1
|
Adomako MO, Jin L, Li C, Liu J, Adu D, Seshie VI, Yu FH. Mechanisms underpinning microplastic effects on the natural climate solutions of wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176491. [PMID: 39341239 DOI: 10.1016/j.scitotenv.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Wetland ecosystems are vital carbon dioxide (CO2) sinks, offering significant nature-based solutions for global climate mitigation. However, the recent influx of microplastic (MP) into wetlands substantially impacts key drivers (e.g., plants and microorganisms) underpinning these wetland functions. While MP-induced greenhouse gas (GHG) emissions and effects on soil organic carbon (SOC) mineralization potentially threaten the long-term wetland C-climate feedbacks, the exact mechanisms and linkage are unclear. This review provides a conceptual framework to elaborate on the interplay between MPs, wetland ecosystems, and the atmospheric milieu. We also summarize published studies that validate possible MP impacts on natural climate solutions of wetlands, as well as provide extensive elaboration on underlying mechanisms. We briefly highlight the relationships between MP influx, wetland degradation, and climate change and conclude by identifying key gaps for future research priorities. Globally, plastic production, MP entry into aquatic systems, and wetland degradation-related emissions are predicted to increase. This means that MP-related emissions and wetland-climate feedback should be addressed in the context of the UN Paris Climate Agreement on net-zero emissions by 2050. This overview serves as a wake-up call on the alarming impacts of MPs on wetland ecosystems and urges a global reconsideration of nature-based solutions in the context of climate mitigation.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
2
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
3
|
Martínez Rodríguez A, Marchant DJ, Francelle P, Kratina P, Jones JI. Nutrient enrichment mediates the effect of biodegradable and conventional microplastics on macroinvertebrate communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122511. [PMID: 37689134 DOI: 10.1016/j.envpol.2023.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
There is growing concern regarding the lack of evidence on the effects bioplastics may have on natural ecosystems, whilst their production continues to increase as they are considered as a greener alternative to conventional plastics. Most research is limited to investigations of the response of individual taxa under laboratory conditions, with few experiments undertaken at the community or ecosystem scale, either investigating microplastics independently or in combination with other pollutants, such as nutrient enrichment. The aim of this study is to experimentally compare the effects of oil-based (high density polyethylene - HDPE) with those of bio-based biodegradable (polylactic acid - PLA) microplastics and their interaction with nutrient enrichment on freshwater macroinvertebrate communities under seminatural conditions. There were no significant differences in total abundance, alpha and beta diversities, or community composition attributable to the type of microplastics, their concentration, or nutrient enrichment compared with the control. However, there was a significant difference in macroinvertebrate alpha diversity between high concentrations of both microplastic types under ambient nutrient conditions, with lower diversity in communities exposed to HDPE compared with PLA. Nutrient enrichment mediated the effect of microplastic type, such that the diversity of macroinvertebrate communities exposed to HDPE were similar to those communities exposed to PLA. These findings suggest that the effects of microplastic pollution on macroinvertebrate communities are very weak at large-scale settings under seminatural conditions and that these effects might be mediated by the nutrient status of freshwater ecosystems. More research under large-scale, long-term, seminatural settings are needed in order to elucidate the impact of both conventional plastics and bioplastics on natural environments and their interactive effect with other occurring stressors and pollutants.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pascaline Francelle
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
4
|
Nederstigt TAP, Bode B, van Ommen JR, Peijnenburg WJGM, Vijver MG. Zooplankton community turnover in response to a novel TiO 2-coated nano-formulation of carbendazim and its constituents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121894. [PMID: 37271364 DOI: 10.1016/j.envpol.2023.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Novel nanomaterial-based pesticide formulations are increasingly perceived as promising aids in the transition to more efficient agricultural production systems. The current understanding of potential unintended (eco)toxicological impacts of nano-formulated pesticides is scarce, in particular with regard to (non-target) aquatic organisms and ecosystems. The present study reports the results of a long-term freshwater mesocosm experiment which assessed responses of individual zooplankton taxa and communities to a novel TiO2-coated nano-formulation of the fungicide carbendazim. Population- and community trends were assessed and compared in response to the nano-formulation and its constituents applied individually (i.e. nano-sized TiO2, carbendazim) and in combination (i.e. nano-sized TiO2 & carbendazim). Minimal differences were observed between effects induced by the nano-formulation and its active ingredient (i.e. carbendazim) when applied at equivalent nominal test concentrations (4 μg L-1). Nano-sized TiO2 was found to affect zooplankton community trends when applied separately at environmentally realistic concentrations (20 μg L-1 nominal test concentration). However, when nano-sized TiO2 was applied in combination with carbendazim, nano-sized TiO2 was found not to alter effects on community trends induced by carbendazim. The findings of the current study provide an extensive and timely addition to the current body of work available on non-target impacts of nano-formulated pesticides.
Collapse
Affiliation(s)
- Tom A P Nederstigt
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands.
| | - Bo Bode
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| | - J Ruud van Ommen
- Department of Chemical Engineering, TU Delft Process & Product Technology Institute, Delft University of Technology, Delft, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences, University of Leiden, Leiden, the Netherlands
| |
Collapse
|
5
|
McCallum ES, Cerveny D, Bose APH, Fick J, Brodin T. Cost-Effective Pharmaceutical Implants in Fish: Validating the Performance of Slow-Release Implants for the Antidepressant Fluoxetine. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1326-1336. [PMID: 36942382 DOI: 10.1002/etc.5613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
Internal, slow-release implants can be an effective way to manipulate animal physiology or deliver a chemical exposure over long periods of time without the need for an exogenous exposure route. Slow-release implants involve dissolving a compound in a lipid-based carrier, which is inserted into the body of an organism. However, the release kinetics of the compound from the implant to body tissues also requires careful validation. We tested and validated a slow-release implant methodology for exposing fish to a pharmaceutical pollutant, fluoxetine. We tested two lipid-based carriers (coconut oil or vegetable shortening) in the common roach (Rutilus rutilus). The implants contained either a high (50 μg/g), low (25 μg/g), or control (0 μg/g) concentration of fluoxetine, and we measured tissue uptake in the brain, muscle, and plasma of implanted fish over 25 days. The two carriers released fluoxetine differently over time: coconut oil released fluoxetine in an accelerating manner (tissue uptake displayed a positive quadratic curvature), whereas vegetable shortening released fluoxetine in a decelerating manner (a negative quadratic curvature). For both carrier types, fluoxetine was measured at the highest concentration in the brain, followed by muscle and plasma. By comparing the implant exposures with waterborne exposures in the published literature, we showed that the implants delivered an internal exposure that would be similar if fish were exposed in surface waters containing effluents. Overall, we showed that slow-release internal implants are an effective method for delivering chronic exposures of fluoxetine over at least 1-month time scales. Internal exposures can be an especially powerful experimental tool when coupled with field-based study designs to assess the impacts of pharmaceutical pollutants in complex natural environments. Environ Toxicol Chem 2023;42:1326-1336. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Aneesh P H Bose
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Grott SC, Israel NG, Lima D, Velasquez Bastolla CL, Carneiro F, Alves TC, Bitschinski D, Dias Bainy AC, Barbosa da Silva E, Coelho de Albuquerque CA, Alves de Almeida E. Effects of the herbicide ametryn on development and thyroidogenesis of bullfrog tadpoles (Aquarana catesbeiana) under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121159. [PMID: 36716946 DOI: 10.1016/j.envpol.2023.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Thyroid hormones (TH) are essential for the metamorphosis of amphibians and their production can be influenced by environmental stressors, such as temperature fluctuations, and exposure to aquatic pollutants, such as herbicides. In the present study we evaluated the influence of different temperatures (25 and 32 °C) on the effects of the herbicide ametryn (AMT, 0 - control, 10, 50 and 200 ng.L-1) for 16 days on thyroidogenesis of bullfrog tadpoles. Higher temperature and AMT exposure caused a delay in the development of tadpoles, despite no differences were noted in weight gain and total length of the animals. Levels of triiodothyronine (T3) and thyroxine (T4) were not altered neither by AMT nor by temperature, but the highest temperature caused a decrease in total area and number of follicles in the thyroid gland. Transcript levels of thyroid hormone receptors alpha and beta (TRα and TRβ) and iodothyronine deiodinase 3 (DIO3) were lower at 32 °C, which is consistent with developmental delay at the higher temperature. Tadpoles exposed to 200 ng.L-1 of AMT at 25 °C also presented delayed development, which was consistent with lower TRα and DIO3 transcript levels. Lower levels of estradiol were noted in tadpoles exposed to AMT at the higher temperature, being also possibly related to a developmental delay. This study demonstrates that higher temperature and AMT exposure impair thyroidgenesis in bullfrog tadpoles, disrupting metamorphosis.
Collapse
Affiliation(s)
- Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Francisco Carneiro
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daiane Bitschinski
- Biodiversity Post-graduate Program, University of Blumenau, Blumenau, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
7
|
Mikó Z, Hettyey A. Toxicity of POEA-containing glyphosate-based herbicides to amphibians is mainly due to the surfactant, not to the active ingredient. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:150-159. [PMID: 36680666 PMCID: PMC10008773 DOI: 10.1007/s10646-023-02626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Current international legislation regarding agrochemicals requires thorough toxicological testing mainly of the active ingredients. In a 96-h acute toxicity test we exposed Rana dalmatina and Bufo bufo tadpoles to either one of three concentrations of glyphosate, three concentrations of the surfactant (POEA), three concentrations of the two components together, or to non-contaminated water (control), and subsequently assessed mortality and body mass. To investigate whether simultaneous exposure to another stress factor influences effects of the contaminants, we performed tests both in the presence or absence of predator chemical cues. We found that the surfactant had significant harmful effects on tadpoles; survival was lowered by the highest concentration of the surfactant in case of R. dalmatina, while in B. bufo tadpoles it reduced survival already at medium concentrations. Body mass was significantly influenced by medium and high surfactant concentrations in both species. The presence of glyphosate did not have a significant effect by itself, but it slightly increased mortality in tadpoles exposed to medium concentrations of the surfactant in both species. The presence of chemical cues did not have an effect on the examined variables. Our study confirms that the toxicity of glyphosate-based herbicides is mainly due to the examined surfactant. Nonetheless, we found that glyphosate can enhance the harmful effect of the surfactant. These results stress that during the authorization process of new pesticide formulations, not only the active ingredients would need to be examined but the excipients should also be taken into account in an obligatory and systematic manner.
Collapse
Affiliation(s)
- Zsanett Mikó
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - Attila Hettyey
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, Budapest, 1022, Hungary
| |
Collapse
|
8
|
Nielsen KM, DeCamp L, Birgisson M, Palace VP, Kidd KA, Parrott JL, McMaster ME, Alaee M, Blandford N, Ussery EJ. Comparative Effects of Embryonic Metformin Exposure on Wild and Laboratory-Spawned Fathead Minnow ( Pimephales promelas) Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10193-10203. [PMID: 35748754 DOI: 10.1021/acs.est.2c01079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is routinely detected in aquatic ecosystems because of its widespread use as a treatment for Type 2 diabetes. Laboratory studies have shown that exposure to environmentally relevant concentrations of metformin can alter metabolic pathways and impact the growth of early life stage (ELS) fish; however, it is unknown whether these effects occur in wild populations. Herein, we evaluate whether findings from laboratory studies are representative and describe the relative sensitivities of both populations. Duplicate exposures (0, 5, or 50 μg/L metformin) were conducted using wild- and lab-spawned fathead minnow (Pimephales promelas) embryos. Apart from the water source, exposure conditions remained constant. Wild embryos were exposed to previously dosed lake water to account for changes in bioavailability, while reconstituted freshwater was used for the laboratory study. Developmental metformin exposure differentially impacted the growth and morphology of both cohorts, with energy dyshomeostasis and visual effects indicated. The fitness of wild-spawned larvae was impacted to a greater extent relative to lab-spawned fish. Moreover, baseline data reveal important morphological differences between wild- and lab-spawned ELS fatheads that may diminish representativeness of lab studies. Findings also confirm the bioavailability of metformin in naturally occurring systems and suggest current exposure scenarios may be sufficient to negatively impact developing fish.
Collapse
Affiliation(s)
- Kristin M Nielsen
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Lily DeCamp
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Mona Birgisson
- Department of Marine Science, University of Texas at Austin, Port Aransas, Texas 78373, USA
| | - Vince P Palace
- International Institute for Sustainable Development─Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karen A Kidd
- Department of Biology & School of Earth, Environment & Society, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark E McMaster
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mehran Alaee
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | | | - Erin J Ussery
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| |
Collapse
|
9
|
Beattie RE, Su B, Thill R, Hristova KR. Recycled concrete aggregates are an economic form of urban riparian erosion management with limited impacts on freshwater chemistry and microbial diversity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128934. [PMID: 35461000 DOI: 10.1016/j.jhazmat.2022.128934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Urban streams are at high risk of riparian erosion which impacts adjacent infrastructure stability. Methods to prevent stream erosion have been proposed including using recycled concrete (RC) materials to help stabilize the streambed; however, little is known about the environmental and biological impacts of using RC in urban streams. RC, new concrete (NC), and river rock controls were evaluated for their impact on water chemistry, water quality, and microbial community composition over 6.5 months in controlled laboratory mesocosms. Concentrations of 19 metals, nutrients, and pH of mesocosms containing RC were not significantly different from the river rock mesocosm throughout the experiment; however, NC mesocosms contained significantly higher (p < 0.05) concentrations of Co, As, Al, and V in mesocosm water samples compared to both RC and the river rock control. Microbial community diversity was not significantly impacted by mesocosm treatment. Microbial sequences mapping to taxa including Rhodoferax, Acidovorax, Nitrosomonas, and Novosphingobium were significantly more abundant (p < 0.01) in RC and NC mesocosm samples; however, the overall microbial community structure was similar across treatment types. Results from this study suggest that RC does not significantly alter the stream environment including microbial community diversity and is a viable option for use in stream restoration projects.
Collapse
Affiliation(s)
- Rachelle E Beattie
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Bixia Su
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Rebecca Thill
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee, WI 53233, USA.
| |
Collapse
|
10
|
Kásler A, Ujszegi J, Holly D, Üveges B, Móricz ÁM, Herczeg D, Hettyey A. Metamorphic common toads keep chytrid infection under control, but at a cost. J Zool (1987) 2022. [DOI: 10.1111/jzo.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Kásler
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - J. Ujszegi
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - D. Holly
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Doctoral School of Biology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
| | - B. Üveges
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Molecular Ecology and Evolution at Bangor School of Natural Sciences Bangor University Bangor UK
| | - Á. M. Móricz
- Department of Pathophysiology Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
| | - D. Herczeg
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
| | - A. Hettyey
- Lendület Evolutionary Ecology Research Group Centre for Agricultural Research Plant Protection Institute Eötvös Loránd Research Network Budapest Hungary
- Department of Systematic Zoology and Ecology Institute of Biology ELTE Eötvös Loránd University Budapest Hungary
- Department of Ecology University of Veterinary Medicine Budapest Hungary
| |
Collapse
|
11
|
Carrasco GH, de Souza MB, de Souza Santos LR. Effect of multiple stressors and population decline of frogs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59519-59527. [PMID: 34505245 DOI: 10.1007/s11356-021-16247-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The ongoing decline in anuran populations is linked primarily to the effects of stressor agents such as pathogens, pesticides, alterations of natural landscapes, and the introduction of exotic species. Most studies that have evaluated the effects of these stressors have focused on a single component, which is the opposite of the reality of most natural environments, where anuran populations tend to suffer the influence of multiple agents simultaneously. Studies of the effects of the interaction between these components are extremely important, given that one agent may potentialize (synergistic effect) or weaken another (antagonistic effect) or, in some cases, have a neutral effect. The present study is based on the scientometric analysis of three bibliographic databases (ISI Web of Science, Scopus, and PubMed), which identified 1376 papers that reported on the global decline of anuran populations, although only 172 of these studies focused on the interactive effects of environmental stressors. Synergistic effects were the most frequent type of interaction, followed by antagonistic effects, and a small number of studies that found no clear interaction between the stressors. Pathogens and pesticides were the classes of stressor studied most frequently, while climate-pathogen and pathogen-pesticide interactions were the combinations that featured in the largest number of studies. Overall, we would recommend a more systematic focus on the dynamics of the interactions among the stressors that impact anuran populations, in particular for the elaboration of conservation programs, given that these agents tend to have complex combined effects.
Collapse
Affiliation(s)
- Guilherme Henrique Carrasco
- Laboratório de Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - IF Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75.901-970, Brazil.
| | - Marcelino Benvindo de Souza
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, ICB I - Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
| | - Lia Raquel de Souza Santos
- Laboratório de Ecotoxicologia e Sistemática Animal - Instituto Federal Goiano - IF Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75.901-970, Brazil.
| |
Collapse
|
12
|
Hébert MP, Fugère V, Beisner BE, Barbosa da Costa N, Barrett RDH, Bell G, Shapiro BJ, Yargeau V, Gonzalez A, Fussmann GF. Widespread agrochemicals differentially affect zooplankton biomass and community structure. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02423. [PMID: 34288209 DOI: 10.1002/eap.2423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.
Collapse
Affiliation(s)
- Marie-Pier Hébert
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
| | - Vincent Fugère
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
- Département des Sciences de L'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Department of Biological Sciences, University of Québec at Montreal, Montréal, Québec, H3C 3V8, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - Naíla Barbosa da Costa
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
- Redpath Museum, McGill University, Montréal, Québec, H3A 0C4, Canada
| | - Graham Bell
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
- Department of Microbiology and Immunology, McGill Genome Centre, Montréal, Québec, H3A 0G1, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montréal, Québec, H3A 0C5, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| | - Gregor F Fussmann
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Québec, H2V 0B3, Canada
- Québec Centre for Biodiversity Science (QCBS), Montréal, Québec, H3A 1B1, Canada
| |
Collapse
|
13
|
Kruger N, Measey J, Vimercati G, Herrel A, Secondi J. Does the spatial sorting of dispersal traits affect the phenotype of the non-dispersing stages of the invasive frog Xenopus laevis through coupling? Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
In amphibians, spatial sorting progressively enhances the dispersal capacities of dispersing stages in expanding populations but may enhance or limit the performance of the earlier non-dispersing stages. Phenotypic traits of non-dispersing tadpoles and metamorphs can be coupled, through carry-over effects and trade-offs, or decoupled to dispersal traits in adults. We used the globally invasive amphibian, Xenopus laevis, to examine whether spatial sorting of adult phenotypes affects the phenotype of larval stages to metamorphosis in the core and at the periphery of an invasive population in France. We combined common garden laboratory and outdoor experiments to test the effect of parental pond location (core or periphery) on morphology, development and survival to metamorphosis and found no differences between tadpoles. After metamorphosis, the only difference observed in either of the experiments was the larger body size of metamorphs from the periphery, and then only when reared in the laboratory. Differences in metamorph size may indicate that a shift of dispersal traits occur after metamorphosis in X. laevis. Thus, our findings illustrate that decoupled evolution through spatial sorting can lead to changes of X. laevis adult phenotypes that would enhance dispersal without affecting the phenotype of tadpoles before metamorphosis.
Collapse
Affiliation(s)
- Natasha Kruger
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John Measey
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthony Herrel
- UMR 7179 Département Adaptation du Vivant, Centre National de la Recherche, Muséum national d’Histoire naturelle, Paris, France
| | - Jean Secondi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
- Faculté des Sciences, Université d’Angers, Angers, France
| |
Collapse
|
14
|
Bolis A, Gazzola A, Pellitteri-Rosa D, Colombo A, Bonfanti P, Bellati A. Exposure during embryonic development to Roundup® Power 2.0 affects lateralization, level of activity and growth, but not defensive behaviour of marsh frog tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114395. [PMID: 32247902 DOI: 10.1016/j.envpol.2020.114395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
As glyphosate-based herbicides, sold under the commercial name Roundup®, represent the most used herbicides in the world, contamination of the freshwater environment by glyphosate has become a widespread issue. In Italy, glyphosate was detected in half of the surface waters monitoring sites and its concentrations were higher than environmental quality standards in 24.5% of them. It can last from days to months in water, leading to exposure for aquatic organisms and specifically to amphibians' larvae that develop in shallow water bodies with proven effects to development and behaviour. In this study, we tested the effects of a 96 h exposure during embryonic development of marsh frog's tadpoles to three ecologically relevant Roundup® Power 2.0 concentrations. As expected, given the low concentrations tested, no mortality was observed. Morphological measurements highlighted a reduction in the total length in tadpoles exposed to 7.6 mg a.e./L, while an increase was observed at lower concentrations of 0.7 and 3.1 mg a.e./L compared to control group. Tadpoles raised in 7.6 mg a.e./L also showed a smaller tail membrane than those raised in the control solution. Regarding behaviour, we tested tadpoles in two different sessions (Gosner stages 25 and 28/29) for lateralization, antipredator response and basal activity. Lower intensity of lateralization was detected in tadpoles raised at the highest Roundup® concentration in the first session of observation, while no significant difference among treatments was observed in the second one. In both sessions, effects of Roundup® Power 2.0 embryonic exposure on antipredator response, measured as the proportional change in activity after the injection of tadpole-fed predator (Anax imperator) cue, were not detected. Tadpoles exposed during embryonic development to Roundup® exhibited lower basal activity than the control group, with the strongest reduction for the 7.6 mg a.e./L treatment. Our results reinforce the concern of Roundup® contamination impact on amphibians.
Collapse
Affiliation(s)
- Alessandro Bolis
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | - Andrea Gazzola
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | - Daniele Pellitteri-Rosa
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| | - Anita Colombo
- Department of Environmental and Earth Sciences, Research Centre POLARIS, University of Milano Bicocca, P.zza della Scienza 1, 20126, Milano, Italy.
| | - Patrizia Bonfanti
- Department of Environmental and Earth Sciences, Research Centre POLARIS, University of Milano Bicocca, P.zza della Scienza 1, 20126, Milano, Italy.
| | - Adriana Bellati
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
15
|
Heye K, Graumnitz S, Rybicki M, Schür C, Völker J, Wick A, Oehlmann J, Jungmann D, Oetken M. Laboratory-to-field extrapolation: Increase in carbamazepine toxicity in a higher tier, multiple-stress experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109481. [PMID: 31442800 DOI: 10.1016/j.ecoenv.2019.109481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 05/24/2023]
Abstract
The toxicity and environmental risk of chemicals, such as the antiepileptic drug carbamazepine (CBZ), is commonly assessed using standardized laboratory tests and laboratory-to-field extrapolation. To investigate the toxicity of CBZ to aquatic key organisms in a more complex and environmentally relevant scenario, we conducted a 32-day multiple-stress experiment in artificial indoor streams. We exposed the non-biting midge Chironomus riparius, the blackworm Lumbriculus variegatus, and the New Zealand mud snail Potamopyrgus antipodarum to 80 and 400 μg CBZ/L in six artificial indoor streams. In addition to hydraulic stress, species' interaction, and low organic content in the sediment, organisms were co-exposed to the herbicide terbutryn (TBY) as a second chemical stressor at a concentration of 6 μg/L. The exposure to CBZ under multiple stress conditions resulted in a 10- to more than 25-fold higher toxicity in C. riparius and P. antipodarum when compared to a previous, standardized laboratory experiment. The co-exposure to TBY enhanced the adverse effects of CBZ on snails (reduced production of embryos). This effect was additive as the single exposure to TBY also reduced the reproduction of snails, most likely through the reduction of biofilm biomass. The emergence of C. riparius declined at a CBZ concentration of 400 μg/L (without the co-exposure to TBY) and at 80 μg/L in combination with TBY. The difference in sensitivity between laboratory and indoor stream experiments is indicative of a potential underestimation of risk when toxicity data are extrapolated to field conditions. The present results suggest the inclusion of non-chemical and chemical stressors in environmental hazard and risk assessments.
Collapse
Affiliation(s)
- Katharina Heye
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Vali Consulting GmbH, Im Technologiepark 5, 69469 Weinheim, Germany.
| | - Stephanie Graumnitz
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, 01217, Dresden, Germany
| | - Marcus Rybicki
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, 01217, Dresden, Germany
| | - Christoph Schür
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Johannes Völker
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany; Norwegien University of Science and Technology (NTNU), Department of Biology, NO-7491, Trondheim, Norway
| | - Arne Wick
- German Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068, Koblenz, Germany
| | - Jörg Oehlmann
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Dirk Jungmann
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, 01217, Dresden, Germany
| | - Matthias Oetken
- Goethe University Frankfurt am Main, Faculty of Biological Sciences, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Simões T, Novais SC, Natal-da-Luz T, Renaud M, Leston S, Ramos F, Römbke J, Roelofs D, van Straalen NM, Sousa JP, Lemos MFL. From laboratory to the field: Validating molecular markers of effect in Folsomia candida exposed to a fungicide-based formulation. ENVIRONMENT INTERNATIONAL 2019; 127:522-530. [PMID: 30981023 DOI: 10.1016/j.envint.2019.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Under controlled laboratory conditions, toxicity data tend to be less variable than in more realistic in-field studies and responses may thus differ from those in the natural environment, creating uncertainty. The validation of data under environmental conditions is therefore a major asset in environmental risk assessment of chemicals. The present study aimed to validate the mode of action of a commercial fungicide formulation in the soil invertebrate F. candida, under more realistic exposure scenarios (in-field bioassay), by targeting specific molecular biomarkers retrieved from laboratory experiments. Organisms were exposed in soil cores under minimally controlled field conditions for 4 days to a chlorothalonil fungicide dosage causing 75% reduction of reproduction in a previous laboratory experiment (127 mg a.i. kg-1) and half this concentration (60 mg a.i. kg-1). After exposure, organisms were retrieved and RNA was extracted from each pool of organisms. According to previous laboratorial omics results with the same formulation, ten genes were selected for gene expression analysis by qRT-PCR, corresponding to key genes of affected biological pathways including glutathione metabolism, oxidation-reduction, body morphogenesis, and reproduction. Six of these genes presented a dose-response trend with higher up- or down-regulation with increasing pesticide concentrations. Highly significant correlations between their expression patterns in laboratory and in-field experiments were observed. This work shows that effects of toxicants can be clearly demonstrated in more realistic conditions using validated biomarkers. Our work outlines a set of genes that can be used to assess the early effects of pesticides in a realistic agricultural scenario.
Collapse
Affiliation(s)
- Tiago Simões
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal; Department of Ecological Science, Vrije Universiteit, Amsterdam, the Netherlands.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal; Department of Ecological Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Tiago Natal-da-Luz
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Mathieu Renaud
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Sara Leston
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal; REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Fernando Ramos
- REQUIMTE/LAQV, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nico M van Straalen
- Department of Ecological Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - José P Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
17
|
Green DS, Colgan TJ, Thompson RC, Carolan JC. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:423-434. [PMID: 30579211 DOI: 10.1016/j.envpol.2018.12.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 05/20/2023]
Abstract
The contamination of marine ecosystems with microplastics, such as the polymer polyethylene, a commonly used component of single-use packaging, is of global concern. Although it has been suggested that biodegradable polymers, such as polylactic acid, may be used to replace some polyethylene packaging, little is known about their effects on marine organisms. Blue mussels, Mytilus edulis, have become a "model organism" for investigating the effects of microplastics in marine ecosystems. We show here that repeated exposure, over a period of 52 days in an outdoor mesocosm setting, of M. edulis to polyethylene microplastics reduced the number of byssal threads produced and the attachment strength (tenacity) by ∼50%. Exposure to either type of microplastic altered the haemolymph proteome and, although a conserved response to microplastic exposure was observed, overall polyethylene resulted in more changes to protein abundances than polylactic acid. Many of the proteins affected are involved in vital biological processes, such as immune regulation, detoxification, metabolism and structural development. Our study highlights the utility of mass spectrometry-based proteomics to assess the health of key marine organisms and identifies the potential mechanisms by which microplastics, both conventional and biodegradable, could affect their ability to form and maintain reefs.
Collapse
Affiliation(s)
- Dannielle S Green
- School of Life Sciences, Anglia Ruskin University, Cambridge, Cambridgeshire, CB11PT, United Kingdom.
| | - Thomas J Colgan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; School of Biological and Chemical Sciences, Queen Mary University of London, London, E14NS, United Kingdom
| | - Richard C Thompson
- School of Marine Science and Engineering, Plymouth University, Plymouth, Devon, PL48AA, United Kingdom
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Mikó Z, Ujszegi J, Gál Z, Hettyey A. Standardize or Diversify Experimental Conditions in Ecotoxicology? A Case Study on Herbicide Toxicity to Larvae of Two Anuran Amphibians. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:562-569. [PMID: 28660298 DOI: 10.1007/s00244-017-0427-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Despite a steeply increasing number of ecotoxicological studies on the effects of pesticides on nontarget organisms, studies assessing the adequacy and reliability of different experimental approaches have remained scarce. We scrutinized effects of a glyphosate-based herbicide on larvae of two European anuran amphibians by estimating species-specific LC50 values, assessing how an additional stress factor may influence outcomes, and investigating whether replicate experiments yielded qualitatively the same results. We exposed Rana dalmatina and Bufo bufo tadpoles to two predator treatments (no predator vs. predator chemical cues) combined with varying herbicide concentrations, repeated the experiment with a subset of the experimental treatments and partly with slight modifications 1 week later and assessed survival. Our results indicated that the herbicide was moderately toxic to tadpoles. The presence of predator chemical cues did not affect the lethality of the herbicide in either species. The estimated sensitivity of R. dalmatina tadpoles varied considerably across experiments, whereas in case of B. bufo LC50 values remained very similar. Our results suggest that differences in the experimental setup may often have no influence on the measured effects of pesticides, whereas replicated experiments can deliver widely differing results in other cases, perhaps depending on the studied species, the population origin of the tested individuals, or the test conditions. This draws attention to the suggestion that strict standardization may not deliver widely applicable insights into the toxicity of contaminants and, instead, intentionally introducing variation into the design of ecotoxicological experiments and replicating entire experiments may prove highly beneficial.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Zoltán Gál
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
- Agricultural Biotechnology Institute, NARIC, Szent-Györgyi Albert utca 4, Gödöllő, 2100, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, 1022, Hungary
| |
Collapse
|
19
|
Bókony V, Üveges B, Móricz ÁM, Hettyey A. Competition induces increased toxin production in toad larvae without allelopathic effects on heterospecific tadpoles. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Ágnes M. Móricz
- Department of PathophysiologyPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research GroupPlant Protection InstituteCentre for Agricultural ResearchHungarian Academy of Sciences Budapest Hungary
| |
Collapse
|
20
|
Korosi JB, Thienpont JR, Smol JP, Blais JM. Paleo-ecotoxicology: What Can Lake Sediments Tell Us about Ecosystem Responses to Environmental Pollutants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9446-9457. [PMID: 28763202 DOI: 10.1021/acs.est.7b02375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of effective risk reduction strategies for aquatic pollutants requires a comprehensive understanding of toxic impacts on ecosystems. Classical toxicological studies are effective for characterizing pollutant impacts on biota in a controlled, simplified environment. Nonetheless, it is well-acknowledged that predictions based on the results of these studies must be tested over the long-term in a natural ecosystem setting to account for increased complexity and multiple stressors. Paleolimnology (the study of lake sediment cores to reconstruct environmental change) can address many key knowledge gaps. When used as part of a weight-of-evidence framework with more traditional approaches in ecotoxicology, it can facilitate rapid advances in our understanding of the chronic effects of pollutants on ecosystems in an environmentally realistic, multistressor context. Paleolimnology played a central role in the Acid Rain debates, as it was instrumental in demonstrating industrial emissions caused acidification of lakes and associated ecosystem-wide impacts. "Resurrection Ecology" (hatching dormant resting eggs deposited in the past) records evolutionary responses of populations to chronic pollutant exposure. With recent technological advances (e.g., geochemistry, genomic approaches), combined with an emerging paleo-ecotoxicological framework that leverages strengths across multiple disciplines, paleolimnology will continue to provide valuable insights into the most pressing questions in ecotoxicology.
Collapse
Affiliation(s)
- Jennifer B Korosi
- Department of Geography, York University , Toronto, Ontario Canada , M3J 1P3
| | - Joshua R Thienpont
- Department of Biology, University of Ottawa , Ottawa, Ontario Canada , K1N 6N5
| | - John P Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University , Kingston, Ontario Canada , K7L 3N6
| | - Jules M Blais
- Department of Biology, University of Ottawa , Ottawa, Ontario Canada , K1N 6N5
| |
Collapse
|
21
|
Bókony V, Mikó Z, Móricz ÁM, Krüzselyi D, Hettyey A. Chronic exposure to a glyphosate-based herbicide makes toad larvae more toxic. Proc Biol Sci 2017; 284:20170493. [PMID: 28679726 PMCID: PMC5524492 DOI: 10.1098/rspb.2017.0493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 01/18/2023] Open
Abstract
Chemical pollutants can exert various sublethal effects on wildlife, leading to complex fitness consequences. Many animals use defensive chemicals as protection from predators and diseases, yet the effects of chemical contaminants on this important fitness component are poorly known. Understanding such effects is especially relevant for amphibians, the globally most threatened group of vertebrates, because they are particularly vulnerable to chemical pollution. We conducted two experiments to investigate how exposure to glyphosate-based herbicides, the most widespread agrochemicals worldwide, affects the production of bufadienolides, the main compounds of chemical defence in common toads (Bufo bufo). In both experiments, herbicide exposure increased the amount of bufadienolides in toad tadpoles. In the laboratory, individuals exposed to 4 mg a.e./L glyphosate throughout their larval development had higher bufadienolide content at metamorphosis than non-exposed tadpoles, whereas exposure for 9 days to the same concentration or to 2 mg a.e./L throughout larval development or for 9 days had no detectable effect. In outdoor mesocosms, tadpoles from 16 populations exhibited elevated bufadienolide content after three-weeks exposure to both concentrations of the herbicide. These results show that pesticide exposure can have unexpected effects on non-target organisms, with potential consequences for the conservation management of toxin-producing species and their predators.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Ágnes M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Dániel Krüzselyi
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
22
|
Hoskins TD, Boone MD. Variation in malathion sensitivity among populations of Blanchard's cricket frogs (Acris blanchardi) and implications for risk assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1917-1923. [PMID: 27982495 DOI: 10.1002/etc.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/14/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Intraspecific variability in contaminant sensitivity could undermine risk assessments for nontarget organisms such as amphibians. To test how amphibian populations vary in tolerance to anticipated lethal and sublethal exposures to a pesticide, we exposed Blanchard's cricket frogs (Acris blanchardi) from 3 populations across a broad portion of their range to the insecticide malathion. Exposure in mesocosms to a nominal concentration of 1 mg/L (measured concentrations at 1 h and 24 h postaddition of 0.160 mg/L and 0.062 mg/L, respectively), a realistic direct-overspray scenario, reduced survival to metamorphosis by 43% relative to controls and revealed variation in tolerance among populations. Survival ranged from 74% for the most tolerant population to 18% for the least tolerant population, a 4.1-fold difference. Mass at metamorphosis and time to metamorphosis were unaffected. Although malathion reduced zooplankton abundance, it did not alter food resources (periphyton or phytoplankton relative abundance), or a suite of water-quality variables (pH, temperature, and dissolved oxygen). A 96-h time-to-death assay designed to isolate direct, lethal effects also revealed variation in tolerance among populations. Time to death (mean ± standard error) ranged from 2.4 ± 0.18 h for the least tolerant population to 17.8 ± 4.72 h for the most tolerant population, a 7.4-fold difference. However, relative sensitivities of populations differed in the mesocosm and laboratory studies, which differed in exposure concentrations, suggesting that populations tolerant of high concentrations can be more sensitive to lower concentrations. We suggest that direct overspray could reduce larval survival in the field for this species. Studies assessing the role of contaminants in declines or extrapolating to untested populations, especially across large geographical regions, should quantify the range of intraspecific variation. Risk assessors could address intraspecific variability directly by using an intraspecific uncertainty factor. Environ Toxicol Chem 2017;36:1917-1923. © 2016 SETAC.
Collapse
|
23
|
Mikó Z, Ujszegi J, Hettyey A. Age-dependent changes in sensitivity to a pesticide in tadpoles of the common toad (Bufo bufo). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:48-54. [PMID: 28365461 DOI: 10.1016/j.aquatox.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
The worldwide en masse application of pesticides and the frequently reported malign effects on several non-target organisms underpin the importance of ecotoxicological research on these anthropogenic pollutants. Previous studies showed that sensitivity to herbicides can vary widely depending on additional stress factors, on the species and even on the population investigated. However, there is little information about how sensitivity changes during ontogeny, and how the duration of exposure is linked to the magnitude of malign effects, even though this knowledge would be important for the interpretation of toxicity test results and for formulating recommendations regarding the timing of pesticide application. We exposed tadpoles of the common toad (Bufo bufo) to three concentrations (0, 2 and 4mg a.e./L) of a glyphosate-based herbicide during the 1st, 2nd, 3rd, 4th, or 5th period of larval development or during the entire experiment, and measured survival, time until metamorphosis and body mass at metamorphosis to estimate fitness-consequences. Younger tadpoles were more sensitive to the herbicide in all measured traits than older ones, and this age-dependence was especially pronounced at the high herbicide concentration. Furthermore, tadpoles exposed to the herbicide during the entire experiment developed slower than tadpoles exposed only early on, but we did not observe a similar effect either on body mass or survival. The observed age-dependence of sensitivity to herbicides draws attention to the fact that results of toxicity tests obtained for one age-class are not necessarily generalizable across ontogeny. Also, the age of test animals has to be considered when planning ecotoxicological studies and interpreting their results. Finally, taking into account the temporal breeding habits of local amphibians when planning pesticide application would be highly favourable: if tadpoles would not get exposed to the herbicide during their most sensitive early development, they would sustain less anthropogenic damage from our efforts of controlling weeds.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
24
|
Mikó Z, Ujszegi J, Gál Z, Hettyey A. Effects of a glyphosate-based herbicide and predation threat on the behaviour of agile frog tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 140:96-102. [PMID: 28242374 DOI: 10.1016/j.ecoenv.2017.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
The widespread application of pesticides emphasises the importance of understanding the impacts of these chemicals on natural communities. The most commonly applied broad-spectrum herbicides in the world are glyphosate-based herbicides, which have been suggested to induce significant behavioural changes in non-target organisms even at low environmental concentrations. To scrutinize the behavioural effects of herbicide-exposure we exposed agile frog (Rana dalmatina) tadpoles in an outdoor mesocosm experiment to three concentrations of a glyphosate-based herbicide (0, 2 and 6.5mg acid equivalent (a.e.) / L). To assess whether anti-predator behaviour is affected by the pesticide, we combined all levels of herbicide-exposure with three predator treatments (no predator, caged Aeshna cyanea dragonfly larvae or Lissotriton vulgaris newt adults) in a full factorial design. We observed hiding, activity, proximity to the predator cage and vertical position of tadpoles. We found that at the higher herbicide concentration tadpoles decreased their activity and more tadpoles were hiding, and at least at the lower concentration their vertical position was closer to the water surface than in tadpoles of the control treatment. Tadpoles also decreased their activity in the presence of dragonfly larvae, but did not hide more in response to either predator, nor did tadpoles avoid predators spatially. Further, exposure to the herbicide did not significantly influence behavioural responses to predation threat. Our study documents a definite influence of glyphosate-based herbicides on the behaviour of agile frog tadpoles and indicates that some of these changes are similar to those induced by dangerous predators. This may suggest that the underlying physiological mechanisms or the adaptive value of behavioural changes may similar.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary.
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/ C, Budapest 1117, Hungary
| | - Zoltán Gál
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary; NARIC, Agricultural Biotechnology Institute, Szent-Györgyi Albert u. 4., H-2100 Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, Budapest 1022, Hungary
| |
Collapse
|
25
|
Alza CM, Donnelly MA, Whitfield SM. Additive effects of mean temperature, temperature variability, and chlorothalonil to red-eyed treefrog (Agalychnis callidryas) larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2998-3004. [PMID: 27163793 DOI: 10.1002/etc.3484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/20/2015] [Accepted: 05/08/2016] [Indexed: 05/02/2023]
Abstract
Amphibian populations are declining globally, and multiple anthropogenic stressors, including contamination by pesticides and shifting climates, are driving these declines. Climate change may increase average temperatures or increase temperature variability, either of which may affect the susceptibility of nontarget organisms to contaminants. Eight-day ecotoxicological assays were conducted with red-eyed treefrog (Agalychnis callidryas) larvae to test for additive and interactive effects of exposure to the fungicide chlorothalonil, average temperature, and temperature variability on tadpole growth and survival. Egg masses were collected from seasonal ponds at La Selva Biological Station in Costa Rica, and tadpoles were exposed to a series of chlorothalonil concentrations across a range of ecologically relevant mean temperatures (23.4-27.3 °C) and daily temperature fluctuations (1.1-9.9 °C). Survival was measured each day, and tadpole growth was measured at the end of each trial. Concentrations of chlorothalonil ≥60 µg/L reduced survival, although survival was not affected by mean temperature or daily temperature range, and there were no synergistic interactions between chlorothalonil and temperature regime on survival. Chlorothalonil suppressed tadpole growth at relatively low concentrations (∼15 µg/L). There were impacts of both average temperature and daily temperature range on tadpole growth, although there were no synergistic interactions between temperature regimes and chlorothalonil. The results should inform efforts to manage ecosystems impacted by multiple large-scale anthropogenic stressors as well as methods for the design of ecologically appropriate toxicology trials. Environ Toxicol Chem 2016;35:2998-3004. © 2016 SETAC.
Collapse
Affiliation(s)
- Carissa M Alza
- The Nature Conservancy, Pennsylvania Chapter, Long Pond, Pennsylvania, USA
| | - Maureen A Donnelly
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, Florida, USA
| | - Steven M Whitfield
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, Florida, USA
| |
Collapse
|
26
|
Shuman-Goodier ME, Propper CR. A meta-analysis synthesizing the effects of pesticides on swim speed and activity of aquatic vertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:758-766. [PMID: 27261557 DOI: 10.1016/j.scitotenv.2016.04.205] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 04/15/2023]
Abstract
Pesticide contaminants are ubiquitous in aquatic environments and pose a threat to biodiversity. Pesticides also have diverse mechanisms of action that make it difficult to identify impacts on exposed wildlife. Behavioral measures represent an important link between physiological and ecological processes, and are often used to generalize sub-lethal effects of pesticide exposure. In order to bridge the toxicological and behavioral literature, and identify chemical classes that denote the largest threat, we conducted a meta-analysis summarizing the effects of pesticides on swim speed and activity of aquatic vertebrates. We found that exposure to environmentally relevant concentrations of pesticides reduced the swim speed of exposed amphibians and fish by 35%, and reduced overall activity by 72%. There were also differences in the magnitude of this effect across chemical classes, which likely reflect underlying physiological processes. Pyrethroids, carbamates, and organophosphates all produced a large decrease in swim speed, where as phosphonoglycines and triazines showed no overall effect. Pyrethroids, carbamates, organophosphates, organochlorines, and organotins also produced a large decrease in activity, while phosphonoglycines had no overall effect, and triazines had the opposite effect of increasing activity. Our results indicate that even sub-lethal concentrations of pesticides have a strong effect on critical behaviors of aquatic vertebrates, which can affect fitness and alter species interactions. We expect our synthesis can be used to identify chemical classes producing the largest sub-lethal effects for further research and management.
Collapse
Affiliation(s)
- Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States.
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86001, United States
| |
Collapse
|
27
|
Baker LF, Mudge JF, Thompson DG, Houlahan JE, Kidd KA. The combined influence of two agricultural contaminants on natural communities of phytoplankton and zooplankton. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1021-32. [PMID: 27112456 DOI: 10.1007/s10646-016-1659-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Concentrations of glyphosate observed in the environment are generally lower than those found to exert toxicity on aquatic organisms in the laboratory. Toxicity is often tested in the absence of other expected co-occurring contaminants. By examining changes in the phytoplankton and zooplankton communities of shallow, partitioned wetlands over a 5 month period, we assessed the potential for direct and indirect effects of the glyphosate-based herbicide, Roundup WeatherMax(©) applied at the maximum label rate, both in isolation and in a mixture with nutrients (from fertilizers). The co-application of herbicide and nutrients resulted in an immediate but transient decline in dietary quality of phytoplankton (8.3 % decline in edible carbon content/L) and zooplankton community similarity (27 % decline in similarity and loss of three taxa), whereas these effects were not evident in wetlands treated only with the herbicide. Thus, even at a worst-case exposure, this herbicide in isolation, did not produce the acutely toxic effects on plankton communities suggested by laboratory or mesocosm studies. Indirect effects of the herbicide-nutrient mixture were evident in mid-summer, when glyphosate residues were no longer detectable in surface water. Zooplankton abundance tripled, and zooplankton taxa richness increased by an average of four taxa in the herbicide and nutrient treated wetlands. The lack of significant toxicity of Roundup WeatherMax alone, as well as the observation of delayed interactive or indirect effects of the mixture of herbicide and nutrients attest to the value of manipulative field experiments as part of a comprehensive, tiered approach to risk assessments in ecotoxicology.
Collapse
Affiliation(s)
- Leanne F Baker
- Biology Department and Canadian Rivers Institute, University of New Brunswick Saint John, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada.
| | - Joseph F Mudge
- Biology Department and Canadian Rivers Institute, University of New Brunswick Saint John, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| | - Dean G Thompson
- Canadian Forest Service, Natural Resources Canada, 1219 Queen St. E, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Jeff E Houlahan
- Biology Department and Canadian Rivers Institute, University of New Brunswick Saint John, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| | - Karen A Kidd
- Biology Department and Canadian Rivers Institute, University of New Brunswick Saint John, 100 Tucker Park Rd, Saint John, NB, E2L 4L5, Canada
| |
Collapse
|