endocrine homeostasis in pigs. Various pesticides have been observed in porcine tissues, blood, urine, and processed foods; however, there is a lack of comprehensive understanding of their effects on porcine health. This review provides a comprehensive description of the characteristics of pesticides that pigs can be exposed to and how their exposure affects porcine reproductive function, intestinal health, and endocrine homeostasis in vivo and in vitro.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Brain RA, Anderson JC, Hanson ML. Acute and early life-stage toxicity of atrazine in sheepshead minnow (Cyprinodon variegatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112303. [PMID: 33975221 DOI: 10.1016/j.ecoenv.2021.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Given the limited data available for estuarine/marine fish species and potential risk of being exposed to the herbicide atrazine, additional toxicity data regarding sensitive life-stages are needed. As such, this work sought to characterize: 1) the acute larval toxicity, and 2) early life-stage toxicity of technical atrazine in the model marine species sheepshead minnow (Cyprinodon variegatus). Atrazine was observed to be slightly to moderately toxic towards C. variegatus under acute conditions (as per U.S. EPA 2017 criteria). After 96 h exposure, mortality rates of 5%, 15%, 35%, and 90% were observed among fish exposed to atrazine at 4.6, 7.6, 13, and 22 mg a.i./L, respectively. Sub-lethal effects were observed among surviving fish exposed to > 3.2 mg a.i/L. The 96 h LC50 was 13 mg a.i./L and the NOEC was 3.2 mg a.i./L. In the 33 d early-life stage test, mean embryo survival rates in 0.15, 0.30, 0.57, 1.1, and 2.2 mg a.i./L treatments ranged from 71% to 79% and were not different from survival in the control (78%). Following 28 d post-hatch exposure (Day 33), mean larval survival ranged from 98% to 100% in all treatments and the control. Larval length and wet weight were the most sensitive indicators of the toxicity of atrazine to early life-stage sheepshead minnow. The NOEC for growth was 1.1 mg a.i./L and the LOEC was 2.2 mg a.i./L. Based on these, the MATC for atrazine to sheepshead minnow embryos and larvae was estimated to be 1.6 mg a.i./L. These results were consistent with previous investigations in sheepshead minnow and other marine fish species. Based on the results, atrazine would not be expected to pose unacceptable risks for sheepshead minnow early life-stages at environmentally relevant concentrations.
Collapse
Affiliation(s)
- R A Brain
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, USA.
| | - J C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
19
|
Dionne E, Hanson ML, Anderson JC, Brain RA. Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142589. [PMID: 33065508 DOI: 10.1016/j.scitotenv.2020.142589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 μg/L.
Collapse
Affiliation(s)
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Julie C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
20
|
Qian L, Qi S, Zhang J, Duan M, Schlenk D, Jiang J, Wang C. Exposure to Boscalid Induces Reproductive Toxicity of Zebrafish by Gender-Specific Alterations in Steroidogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14275-14287. [PMID: 33138376 DOI: 10.1021/acs.est.0c02871] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Boscalid is a succinate dehydrogenase inhibitor fungicide and is frequently detected in surface water. Due to the frequent detection of boscalid, we evaluated its impact on the reproduction of adult zebrafish following a 21 d exposure to 0, 0.01, 0.1, and 1.0 mg/L. Following exposure to boscalid, the fertility of female zebrafish and fertilization rate of spawning eggs were reduced in a concentration-dependent manner up to a respective 87% and 20% in the highest concentration. A significant 16% reduction in the percentage of late vitellogenic oocytes was noted in ovaries, and a significant 74% reduction in the percentage of spermatids in testis was also observed after treatment with 1.0 mg/L. 17β-Estradiol (E2) concentrations decreased significantly in females (34% decrease) but significantly increased in males (15% increase) following 1.0 mg/L boscalid treatment. The expression of genes (such as era, er2b, cyp19a, and cyp19b) related to the hypothalamus-pituitary-gonad-liver (HPGL) axis was significantly altered and positively correlated with E2 concentrations in female and male zebrafish (p < 0.05). Molecular docking results revealed that the binding modes between boscalid and target proteins (ER and CYP19) of zebrafish were similar to that of the reference compounds and the target proteins. The binding energies indicate that boscalid may have a weak estrogen-like binding effect or CYP19 inhibition, potentially altering the HPGL axis, thereby reducing E2 concentrations and fecundity in females. In contrast, boscalid caused significant induction of E2 steroidogenesis and subsequent feminization of gonads in males, indicating gender-specific adverse outcome pathways.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Product Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Manman Duan
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Jiazhen Jiang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
21
|
Leet JK, Richter CA, Cornman RS, Berninger JP, Bhandari RK, Nicks DK, Zajicek JL, Blazer VS, Tillitt DE. Effects of early life stage exposure of largemouth bass to atrazine or a model estrogen (17α-ethinylestradiol). PeerJ 2020; 8:e9614. [PMID: 33072434 PMCID: PMC7537618 DOI: 10.7717/peerj.9614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Endocrine disrupting contaminants are of continuing concern for potentially contributing to reproductive dysfunction in largemouth and smallmouth bass in the Chesapeake Bay watershed (CBW) and elsewhere. Exposures to atrazine (ATR) have been hypothesized to have estrogenic effects on vertebrate endocrine systems. The incidence of intersex in male smallmouth bass from some regions of CBW has been correlated with ATR concentrations in water. Fish early life stages may be particularly vulnerable to ATR exposure in agricultural areas, as a spring influx of pesticides coincides with spawning and early development. Our objectives were to investigate the effects of early life stage exposure to ATR or the model estrogen 17α-ethinylestradiol (EE2) on sexual differentiation and gene expression in gonad tissue. We exposed newly hatched largemouth bass (LMB, Micropterus salmoides) from 7 to 80 days post-spawn to nominal concentrations of 1, 10, or 100 µg ATR/L or 1 or 10 ng EE2/L and monitored histological development and transcriptomic changes in gonad tissue. We observed a nearly 100% female sex ratio in LMB exposed to EE2 at 10 ng/L, presumably due to sex reversal of males. Many gonad genes were differentially expressed between sexes. Multidimensional scaling revealed clustering by gene expression of the 1 ng EE2/L and 100 µg ATR/L-treated male fish. Some pathways responsive to EE2 exposure were not sex-specific. We observed differential expression in male gonad in LMB exposed to EE2 at 1 ng/L of several genes involved in reproductive development and function, including star, cyp11a2, ddx4 (previously vasa), wnt5b, cyp1a and samhd1. Expression of star, cyp11a2 and cyp1a in males was also responsive to ATR exposure. Overall, our results confirm that early development is a sensitive window for estrogenic endocrine disruption in LMB and are consistent with the hypothesis that ATR exposure induces some estrogenic responses in the developing gonad. However, ATR-specific and EE2-specific responses were also observed.
Collapse
Affiliation(s)
- Jessica K Leet
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Catherine A Richter
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Robert S Cornman
- Fort Collins Science Center, United States Geological Survey, Fort Collins, CO, USA
| | - Jason P Berninger
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Diane K Nicks
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - James L Zajicek
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| | - Vicki S Blazer
- Leetown Science Center, United States Geological Survey, Kearneysville, WV, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, United States Geological Survey, Columbia, MO, USA
| |
Collapse
|
22
|
Opute PA, Udoko AO, Oboh IP, Mbajiorgu FE. Changes induced by atrazine in Clarias gariepinus provide insight into alterations in ovarian histoarchitecture and direct effects on oogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:30-40. [PMID: 33052060 DOI: 10.1080/03601234.2020.1832409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clarias gariepinus juveniles were exposed to environmentally relevant concentrations of 0 (control), 2.5, 25, 250 and 500 μg L-1 atrazine in a quality-controlled 28-day laboratory procedure. Findings revealed a significant decrease in the levels of follicle-stimulating hormone, luteinizing hormone and prolactin relative to control (p < 0.05). Atrazine reduced the levels of testosterone while increasing the concentration of progesterone. Histologically, the control and treatments presented three stages of oocyte maturation: the chromatin nucleolar oocyte stage, early perinucleolar oocyte stage and the vitellogenic oocyte stage. However, in the ovaries of the treatment group with the lowest treatment concentration (2.5 μg L-1), atretic oocytes with broken membranes invaded many of the dead ova and empty spaces. In other treatments (25, 250 and 500 μg L-1), interfollicular spaces, vacuolation in oocyte formation, and dissolution of oocyte walls were observed. Disruption of the yolk vesicle and clumping of the cytoplasm in maturing oocytes was observed only at the highest atrazine concentration (500 μg L-1). Gross alterations in ovarian histoarchitecture and reproductive hormone levels observed in this study showed interference with oogenesis which may result in reduced egg viability and fecundity in fish with ecological implications in water bodies exposed to atrazine even at reduced concentrations.
Collapse
Affiliation(s)
- Prosper Ashibudike Opute
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Department of Zoology, Faculty of Natural and Agricultural Sciences, Unit for Environmental Sciences and Management,, North-West University, Potchefstroom, South Africa
| | - Agnes Oghogho Udoko
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Ijeoma Patience Oboh
- Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Felix Ejikeme Mbajiorgu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Liang M, Yan S, Chen R, Hong X, Zha J. 3-(4-Methylbenzylidene) camphor induced reproduction toxicity and antiandrogenicity in Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 249:126224. [PMID: 32088463 DOI: 10.1016/j.chemosphere.2020.126224] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the toxic effects of 3-(4-Methylbenzylidene) camphor (4-MBC) at environmentally relevant concentrations on the reproduction and development of Japanese medaka (Oryzias latipes), adult paired medaka (F0) were exposed to 5, 50, and 500 μg/L 4-MBC for 28 d in the current study. The fecundity and fertility were significantly decreased at 500 μg/L 4-MBC (p < 0.05). Histological observations showed that spermatogenesis in F0 males was significantly inhibited at 50 and 500 μg/L 4-MBC, similar to the effects obtained with all treatments of plasma 11-ketotestosterone (p < 0.05). Moreover, the plasma vitellogenin and estradiol levels in F0 females were significantly increased at 5 μg/L 4-MBC (p < 0.05). All the transcripts of hypothalamic-pituitary-gonadal (HPG) axis-related genes tested in the brains and gonads of males were significantly increased at all treatments, similar to the effects obtained for erα, erβ and vtg in the livers and in contrast to those found for arα in the livers (p < 0.05). Equal numbers of embryos were exposed to tap water and 4-MBC solutions. Significantly increased times to hatching, decreased hatching rates and decreased body lengths at 14-day post-hatching (dph) were obtained at 500 μg/L 4-MBC treatment (p < 0.05). The cumulative death rates at 14 dph were significantly increased with all the treatments (p < 0.05). Therefore, our results showed that long-term exposure to 50 and 500 μg/L 4-MBC causes reproductive and developmental toxicity and thus provide new insight into antiandrogenicity and the mechanism of 4-MBC in Japanese medaka.
Collapse
Affiliation(s)
- Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
24
|
Yan S, Liang M, Chen R, Hong X, Zha J. Reproductive toxicity and estrogen activity in Japanese medaka (Oryzias latipes) exposed to environmentally relevant concentrations of octocrylene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114104. [PMID: 32045793 DOI: 10.1016/j.envpol.2020.114104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The growing use of octocrylene (OC) in sunscreens has posed a great threat to aquatic organisms. In the present study, to assess its reproductive toxicity and mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at nominal concentrations of 5, 50, and 500 μg/L for 28 d. Significant increases were observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0 medaka at 500 μg/L OC (p < 0.05) without significant differences in fecundity. The fertility was significantly decreased at all treatments (p < 0.05). Significant increases in the percent of mature oocytes were observed at 5 and 500 μg/L OC, in which contrary to the percent of spermatozoa (p < 0.05). The plasma sex hormones and vitellogenin levels significantly increased in males at all treatments and in females at 50 and 500 μg/L OC (p < 0.05). In addition, the levels of fshβ and lhβ in the brains and the levels of fshr, lhr and cyp17α in the gonads were significantly upregulated in males at all treatments (p < 0.05), in line with those of ar, erα, erβ and cyp19β in the brains of male and female. The upregulation of vtg in male and female livers was observed only at 500 μg/L OC and upregulation of star and hsd3β was observed in testis at all treatments (p < 0.05). Continued exposure to OC significantly induced increases in the time to hatching, morphological abnormality rates, and cumulative death rates of F1 embryos, inconsistent with body length of F1 larvae (p < 0.05). Therefore, the responses of the exposed fish at the biochemical and molecular levels indicated reproductive toxicity and estrogenic activity of OC, providing insights into the mechanism of OC.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengmeng Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
25
|
Kamarudin NA, Zulkifli SZ, Azmai MNA, Abdul Aziz FZ, Ismail A. Herbicide Diuron as Endocrine Disrupting Chemicals (EDCs) through Histopathalogical Analysis in Gonads of Javanese Medaka ( Oryzias javanicus, Bleeker 1854). Animals (Basel) 2020; 10:E525. [PMID: 32245133 PMCID: PMC7142969 DOI: 10.3390/ani10030525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
The expeditious augmentation of the agriculture industry is leaving a significant negative impact on aquatic ecosystems. However, the awareness of the impacts of herbicide Diuron toxicities on the non-targeted aquatic organism, especially fish is still lacking. Javanese medaka, a new model fish species were exposed under sublethal levels and the long-term effects on gonads were investigated via histological studies. A total of 210 sexually mature fish were exposed to Diuron at seven different concentrations; control, solvent control, 1, 50, 100, 500, and 1000 μg/L for 21 days. In this study, Diuron caused histopathological alterations in gonads (ovary and testis) of Javanese medaka (Oryzias javanicus) by decreasing in gonadal staging and maturity of germ cells in oogenesis and spermatogenesis of female and male Javanese medaka. The results obtained in this study had proven our hypothesis that long-term exposure of herbicide Diuron can cause alterations in the gonadal histology of the adults of Javanese medaka.
Collapse
Affiliation(s)
- Nur Amiera Kamarudin
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (N.A.K.); (M.N.A.A.); (A.I.)
| | - Syaizwan Zahmir Zulkifli
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (N.A.K.); (M.N.A.A.); (A.I.)
- International Institute of Aquaculture and Aquatic Sciences (i-AQUAS), Universiti Putra Malaysia, Batu 7, Jalan Kemang 6, Teluk Kemang, Si Rusa, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (N.A.K.); (M.N.A.A.); (A.I.)
| | - Fatin Zahidah Abdul Aziz
- Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC), Block C4 and C5, Federal Government Administrative Centre, Putrajaya 62662, Malaysia;
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (N.A.K.); (M.N.A.A.); (A.I.)
| |
Collapse
|
26
|
Hanson ML, Solomon KR, Van Der Kraak GJ, Brian RA. Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Crit Rev Toxicol 2020; 49:670-709. [DOI: 10.1080/10408444.2019.1701985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark L. Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Keith R. Solomon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
27
|
Cleary JA, Tillitt DE, Vom Saal FS, Nicks DK, Claunch RA, Bhandari RK. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:639-650. [PMID: 31108297 DOI: 10.1016/j.envpol.2019.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is presently one of the most abundantly used herbicides in the United States, and a common contaminant of natural water bodies and drinking waters in high-use areas. Dysregulation of reproductive processes has been demonstrated in atrazine exposed fish, including alteration of key endocrine pathways on hypothalamic-pituitary-gonadal (HPG) axis. However, the potential for atrazine-induced transgenerational inheritance of reproductive effects in fish has not been investigated. The present study examined the effects of early developmental atrazine exposure on transgenerational reproductive dysregulation in Japanese medaka (Oryzias latipes). F0 medaka were exposed to atrazine (ATZ, 5 or 50 μg/L), 17α-ethinylestradiol (EE2, 0.002 or 0.05 μg/L), or solvent control during the first twelve days of development with no subsequent exposure over three generations. This exposure overlapped with the critical developmental window for embryonic germ cell development, gonadogenesis, and sex determination. Exposed males and females of the F0 generation were bred to produce an F1 generation, and this was continued until the F2 generation. Sperm count and motility were not affected in F0 males; however, both parameters were significantly reduced in the males from F2 Low EE2 (0.002 μg/L), Low ATZ (5 μg/L), and High ATZ (50 μg/L) lineages. Fecundity was unaffected by atrazine or EE2 in F0 through F2 generations; however, fertilization rate was decreased in low atrazine and EE2 exposure lineages in the F2 generation. There were significant transgenerational differences in expression of the genes involved in steroidogenesis and DNA methylation. These results suggest that although early life exposure to atrazine did not cause significant phenotypes in the directly exposed F0 generation, subsequent generations of fish were at greater risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Jacob A Cleary
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane K Nicks
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Rachel A Claunch
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
28
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
29
|
Asouzu Johnson J, Ihunwo A, Chimuka L, Mbajiorgu EF. Cardiotoxicity in African clawed frog (Xenopus laevis) sub-chronically exposed to environmentally relevant atrazine concentrations: Implications for species survival. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105218. [PMID: 31203168 DOI: 10.1016/j.aquatox.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The toxic effects of different atrazine concentrations on tadpoles and adult male African clawed frogs (Xenopus laevis) were assessed in a controlled laboratory environment following 90 days' exposure. The aim was to elucidate the danger of atrazine exposure on the cardiac tissue relative to its critical function of rhythmic contractility, fundamental for optimal blood circulation and homeostasis. Tadpoles and adult frogs were exposed to 0 μg/L (control), 0.01 μg L-1, 200 μg L-1 and 500 μg L-1 concentrations of atrazine for 90 days. Mortality was concenration-dependent and significantly increased in juvenile group (77%, 43%, 23% and 0 respectively for 500 μg L-1, 200 μg L-1, 0.01 μg L-1, and control group). While the mean juvenile heart area decreased concentration-dependently, adult frog mean heart area significantly increased in the 200 μg L-1 group only and mean heart weight change was variable across all exposure levels. Light microscopy of hematoxylin and eosin (H&E) and Mallory-Heidenhain rapid one-step staining techniques on cardiac tissue sections of the juvenile and adult frogs revealed shrinkage of cardiac muscle cells into thin wavy myocytes. Additionally, disorganized branching of muscle fibres with reduced striations were observed in 0.01 μg L-1 and 200 μg L-1 but hypertrophied myocytes, thickened intensely staining myofibrils in the 500 μg L-1 group in juvenile and adult frogs. Significant increase in the mean percentage area of connective tissue in all the treated groups (p < 0.036) were also recorded. Immunohistochemistry analysis showed decreased eNOS localization in cardiac tissue in 200 μg L-1 and 500 μg L-1 of both juvenile and adult group, suggestive of decreased cardiac contractility due to atrazine exposure. The results indicate that environmentally relevant atrazine concentrations cause significant mortality in tadpoles while concentrations ≥200 μg L-1 adversely affect cardiac muscle morphology and may induce functional perturbations in cardiac tissue contractility and consequent dysfunction which generally may have an adverse impact on their survival and longevity.
Collapse
Affiliation(s)
- Jaclyn Asouzu Johnson
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Amadi Ihunwo
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Luke Chimuka
- School of Chemistry, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| | - Ejikeme F Mbajiorgu
- School of Anatomical Sciences, University of the Witwatersrand, P Bag 3, Wits, 2050, Johannesburg, South Africa
| |
Collapse
|
30
|
Iwanowicz LR, Pinkney AE, Guy CP, Major AM, Munney K, Blazer VS, Alvarez DA, Walsh HL, Sperry A, Braham R, Sanders LR, Smith DR. Temporal evaluation of estrogenic endocrine disruption markers in smallmouth bass (Micropterus dolomieu) reveals seasonal variability in intersex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:245-256. [PMID: 30055487 DOI: 10.1016/j.scitotenv.2018.07.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
A reconnaissance project completed in 2009 identified intersex and elevated plasma vitellogenin in male smallmouth bass inhabiting the Missisquoi River, VT. In an attempt to identify the presence and seasonality of putative endocrine disrupting chemicals or other factors associated with these observations, a comprehensive reevaluation was conducted between September 2012 and June 2014. Here, we collected smallmouth bass from three physically partitioned reaches along the river to measure biomarkers of estrogenic endocrine disruption in smallmouth bass. In addition, polar organic chemical integrative samples (POCIS) were deployed to identify specific chemicals associated with biological observations. We did not observe biological differences across reaches indicating the absence of clear point source contributions to the observation of intersex. Interestingly, intersex prevalence and severity decreased in a stepwise manner over the timespan of the project. Intersex decreased from 92.8% to 28.1%. The only significant predictor of intersex prevalence was year of capture, based on logistic regression analysis. The mixed model of fish length and year-of-capture best predicted intersex severity. Intersex severity was also significantly different across late summer and early spring collections indicating seasonal changes in this metric. Plasma vitellogenin and liver vitellogenin Aa transcript abundance in males did not indicate exposure to estrogenic endocrine disrupting chemicals at any of the four sample collections. Analysis of chemicals captured by the POCIS as well as results of screening discrete water samples or POCIS extracts did not indicate the contribution of appreciable estrogenic chemicals. It is possible that unreported changes in land-use activity have ameliorated the problem, and our observations indicate recovery. Regardless, this work clearly emphasizes that single, snap shot sampling for intersex may not yield representative data given that the manifestation of this condition within a population can change dramatically over time.
Collapse
Affiliation(s)
- Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA.
| | - A E Pinkney
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD, USA
| | - C P Guy
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD, USA
| | - A M Major
- U.S. Fish and Wildlife Service, New England Field Office, Concord, NH, USA
| | - K Munney
- U.S. Fish and Wildlife Service, New England Field Office, Concord, NH, USA
| | - V S Blazer
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - D A Alvarez
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - H L Walsh
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - A Sperry
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - R Braham
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - L R Sanders
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| | - D R Smith
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, USA
| |
Collapse
|
31
|
Brain RA, Schneider SZ, Anderson JC, Knopper LD, Wolf JC, Hanson ML. Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. CHEMOSPHERE 2018; 205:126-136. [PMID: 29689526 DOI: 10.1016/j.chemosphere.2018.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Short-term reproduction assays were conducted with fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes) to evaluate responses from atrazine exposure at environmentally relevant concentrations and above. Breeding groups of fish with multiple males and females were exposed to atrazine under flow-through conditions. Fathead minnows were exposed to mean measured concentrations of 1.0, 10, 26, 52, and 105 μg atrazine/L for 28 days. Medaka were exposed to mean measured concentrations of 9.4, 48, 74, 97, and 244 μg atrazine/L for 28 or 29 days. Fish were evaluated for survival, fecundity, fertility, total length, wet weight, secondary sex characteristics, gonadosomatic index (GSI) (P. promelas only), plasma or hepatic vitellogenin (VTG), and histopathology of gonads. General observations of health and behaviour were also conducted. There were no statistically significant effects (i.e., p < 0.05) of atrazine on survival, size, reproduction, behaviour, GSI, VTG, or secondary sex characteristics in either species at any exposure level. In fathead minnows, there were no histopathological findings associated with atrazine exposure in male fish, but there was an increased proportion of Stage 4.0 ovaries accompanied by an increase in proportion of Grade 3 post-ovulatory follicles in females of the 105 μg/L treatment group. Without a concomitant increase in oocyte atresia, neither of these findings are considered adverse for the health of the fish. In medaka, there were no significant effects of atrazine exposure on histopathology in either sex. These data support current weight-of-evidence assessments that atrazine does not cause direct adverse effects on fish reproduction at environmentally realistic concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories Inc., Sterling, VA, USA
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
32
|
Bautista FEA, Varela Junior AS, Corcini CD, Acosta IB, Caldas SS, Primel EG, Zanette J. The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes. Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:17-22. [PMID: 29471151 DOI: 10.1016/j.cbpc.2018.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 01/13/2023]
Abstract
The herbicide atrazine (ATZ) is used worldwide in the control of annual grasses and broad-leaved weeds. The present study evaluated sperm quality parameters in zebrafish Danio rerio after 11-day exposure to nominal ATZ concentrations of 2, 10, and 100 μg L-1. All ATZ concentrations caused a decrease in motility, mitochondrial functionality, and membrane integrity, as measured using conventional microscopy or fluorescence microscopy with specific probes. The DNA integrity of sperm was not affected. The levels of expression of genes related to spermatogenesis, antioxidant defenses, and DNA repair were also investigated using RT-qPCR. The ATZ caused transcriptional repression of the spermatogenesis-related genes SRD5A2 and CFTR, the antioxidant defense genes SOD2 and GPX4B, and the DNA repair gene XPC. This is the first study to show that environmentally relevant concentrations of ATZ significantly affect the sperm quality in fish, possibly resulting in reduced fertility rates. In addition, we showed that the repression of genes related to spermatogenesis and cellular defense could be part of the mechanisms involved in the ATZ toxicity in the testes of male fish.
Collapse
Affiliation(s)
| | - Antonio Sergio Varela Junior
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Carine Dahl Corcini
- Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, 96001-970 Pelotas, RS, Brazil
| | - Izani Bonel Acosta
- Universidade Federal de Pelotas, Campus Universitário, Caixa Postal 354, 96001-970 Pelotas, RS, Brazil
| | - Sergiane Souza Caldas
- Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
| | - Juliano Zanette
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
33
|
Hoskins TD, Dellapina M, Boone MD. Short-term atrazine exposure at breeding has no impact on Blanchard's cricket frog (Acris blanchardi) reproductive success. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:3284-3288. [PMID: 28657116 DOI: 10.1002/etc.3900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Studies of endocrine-disrupting contaminants have focused on early-life exposures, but later exposures could impact fitness. We exposed adult frogs (Acris blanchardi) at reproduction to ecologically relevant atrazine concentrations (0, 1, or 10 µg/L) in outdoor arenas. We measured likelihood of breeding and number of resulting tadpoles. Atrazine impacted neither the probability of breeding nor the number of tadpoles produced, suggesting anuran reproductive success may not be impacted by short-term exposure to low concentrations. Environ Toxicol Chem 2017;36:3284-3288. © 2017 SETAC.
Collapse
|
34
|
Hosmer AJ, Schneider SZ, Anderson JC, Knopper LD, Brain RA. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2327-2334. [PMID: 28198566 DOI: 10.1002/etc.3769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/02/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Breeding groups of Japanese medaka (Oryzias latipes) were exposed to atrazine at measured concentrations of 0.6, 5.5, and 53 μg/L for 35 d. Evaluated endpoints included survival, fecundity, fertility, growth (weight and length), behavior, secondary sex characteristics (anal fin papillae), gonad histopathology, and hepatic vitellogenin. No statistically significant effects of atrazine exposure on survival and growth of medaka were noted during the test, and mean survival was ≥97.5% in all treatment groups on day 35. No significant effects of atrazine exposure on reproduction were observed. The number of mean cumulative eggs produced in the negative control and the 0.6, 5.5, and 53 μg/L treatment groups was 7158, 6691, 6883, and 6856, respectively. The mean number of eggs per female reproductive day was 40.9, 38.2, 40.2, and 39.2, respectively. There were also no dose-dependent effects on mean anal fin papillae counts among male fish or expression of vtg-II in males or females. In addition, atrazine exposure was not related to the developmental stage of test fish, with testes stages ranging from 2 to 3 in all groups and ovaries ranging from stage 2 to 2.5. Overall, exposure to atrazine up to 53 µg/L for 35 d did not result in significant, treatment-related effects on measured endpoints related to survival, growth, or reproduction in Japanese medaka. Environ Toxicol Chem 2017;36:2327-2334. © 2017 SETAC.
Collapse
Affiliation(s)
- Alan J Hosmer
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | | | | | | | | |
Collapse
|
35
|
Zheng L, Zhang Y, Yan Z, Zhang J, Li L, Zhu Y, Zhang Y, Zheng X, Wu J, Liu Z. Derivation of predicted no-effect concentration and ecological risk for atrazine better based on reproductive fitness. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:464-470. [PMID: 28458230 DOI: 10.1016/j.ecoenv.2017.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Atrazine (ATZ) is an herbicide most commonly used in China and other regions of the world. It is reported toxic to aquatic organisms, and frequently occurs at relatively high concentrations. Currently, ATZ has been proved to affect reproduction of aquatic species at much lower levels. So it is controversial to perform ecological risk assessment using predicted no-effect concentrations (PENCs) derived from traditional endpoints, which fail to provide adequate protection to aquatic organisms. In this study, PNECs of ATZ were derived based on six endpoints of survival, growth, behavior, biochemistry, genetics and reproduction. The PNEC derived from reproductive lesion was 0.044μg ATZ L-1, which was obviously lower than that derived from other endpoints. In addition, a tiered ecological risk assessment was conducted in the Taizi River based on six PNECs derived from six categories of toxicity endpoints. Results of these two methods of ecological risk assessment were consistent with each other, and the risk level of ATZ to aquatic organisms reached highest as taking reproductive fitness into account. The joint probability indicated that severe ecological risk rooting in reproduction might exist 93.9% and 99.9% of surface water in the Taizi River, while 5% threshold (HC5) and 1% threshold (HC1) were set up to protect aquatic organisms, respectively. We hope the present work could provide valuable information to manage and control ATZ pollution.
Collapse
Affiliation(s)
- Lei Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yizhang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Juan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Yan Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yahui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, State Oceanic Administration People's Republic of China, Beijing 100194, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
36
|
Abstract
Because atrazine is a widely used herbicide, its adverse effects on the reproductive system have been extensively researched. In this study, we investigated the effects of atrazine exposure on porcine oocyte maturation and the possible mechanisms. Our results showed that the rates of oocyte maturation significantly decreased after treatment with 200 μM atrazine in vitro. Atrazine treatment resulted in abnormal spindle morphology but did not affect actin distribution. Atrazine exposure not only triggered a DNA damage response but also decreased MPF levels in porcine oocytes. Our results also revealed that atrazine worsened porcine oocyte quality by causing excessive accumulation of superoxide radicals, increasing cathepsin B activity, and decreasing the GSH level and mitochondrial membrane potential. Furthermore, atrazine decreased developmental competence of porcine oocytes up to the blastocyst stage and changed some properties: cell numbers, apoptosis, and related gene expression levels. Collectively, our results indicate that porcine oocyte maturation is defective after atrazine treatment at least through disruption of spindle morphology, MPF activity, and mitochondrial function and via induction of DNA damage, which probably reduces developmental competence.
Collapse
|
37
|
Rani M, Shanker U, Jassal V. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:208-222. [PMID: 28056354 DOI: 10.1016/j.jenvman.2016.12.068] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 05/12/2023]
Abstract
Organochlorines (OCs) are the most hazardous class of pesticides, therefore, banned or restricted in several countries. The major sources of OCs include food industries, agriculture and sewage wastes. Their effluents discharged into the water bodies contain extremely high concentration of OCs which ultimately causes environmental concern. Because of their high persistence, toxicity and potential to bioaccumulation, their removal from wastewater is imperative. The degradation techniques are now advanced using nanomaterials of various kinds. During the last few years, nanoparticles such as TiO2 and Fe are found to be excellent adsorbents and efficient photocatalysts for degrading more or less whole OCs as well as their toxic metabolites, which opens the opportunities for exploring various other nanoparticles as well. It is noteworthy that such methodologies are economic, fast and very efficient. In this review, the detailed information on different types of OC pesticides, their metabolites, environmental concern and present status on degradation methods using nanoparticles have been reviewed. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India.
| | - Vidhisha Jassal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| |
Collapse
|
38
|
Mahler BJ, Van Metre PC, Burley TE, Loftin KA, Meyer MT, Nowell LH. Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:149-158. [PMID: 27863869 DOI: 10.1016/j.scitotenv.2016.10.236] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 05/24/2023]
Abstract
Glyphosate and atrazine are the most intensively used herbicides in the United States. Although there is abundant spatial and temporal information on atrazine occurrence at regional scales, there are far fewer data for glyphosate, and studies that compare the two herbicides are rare. We investigated temporal patterns in glyphosate and atrazine concentrations measured weekly during the 2013 growing season in 100 small streams in the Midwestern United States. Glyphosate was detected in 44% of samples (method reporting level 0.2μg/L); atrazine was detected above a threshold of 0.2μg/L in 54% of samples. Glyphosate was detected more frequently in 12 urban streams than in 88 agricultural streams, and at concentrations similar to those in streams with high agricultural land use (>40% row crop) in the watershed. In contrast, atrazine was detected more frequently and at higher concentrations in agricultural streams than in urban streams. The maximum concentration of glyphosate measured at most urban sites exceeded the maximum atrazine concentration, whereas at agricultural sites the reverse was true. Measurement at a 2-day interval at 8 sites in northern Missouri revealed that transport of both herbicide compounds appeared to be controlled by spring flush, that peak concentration duration was brief, but that peaks in atrazine concentrations were of longer duration than those of glyphosate. The 2-day sampling also indicated that weekly sampling is unlikely to capture peak concentrations of glyphosate and atrazine.
Collapse
Affiliation(s)
- Barbara J Mahler
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, USA.
| | | | - Thomas E Burley
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, USA.
| | - Keith A Loftin
- U.S. Geological Survey, 4821 Quail Crest Blvd., Lawrence, KS 66049, USA.
| | - Michael T Meyer
- U.S. Geological Survey, 4821 Quail Crest Blvd., Lawrence, KS 66049, USA.
| | - Lisa H Nowell
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| |
Collapse
|
39
|
SALLEH AFM, AMAL MNA, NASRUDDIN NS, ZULKIFLI SZ, YUSUFF FM, IBRAHIM WNW, ISMAIL A. Water pH effects on survival, reproductive performances, and ultrastructure of gonads, gills, and skins of the Javanese medaka (Oryzias javanicus). TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES 2017. [DOI: 10.3906/vet-1701-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Van Metre PC, Alvarez DA, Mahler BJ, Nowell L, Sandstrom M, Moran P. Complex mixtures of Pesticides in Midwest U.S. streams indicated by POCIS time-integrating samplers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:431-440. [PMID: 27697376 DOI: 10.1016/j.envpol.2016.09.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 05/22/2023]
Abstract
The Midwest United States is an intensely agricultural region where pesticides in streams pose risks to aquatic biota, but temporal variability in pesticide concentrations makes characterization of their exposure to organisms challenging. To compensate for the effects of temporal variability, we deployed polar organic chemical integrative samplers (POCIS) in 100 small streams across the Midwest for about 5 weeks during summer 2013 and analyzed the extracts for 227 pesticide compounds. Analysis of water samples collected weekly for pesticides during POCIS deployment allowed for comparison of POCIS results with periodic water-sampling results. The median number of pesticides detected in POCIS extracts was 62, and 141 compounds were detected at least once, indicating a high level of pesticide contamination of streams in the region. Sixty-five of the 141 compounds detected were pesticide degradates. Mean water concentrations estimated using published POCIS sampling rates strongly correlated with means of weekly water samples collected concurrently, however, the POCIS-estimated concentrations generally were lower than the measured water concentrations. Summed herbicide concentrations (units of ng/POCIS) were greater at agricultural sites than at urban sites but summed concentrations of insecticides and fungicides were greater at urban sites. Consistent with these differences, summed concentrations of herbicides correlate to percent cultivated crops in the watersheds and summed concentrations of insecticides and fungicides correlate to percent urban land use. With the exception of malathion concentrations at nine sites, POCIS-estimated water concentrations of pesticides were lower than aquatic-life benchmarks. The POCIS provide an alternative approach to traditional water sampling for characterizing chronic exposure to pesticides in streams across the Midwest region.
Collapse
Affiliation(s)
- Peter C Van Metre
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, United States.
| | - David A Alvarez
- U.S. Geological Survey, 4200 E. New Haven Road, Columbia, MO 65201, United States
| | - Barbara J Mahler
- U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754, United States
| | - Lisa Nowell
- U.S. Geological Survey, Sacramento, CA 95819, United States
| | | | - Patrick Moran
- U.S. Geological Survey, Tacoma, WA 98402, United States
| |
Collapse
|
41
|
Richter CA, Papoulias DM, Whyte JJ, Tillitt DE. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2230-2238. [PMID: 26792394 DOI: 10.1002/etc.3376] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Atrazine has been implicated in reproductive dysfunction of exposed organisms, and previous studies documented decreased egg production in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas) during 30-d to 38-d exposures to 0.5 µg/L, 5 µg/L, and 50 µg/L atrazine. The authors evaluated possible mechanisms underlying the reduction in egg production. Gene expression in steroidogenesis pathways and the hypothalamus-pituitary-gonad axis of male and female fish was measured. Atrazine did not significantly induce gonad aromatase (cyp19a1a) expression. An atrazine-induced shift in the number of females in an active reproductive state was observed. Expression of the egg maturation genes vitellogenin 1 (vtg1) and zona pellucida glycoprotein 3.1 (zp3.1) in medaka females was correlated and had a bimodal distribution. In both species, females with low vtg1 or zp3.1 expression also had low expression of steroidogenesis genes in the gonad, estrogen receptor in the liver, and gonadotropins in the brain. In the medaka, the number of females per tank that had high expression of zp3.1 was significantly correlated with egg production per tank. The number of medaka females with low expression of zp3.1 increased significantly with atrazine exposure. Thus, the decline in egg production observed in response to atrazine exposure may be the result of a coordinated downregulation of genes required for reproduction in a subset of females. Environ Toxicol Chem 2016;35:2230-2238. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Catherine A Richter
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Diana M Papoulias
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Jeffrey J Whyte
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| | - Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri
| |
Collapse
|
42
|
Wirbisky SE, Sepúlveda MS, Weber GJ, Jannasch AS, Horzmann KA, Freeman JL. Embryonic Atrazine Exposure Elicits Alterations in Genes Associated with Neuroendocrine Function in Adult Male Zebrafish. Toxicol Sci 2016; 153:149-64. [PMID: 27413107 DOI: 10.1093/toxsci/kfw115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The developmental origins of health and disease (DOHaD) hypothesis states that exposure to environmental stressors early in life can elicit genome and epigenome changes resulting in an increased susceptibility of a disease state during adulthood. Atrazine, a common agricultural herbicide used throughout the Midwestern United States, frequently contaminates potable water supplies and is a suspected endocrine disrupting chemical. In our previous studies, zebrafish was exposed to 0, 0.3, 3, or 30 parts per billion (μg/l) atrazine through embryogenesis, rinsed, and allowed to mature to adulthood. A decrease in spawning was observed with morphological alterations in offspring. In addition, adult females displayed an increase in ovarian progesterone and follicular atresia, alterations in levels of a serotonin metabolite and serotonin turnover in brain tissue, and transcriptome changes in brain and ovarian tissue supporting neuroendocrine alterations. As reproductive dysfunction is also influenced by males, this study assessed testes histology, hormone levels, and transcriptomic profiles of testes and brain tissue in the adult males. The embryonic atrazine exposure resulted in no alterations in body or testes weight, gonadosomatic index, testes histology, or levels of 11-ketotestosterone or testosterone. To further investigate potential alterations, transcriptomic profiles of adult male testes and brain tissue was completed. This analysis demonstrated alterations in genes associated with abnormal cell and neuronal growth and morphology; molecular transport, quantity, and production of steroid hormones; and neurotransmission with an emphasis on the hypothalamus-pituitary-adrenal and hypothalamus-pituitary-thyroid axes. Overall, this data indicate future studies should focus on additional neuroendocrine endpoints to determine potential functional impairments.
Collapse
Affiliation(s)
- Sara E Wirbisky
- *School of Health Sciences, Purdue University, Indiana 47907
| | - Maria S Sepúlveda
- *School of Health Sciences, Purdue University, Indiana 47907 Department of Forestry and Natural Resources, Purdue University, Indiana 47907
| | - Gregory J Weber
- *School of Health Sciences, Purdue University, Indiana 47907
| | | | | | | |
Collapse
|
43
|
Schubert S, Keddig N, Gerwinski W, Neukirchen J, Kammann U, Haarich M, Hanel R, Theobald N. Persistent organic pollutants in Baltic herring (Clupea harengus)-an aspect of gender. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:368. [PMID: 27226172 DOI: 10.1007/s10661-016-5363-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs) are monitored regularly in water, sediment, and biota in the Baltic Sea. Lipophilic substances are measured in remarkable concentrations especially in the fatty parts of fish, such as herring (Clupea harengus). However, less lipophilic POPs, e.g. perfluorinated compounds (PFCs), can also be detected. For the first time to our knowledge, this study provides a broad range of contaminant concentrations simultaneously measured in filet, liver, and gonads of both sexes of Baltic herring. We analysed organochlorines, polybrominated diphenyl ethers (PBDEs), and PFCs in mature autumn-spawning individuals and found distinct organ pollutant pattern for all POPs in both sexes. POP concentrations found in the gonads of both sexes indicate that not only females but also males tend to reduce contaminants via reproduction. However, sex-dependent differences could be identified for hexachlorobenzene, PBDEs, and were most remarkable for PFCs. This transfer of contaminants to the gonads in both male and female herring is being underestimated, as it may directly affect the general reproduction success as well as the healthy development of the next generation. Hence, the accumulation of contaminants in the gonads should be considered one possible threat to a healthy wildlife as its achievement is stated by the Baltic Sea Action Plan. Inclusion of a periodic monitoring of POP concentrations in gonads of fish may be an important bioeffect measure to assess the environmental status of biota in the Baltic Sea.
Collapse
Affiliation(s)
- Sophia Schubert
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany.
| | - Nadia Keddig
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany.
| | - Wolfgang Gerwinski
- German Maritime and Hydrographic Agency, Wüstland 2, 22589, Hamburg, Germany
| | - Jan Neukirchen
- German Maritime and Hydrographic Agency, Wüstland 2, 22589, Hamburg, Germany
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany
| | - Michael Haarich
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany
| | - Norbert Theobald
- German Maritime and Hydrographic Agency, Wüstland 2, 22589, Hamburg, Germany
| |
Collapse
|
44
|
Wirbisky SE, Weber GJ, Sepúlveda MS, Lin TL, Jannasch AS, Freeman JL. An embryonic atrazine exposure results in reproductive dysfunction in adult zebrafish and morphological alterations in their offspring. Sci Rep 2016; 6:21337. [PMID: 26891955 PMCID: PMC4759560 DOI: 10.1038/srep21337] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022] Open
Abstract
The herbicide atrazine, a suspected endocrine disrupting chemical (EDC), frequently contaminates potable water supplies. Studies suggest alterations in the neuroendocrine system along the hypothalamus-pituitary-gonadal axis; however, most studies address either developmental, pubertal, or adulthood exposures, with few investigations regarding a developmental origins hypothesis. In this study, zebrafish were exposed to 0, 0.3, 3, or 30 parts per billion (ppb) atrazine through embryogenesis and then allowed to mature with no additional chemical exposure. Reproductive function, histopathology, hormone levels, offspring morphology, and the ovarian transcriptome were assessed. Embryonic atrazine exposure resulted in a significant increase in progesterone levels in the 3 and 30 ppb groups. A significant decrease in spawning and a significant increase in follicular atresia in the 30 ppb group were observed. In offspring, a decrease in the head length to body ratio in the 30 ppb group, along with a significant increase in head width to body ratio in the 0.3 and 3 ppb groups occurred. Transcriptomic alterations involved genes associated with endocrine system development and function, tissue development, and behavior. This study provides evidence to support atrazine as an EDC causing reproductive dysfunction and molecular alterations in adults exposed only during embryogenesis and morphological alterations in their offspring.
Collapse
Affiliation(s)
| | | | - Maria S Sepúlveda
- School of Health Sciences, West Lafayette, IN, 47907, USA.,Department of Forestry and Natural Resources, West Lafayette, IN, 47907, USA
| | - Tsang-Long Lin
- Department of Comparative Pathobiology, West Lafayette, IN, 47907, USA
| | - Amber S Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | | |
Collapse
|
45
|
Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. TOXICS 2015; 3:414-450. [PMID: 28713818 PMCID: PMC5507375 DOI: 10.3390/toxics3040414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine disrupting chemicals (EDC) are exogenous agents that alter endogenous hormone signaling pathways. These chemicals target the neuroendocrine system which is composed of organs throughout the body that work alongside the central nervous system to regulate biological processes. Of primary importance is the hypothalamic-pituitary-gonadal (HPG) axis which is vital for maintaining proper reproductive function. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a pre-emergent herbicide used to prevent the growth of weeds on various crops. This herbicide is reported to widely contaminate potable water supplies everywhere it is applied. As such, the European Union banned the use of atrazine in 2004. Currently the United States Environmental Protection Agency regulates atrazine at 3 parts per billion (ppb; μg/L) in drinking water, while the World Health Organization recently changed their drinking water guideline to 100 ppb. Atrazine is implicated to be an EDC that alters reproductive dysfunction by targeting the HPG axis. However, questions remain as to the human health risks associated with atrazine exposure with studies reporting mixed results on the ability of atrazine to alter the HPG axis. In this review, the current findings for atrazine’s effects on the HPG axis are examined in mammalian, anuran, and fish models and in epidemiological studies.
Collapse
|
46
|
The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. BMC Genomics 2015; 16:885. [PMID: 26518232 PMCID: PMC4628360 DOI: 10.1186/s12864-015-2095-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/15/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Environmental factors such as pesticides can cause phenotypic changes in various organisms, including mammals. We studied the effects of the widely used herbicide atrazine (ATZ) on meiosis, a key step of gametogenesis, in male mice. METHODS Gene expression pattern was analysed by Gene-Chip array. Genome-wide mapping of H3K4me3 marks distribution was done by ChIP-sequencing of testis tissue using Illumina technologies. RT-qPCR was used to validate differentially expressed genes or differential peaks. RESULTS We demonstrate that exposure to ATZ reduces testosterone levels and the number of spermatozoa in the epididymis and delays meiosis. Using Gene-Chip and ChIP-Seq analysis of H3K4me3 marks, we found that a broad range of cellular functions, including GTPase activity, mitochondrial function and steroid-hormone metabolism, are affected by ATZ. Furthermore, treated mice display enriched histone H3K4me3 marks in regions of strong recombination (double-strand break sites), within very large genes and reduced marks in the pseudoautosomal region of X chromosome. CONCLUSIONS Our data demonstrate that atrazine exposure interferes with normal meiosis, which affects spermatozoa production.
Collapse
|
47
|
Van Der Kraak GJ, Hosmer AJ, Hanson ML, Kloas W, Solomon KR. Effects of atrazine in fish, amphibians, and reptiles: an analysis based on quantitative weight of evidence. Crit Rev Toxicol 2015; 44 Suppl 5:1-66. [PMID: 25375889 DOI: 10.3109/10408444.2014.967836] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.
Collapse
|
48
|
Zhang B, Ma K, Li B. Inflammatory reaction regulated by microglia plays a role in atrazine-induced dopaminergic neuron degeneration in the substantia nigra. J Toxicol Sci 2015; 40:437-50. [DOI: 10.2131/jts.40.437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bo Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| | - Kun Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| | - Baixiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| |
Collapse
|
49
|
Saunders DMV, Podaima M, Codling G, Giesy JP, Wiseman S. A mixture of the novel brominated flame retardants TBPH and TBB affects fecundity and transcript profiles of the HPGL-axis in Japanese medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:14-21. [PMID: 25461741 DOI: 10.1016/j.aquatox.2014.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The novel brominated flame retardants (NBFRs), bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5 tetrabromobenzoate (TBB) are components of the flame retardant mixture Firemaster 550 and both TBPH and TBB have recently been listed as high production volume chemicals by the US EPA. These NBFRs have been detected in several environmental matrices but very little is known about their toxic effects or potencies. Results of in vitro assays demonstrated potentials of these NBFRs to modulate endocrine function through interactions with estrogen (ER) and androgen receptors (AR) and via alterations to synthesis of 17-β-estradiol (E2) and testosterone (T), but in vivo effects of these chemicals on organisms are not known. Therefore a 21-day short term fish fecundity assay with Japanese medaka (Oryzias latipes) was conducted to investigate if these NBFRs affect endocrine function in vivo. Medaka were fed a diet containing either 1422 TBPH:1474 TBB or 138:144 μg/g food, wet weight (w/w). Cumulative production of eggs was used as a measure of fecundity and abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were quantified to determine mechanisms of observed effects. Cumulative fecundity was impaired by 32% in medaka exposed to the greatest dose of the mixture of TBPH/TBB. A pattern of global down-regulation of gene transcription at all levels of the HPGL axis was observed, but effects were sex-specific. In female medaka the abundance of transcripts of ERβ was lesser in livers, while abundances of transcripts of VTG II and CHG H were greater. In male medaka, abundances of transcripts of ERα, ERβ, and ARα were lesser in gonads and abundances of transcripts of ERβ and ARα were lesser in brain. Abundances of transcripts of genes encoding proteins for synthesis of cholesterol (HMGR), transport of cholesterol (HDLR), and sex hormone steroidogenesis (CYP 17 and 3β-HSD) were significantly lesser in male medaka, which might have implications for concentrations of sex hormones. The results of this study demonstrate that exposure to components of the flame retardant mixture Firemaster(®) 550 has the potential to impair the reproductive axis of fishes.
Collapse
Affiliation(s)
- David M V Saunders
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3.
| | - Michelle Podaima
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada S7N 5B3
| |
Collapse
|