1
|
Abdallah SM, Muhammed RE, Mohamed RE, El Daous H, Saleh DM, Ghorab MA, Chen S, El-Sayyad GS. Assessment of biochemical biomarkers and environmental stress indicators in some freshwater fish. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:464. [PMID: 39361177 PMCID: PMC11449979 DOI: 10.1007/s10653-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The mechanism by which an organism can adapt to subtle environmental changes is predicated on modifications to biochemical processes within the cellular metabolism in response to such changes. Changes in these processes have the potential to induce alterations in cellular structures and tissue organization, as well as establish a causal link between fluctuations in these parameters and stressors exposure. This investigation's main goal and innovation is to evaluate the environmental stress indicators in the aquatic ecosystem of Lake Qarun. Pesticide residues in freshwater fish should be the primary focus of evaluation of environmental stressor concentrations, since they serve as bioindicators at different times and places on a spatiotemporal scale. A thorough analysis of suggestive biochemical biomarker reactions should also be conducted. The effects of environmental stressors, specifically pesticide contamination in Qarun Lake, have been observed and investigated in relation to two fish species: Solea aejabtiaca and Oreochronis niloticus. The results of a hazard assessment conducted at six sampling sites using spatio-temporal data revealed elevated mean values for the pesticides, persistent organic pollutants (POPs), organochlorines, organophosphates, and pyrethroids that were detected. A multi biomarker approach facilitates a more comprehensive understanding of stress responses induced by exposure to pollutants. As a result, the activities of the biochemical biomarkers CYP-450, GST, GSH, and LDH in the blood and liver of fish samples were found to be notably elevated. The suitability of the identified variables for biomonitoring of aquatic pollution was validated, and the data unveiled variations in sensitivity among species, implying that Nile tilapia could potentially function as a bioindicator with high sensitivity. The findings were correlated with the concentrations of detrimental organochlorines, organophosphorus, and pyrethroids in the muscles and gills. The data indicates that pollutants linked to agricultural wastes, runoff, and municipal effluent may be discharged into the lake ecosystem. Consequently, to safeguard the environment, it is essential to enforce and implement policies, acts, and regulations that already exist. Assessing the effects of additional environmental stressors on aquatic ecosystems is another way in which biomarker screening with an integrative approach improves our comprehension of how toxicants impact various levels of biological organization and is particularly useful in realistic environmental exposure scenarios.
Collapse
Affiliation(s)
- Salwa M Abdallah
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt.
| | - Reham E Muhammed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
| | - Reda El Mohamed
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
| | - Hala El Daous
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
- Department of Hygiene and Veterinary Care, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Dina M Saleh
- Center of Excellence for Toxicological Testing, Department of Mammalian and Aquatic Toxicology, Central Agricultural Pesticides Lab (CAPL), Agricultural Research Center (ARC), Dokki, Egypt
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Dept. of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt.
| |
Collapse
|
2
|
Li S, Yuan Y, Wang X, Cai L, Wang J, Zhao Y, Jiang L, Yang X. Bioaccumulation and toxicity of terbuthylazine in earthworms (Eisenia fetida). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104016. [PMID: 36435387 DOI: 10.1016/j.etap.2022.104016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Terbuthylazine is an effective and widely used s-triazine herbicide. However, limited data exists on its toxicity and bioaccumulation in earthworms (Eisenia fetida). In this study, we investigated the bioaccumulation, antioxidant enzyme activity, detoxification enzyme activity, and DNA damage in earthworms when exposed to terbuthylazine. The results indicated that terbuthylazine in soil had low bioaccumulation in earthworms and the biota-soil accumulation factors of terbuthylazine declined with an increasing soil terbuthylazine concentration. In the enzyme activity assays, the superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities showed upward trends when compared with the control. The carboxylesterase (CarE) activity increased on day 21. The 8-hydroxy-2-deoxyguanosine (8-OHdG) content, a DNA damage bioindicator, was higher than that of the control on day 21. Combined with the integrated biological response index version 2 analysis, these results can provide a comprehensive evaluation of the toxicological effects that terbuthylazine has on earthworms and soil ecosystems.
Collapse
Affiliation(s)
- Shun Li
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Ye Yuan
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xing Wang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Leiming Cai
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China.
| | - Jiao Wang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Yuanji Zhao
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China
| | - Lei Jiang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xu Yang
- Safety Evaluation Center, Shenyang SYRICI Test Co. Ltd, Shenyang 110027, China; Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| |
Collapse
|
3
|
Caliani I, Cannicci S, Pretti C, Baratti M, Contini G, Vitale M, Casini S, Fossi MC, Iannucci A, Fratini S. A multidisciplinary integrated approach using Pachygrapsus marmoratus to assess the impact of port activities on mediterranean marine protected areas. CHEMOSPHERE 2023; 312:137129. [PMID: 36356813 DOI: 10.1016/j.chemosphere.2022.137129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The establishment of marine protected areas is considered the main global strategy to halt the loss of marine biodiversity. Since most of marine areas are open systems, this form of habitat protection cannot prevent their contamination due to human activities performed outside of their borders. Innovative approaches to assess the health status of protected marine habitats are therefore needed. Here we developed a multidisciplinary approach that combines ecological characteristics, bioaccumulation of inorganic and organic pollutants, cell damage (micronuclei frequency, nuclear alterations and LPO) and enzymatic (AChE, CAT, IDH, LDH, GST and CAT) markers focused on an intertidal brachyuran crab, Pachygrapsus marmoratus, to assess the impacts of contaminant exposure on Mediterranean coastal habitats. As study sites we selected two protected areas and two sites within industrial ports of the Ligurian Sea. Our results showed that the selected crab species is an excellent bioindicator. Individuals collected in sites with the highest levels of heavy metal pollution showed the highest signals of stress responses at both cellular and enzymatic levels, coupled with a high incidence of the parasite Sacculina carcini, a signal of impairment of their standard development and reproduction cycle. We could also prove that one of the selected marine protected areas showed the same intensity of impact as its adjacent port site. Our multidisciplinary approach proved to be a valuable tool to assess the environmental quality and health of protected and disturbed Mediterranean coastal environments and to inform efficient management and protection schemes for such habitats.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefano Cannicci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy; The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, I-57128, Italy; Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, Pisa, I-56124, Italy.
| | - Mariella Baratti
- Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna Del Piano 10, Sesto Fiorentino, (FI), I-50019, Italy.
| | - Ginevra Contini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Matteo Vitale
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Alessio Iannucci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| |
Collapse
|
4
|
Duarte B, Figueiredo A, Ramalhosa P, Canning-Clode J, Caçador I, Fonseca VF. Unravelling the Portuguese Coastal and Transitional Waters' Microbial Resistome as a Biomarker of Differential Anthropogenic Impact. TOXICS 2022; 10:613. [PMID: 36287893 PMCID: PMC9612280 DOI: 10.3390/toxics10100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial communities thriving in these habitats, leading to the development of microbial resistance traits. The samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with anthropogenic pollution. These anthropogenic pressures, along with the differences in species diversity among the surveyed sites, lead to observed differences in the presence and resistance-related sequences' abundance (set of all metal and antibiotic resistant genes and their precursors in pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox regulation and oxidative stress response were prevalent. A higher number of significant correlations were found between the abundance of resistance-related sequences and pollution, inorganic pressures and density of nearby population centres when compared to the number of significant correlations between taxa abundance at different phylogenetic levels and the same environmental traits. This points towards predominance of the environmental conditions over the sequence abundance rather than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the taxa present in the samples.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre and ARNET—Aquatic Research Infrastructure Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patrício Ramalhosa
- MARE—Marine and Environmental Sciences Centre and ARNET—Aquatic Research Infrastructure Network Associated Laboratory, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105 Funchal, Portugal
- OOM—Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105 Funchal, Portugal
| | - João Canning-Clode
- MARE—Marine and Environmental Sciences Centre and ARNET—Aquatic Research Infrastructure Network Associated Laboratory, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105 Funchal, Portugal
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre and ARNET—Aquatic Research Infrastructure Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre and ARNET—Aquatic Research Infrastructure Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Fonseca VF, Duarte IA, Feijão E, Matos AR, Duarte B. Fatty acid-based index development in estuarine organisms to pinpoint environmental contamination. MARINE POLLUTION BULLETIN 2022; 180:113805. [PMID: 35665652 DOI: 10.1016/j.marpolbul.2022.113805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Estuaries have long been preferred areas of human settlement, where multiple anthropogenic activities take place, which have contributed to a significant decrease in environmental quality of these ecosystems. Accordingly, environmental monitoring and management have long relied on the development of tools that summarize and simplify complex information and provide direct interpretation of quality status. Here, the fatty acid profiles of three abundant estuarine species, namely Hediste diversicolor, Carcinus maenas and Pomatoschistus microps, were used to develop and validate a multimetric index, based on the Euclidean dissimilarities of profiles between sites, in response to contamination gradient in a large urban estuary. Spatial differences were generally related to unsaturated fatty acids (mono- and polyunsaturated, of the n-3 and n-6 series) in all species, albeit more pronounced in P. microps. Multivariate models returned high classification accuracies for the three sampled sites, varying from 73.3% in the invertebrate species to 100.0% in the fish species. Results show the applicability of the developed FA-based index, particularly due to the easy of communication, for managers and the public alike, but also highlight the need for prior validation on species suitability or sensitivity to depict environmental contamination.
Collapse
Affiliation(s)
- Vanessa F Fonseca
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Biosystems and Applied Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Wang Y, Hong H, Qian L, Wang Q, Li J, Huang Q, Jiang Y, Lu H, Liu J, Dong Y, Li J, Yan C. Polycyclic aromatic hydrocarbons at subcritical levels as novel indicators of microbial adaptation in a pre-industrial river delta. CHEMOSPHERE 2022; 295:133858. [PMID: 35124082 DOI: 10.1016/j.chemosphere.2022.133858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Marine sediment is considered a vast sink for organic pollutants including polycyclic aromatic hydrocarbons (PAHs). However, little is known about the relationship between subcritical PAH allocation and benthic microbial patterns. Thus, we carried out a field investigation at the abandoned Yellow River Delta (AYRD) to deepen the understanding of PAHs' horizontal distribution and ecological roles on the continental shelf. The PAH level in the AYRD is relatively low and distance-independent, indicating it resulted from long-term, chronic, anthropogenic input. The combined application of diagnostic molecular ratios reported inconsistent PAH sources, which might be due to the low PAH concentrations and the complexity of contributing sources. Positive Matrix Factorization provided a more robust source classification and identified three main PAH sources-coal combustion and vehicle emissions, petrogenic process, and fossil fuels. The benthic microbiome did not show a significant response to PAHs in terms of microbial assemblage or alpha-diversity. However, Operational Taxonomic Units in some specific phyla, like Thaumarchaeota, Proteobacteria, Acidobacteria, and Chytridiomycota, correlated with the PAH source indicators, supporting the notion that PAH source indicators can act as a novel environmental indicator for microbial adaption. What's more, Microbial Ecological Networks show more connection at sites identified as biomass combustion by both Fluoranthene/(Fluoranthene + Pyrene) and Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene) compared to the ones identified as biomass combustion by Fluoranthene/(Fluoranthene + Pyrene) and petroleum combustion by Indeno(1,2,3-cd)pyrene/(Indeno(1,2,3-cd)pyrene + Benzo(ghi)perylene). Herein, we demonstrate that the PAHs' source indicator can serve as a novel indicator of the interactions between microorganisms, and thus, should be applied to the sustainable management effort in the offshore area.
Collapse
Affiliation(s)
- Yazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Academy of Environmental Planning and Design, Nanjing University, Nanjing, 210000, Jiangsu, China.
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lu Qian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qiang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Junwei Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; Key Laboratory of the Ministry of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Guilin, 541004, Guangxi, China.
| | - Qi Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yongcan Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yunwei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.
| | - Jian Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, 361102, Fujian, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
7
|
Wang X, Li P, He S, Xing S, Cao Z, Cao X, Liu B, Li ZH. Effects of tralopyril on histological, biochemical and molecular impacts in Pacific oyster, Crassostrea gigas. CHEMOSPHERE 2022; 289:133157. [PMID: 34871613 DOI: 10.1016/j.chemosphere.2021.133157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, the toxic effects of tralopyril, as a new antifouling biocide, on aquatic organisms have aroused widespread attention about the potential toxicity. However, the mechanism of tralopyril on marine mollusks has not been elaborated clearly. In this study, the histological, biochemical and molecular impacts of tralopyril on adult Crassostrea gigas were investigated. The results indicated that the 96 h LC50 of tralopyril to adult Crassostrea gigas was 911 μg/L. After exposure to tralopyril (0, 40, 80 and 160 μg/L) for 6 days, the mantle mucus secretion coverage ratio of Crassostrea gigas was increased with a dose-dependent pattern. Catalase (CAT) activity was significantly increased, amylase (AMS) activity, acid phosphatase (ACP) activity and calcium ion (Ca2+) concentration significantly decreased. Meanwhile, integrated biomarker responses (IBR) index suggested that higher concentrations of tralopyril caused severer damage to Crassostrea gigas. In addition, the mRNA expression levels of biomineralization related genes in the mantle were significantly upregulated. Collectively, this study firstly revealed the histological, biochemical and molecular impacts of tralopyril exposure on adult Crassostrea gigas, which provided new insights for understanding the toxicity of tralopyril in marine mollusks.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
8
|
Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. Microplastic intake and enzymatic responses in Mytilus galloprovincialis reared at the vicinities of an aquaculture station. CHEMOSPHERE 2021; 280:130575. [PMID: 33957472 DOI: 10.1016/j.chemosphere.2021.130575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a potential source of microplastics (MPs) that could be strong stressors for marine organisms. In this study, we evaluated the effects of MPs derived from aquaculture in antioxidant defences and oxidative stress markers in gills of Mytilus galloprovincialis. Mussels were distributed in three areas with different impacts: inside aquaculture cages, Control 1 (located inside Andratx harbour) and Control 2 (located in a no-anthropized area). Samples were obtained along three different time periods in May (T0), July (T60) and in September (T120). At each sampling period, mussels' biometric measurements were taken, and tissue samples were kept frozen for biochemical determinations and to determine the intake of MPs. An increase in MPs intake was detected throughout the study, and this increase was significantly higher in samples from the aquaculture cages. Similarly, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase) were significantly higher in samples from cages at T120. Additionally, a similar tendency was observed in glutathione-s-transferase, with a higher activity in the aquaculture cages at T60 and T120. Malondialdehyde and carbonyl protein derivates as a marker of oxidative damage were also measured and samples from aquaculture cages presented higher oxidative stress markers, mainly in T120. In conclusion, living in environments exposed to aquaculture activities at sea may imply a higher intake of MPs which in turn might cause an antioxidant response in M. galloprovincialis which is not enough to avoid oxidative damage.
Collapse
Affiliation(s)
- X Capo
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - M Rubio
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Solomando
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
9
|
Duarte B, Carreiras J, Feijão E, Reis-Santos P, Caçador I, Matos AR, Fonseca VF. Fatty acid profiles of estuarine macroalgae are biomarkers of anthropogenic pressures: Development and application of a multivariate pressure index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147817. [PMID: 34034187 DOI: 10.1016/j.scitotenv.2021.147817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/27/2023]
Abstract
Transitional ecosystems are among the most degraded ecosystems worldwide, with several groups of organisms investigated for their reliability as biological indicators of human-driven disturbances. Recently non-traditional biochemical biomarkers such as an individual's fatty acids profile have been identified as promising tools for assessing contaminant exposure. In this work, two abundant Atlantic benthic macroalgae (Ulva lactuca and Fucus vesiculosus species) were surveyed in three mudflat areas of the highly urbanized Tejo estuary, with increasing anthropogenic disturbance degrees (Alcochete, Rosário and Seixal mudflats, increasing in contamination by this order) and their fatty acids evaluated as potential biomarkers for exposure to contaminants known to have toxic effects on biota. In terms of contamination the metal pollution index of all the compartments analysed (sediment bioavailable and total metal concentrations and thallus metal concentrations) revealed the same tendencies with lower contamination levels in Alcochete, intermediate in Rosário and high contamination levels in Seixal. In the thallus of U. lactuca thallus could be observed a strong decrease in C18-fatty acids along the contamination gradient, likely due to lipid peroxidation from metal-generated reactive oxygen species. Nevertheless, an increase in stearic and hexadecatrienoic acids in the thallus from the most contaminated site suggested counteractive mechanisms maintain the production of C18-fatty acid pool. A similar response was found in F. vesiculosus but with palmitic acid acting as precursor for the synthesis of stearic acid, allowing the maintenance of oleic and linoleic acids levels in the membranes to counteract oxidative stress. Beyond the physiological interest of these mechanisms, fatty acid profiles were used to develop a novel multivariate pressure index (Multi-PI), that beyond the contaminant concentration would reflect the response of these biomonitor species towards anthropogenic disturbance, through the evaluation of fatty acid profiles, which are also key molecules from a trophic perspective within the estuarine system. The Multi-PI efficiency in responding to different environmental contamination degrees, was substantiated by strong and positive correlations with thallus and sediment contamination. This indicated that fatty acid profiles reflect thallus and benthic habitat contamination and are efficient biomarkers of environmental metal contamination. Therefore, the sessile and abundant nature of benthic macroalgae allied to their fatty acid responses can be leveraged as suitable biomarkers for contaminant monitoring in future impact assessment and ecotoxicology studies.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - João Carreiras
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Yu J, Xiao Y, Wang Y, Xu S, Zhou L, Li J, Li X. Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot (Scophthalmus maximus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117103. [PMID: 33894628 DOI: 10.1016/j.envpol.2021.117103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Nitrate (NO3-) is one of the common inorganic nitrogen compound pollutants in natural ecosystems, which may have serious risks for aquatic organisms. However, its toxicological mechanism remains unclear. In the current study, juvenile turbot (Scophthalmus maximus) were exposed to different concentrations of NO3- (CK- 3.57 ± 0.16, LN - 60.80 ± 1.21, MN - 203.13 ± 10.97 and HN - 414.16 ± 15.22 mg/L NO3-N) for 60 d. The blood biochemical assays results revealed that elevated NO3- exposure significantly increased the concentrations of plasma NO3-, NO2-, MetHb, K+, cortisol, glucose, triglyceride, lactate, while significantly decreased the concentrations of plasma Hb, Na+ and Cl-, which meant that NO3- caused hypoxic stress and further affected the osmoregulation and metabolism in fish. Besides, exposure to MN and HN induced a significant decrease in the level of antioxidants, including SOD (Point: 60th day, MN, HN v.s. CK: 258.36, 203.73 v.s. 326.95 U/mL), CAT (1.97, 1.17 v.s. 2.37 U/mL), GSH (25.38, 20.74 v.s. 37.00 μmol/L), and GPx (85.32, 71.46 v.s. 129.36 U/mL), and a significant increase of MDA (7.54, 9.73 v.s. 5.27 nmol/L), suggesting that NO3- exposure leading to a disruption of the redox status in fish. Also, further research revealed that NO3- exposure altered the mRNA levels of p53 (HN: up to 4.28 folds) and p53-regulated downstream genes such as Bcl-2 (inferior to 0.44 folds), caspase-3 (up to 2.90 folds) and caspase-7 (up to 3.49 folds), indicating that NO3- exposure induced abnormal apoptosis in the fish gills. Moreover, IBRv2 analysis showed that the toxicity of NO3- exposure to turbot was dose-dependent, and the toxicity peaked on the 15th day. In short, NO3- is an environmental toxicological factor that cannot be ignored, because its toxic effects are long-term and could cause irreversible damage to fish. These results would be beneficial to improve our understanding of the toxicity mechanism of NO3- to fish, which provides baseline evidence for the risk assessment of environmental NO3- in aquatic ecosystems.
Collapse
Affiliation(s)
- Jiachen Yu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Yanfeng Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Shihong Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Li Zhou
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China.
| | - Xian Li
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
11
|
Constructing a de novo transcriptome and a reference proteome for the bivalve Scrobicularia plana: Comparative analysis of different assembly strategies and proteomic analysis. Genomics 2021; 113:1543-1553. [PMID: 33774165 DOI: 10.1016/j.ygeno.2021.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
Scrobicularia plana is a coastal and estuarine bivalve widely used in ecotoxicological studies. However, the underlying molecular mechanisms for S. plana pollutant responses are hardly known due to the lack of molecular databases. Thus, in this study we present a holistic approach to assess a robust reference transcriptome and proteome of this clam. A mixture of control and metal-exposed individuals was used for mRNA isolation. Four sets of high quality filtered preprocessed reads were generated (two quality scores and two sequenced lengths) and assembled with Mira, Ray and Trinity algorithms. The sixty-four generated assemblies were refined, filtered and evaluated for their proteomic quality. Eight assemblies presented top Detonate scores but one was selected due to its compactness and biological representation, which was generated: (i) from the highest quality dataset (Q20L100), (ii) using Trinity algorithm with all k-mers (AtKa), (iii) removing redundancy by CD-HIT (RR80), and (iv) filtering out poor contigs (F), that was subsequently named Q20L100AtKaRR80F. S. plana proteomic analysis revealed 10,017 peptide groups that corresponded to 2066 proteins with a wide coverage of molecular functions and biological processes, confirming the strength of the database generated.
Collapse
|
12
|
Wang Z, Li C, Shao Y, Xue W, Wang N, Xu X, Zhang Z. Antioxidant defense system responses, lysosomal membrane stability and DNA damage in earthworms (Eisenia fetida) exposed to perfluorooctanoic acid: an integrated biomarker approach to evaluating toxicity. RSC Adv 2021; 11:26481-26492. [PMID: 35479973 PMCID: PMC9037344 DOI: 10.1039/d1ra04097a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is one of the most representative perfluoroalkyl substances and has garnered intense human and ecological health concerns due to its ubiquity in the environment, bio-accumulative nature and potential toxicological effects. In this study, an artificial soil containing PFOA was used to evaluate the biological toxicity of PFOA to earthworms Eisenia fetida. Six kinds of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO), as well as lysosomal membrane stability (LMS) and DNA damage in earthworms were detected after exposure to 0, 10, 20, 40, 80 and 120 mg kg−1 PFOA in the soil for 3, 7, 14, 28, and 42 days. The results of multi-biomarker responses indicated that PFOA can induce various adverse effects on earthworms, including growth inhibition, oxidative stress and genotoxicity, resulting in lipid membrane peroxidation, decreased lysosomal membrane stability and DNA damage. LPO, LMS and DNA damage all presented dose- and time-dependent relationships. An integrated biomarker response (IBR) index was applied to summarize the multi-biomarker responses to star plots, and the IBR value was calculated as the area of the plots to indicate the integrated stress of PFOA on earthworms. The IBR index showed that the integrated stress induced by PFOA increased markedly throughout the exposure period, exhibiting a concentration-related and exposure time-related effect. The graphical changing trend of the IBR star plots, along with the multi-biomarker responses, suggested that the biomarkers of the antioxidant defense system in earthworms are sufficiently sensitive for short-term PFOA biomonitoring programs, while the bioindicators that indicate actual damage in organisms are more suitable to be employed in long-term monitoring programs for the risk assessment of PFOA. This is the first study evaluating the biological toxicity of PFOA by using an integrated biomarker approach. Our results showed that PFOA can potentially damage soil ecosystems, which provides valuable information for chemical risk assessment of PFOA in the soil environment and early warning bioindicators of soils contaminated by PFOA. The integrated biomarker response (IBR) index was calculated to evaluate the integrated toxicological effects of PFOA on earthworm Eisenia fetida.![]()
Collapse
Affiliation(s)
- Zhifeng Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Chaona Li
- Jiangxi Nuclear Industry Geological Bureau Testing Center
- Nanchang 330002
- P. R. China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Weina Xue
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Ning Wang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Xiaoming Xu
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering
- Shandong Jianzhu University
- Jinan 250101
- P. R. China
| |
Collapse
|
13
|
Zhao Y, Sun L, Li Q, Yan X, Li Z, Liu B, Li G. Use of integrated biomarker response for evaluating antioxidant stress and DNA damage of earthworms (Eisenia fetida) in decabromodiphenyl ethane-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114706. [PMID: 32388306 DOI: 10.1016/j.envpol.2020.114706] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a new and popular type of brominated flame retardant (BFR) with high bromine content, strong thermal stability, and ultraviolet resistance. To evaluated the potential toxicity of this new BFR to soil ecosystem, different concentrations of DBDPE were used to observe effects on earthworms (Eisenia fetida) in artificial soil. The reactive oxygen species (ROS) contents, activities of antioxidase system and detoxify enzyme, levels of malondialdehyde (MDA), as well as DNA damage in earthworms were measured after exposure to 0, 2.5, 5, 10, and 20 mg/kg DBDPE in artificial soil for 7, 14, 21, and 28 days. The results showed that ROS and MDA content significantly increased for all treatments from days 7-21, followed by a decrease. Throughout the experimental period, SOD, POD, and CAT activities increased. The GST activity was stimulated significantly from days 14-28. Besides, the olive tail moment (OTM) value in all treated groups was significantly higher than that in the control and exhibited a concentration-related and exposure time-related response. This is the first study evaluating the biological toxicity of BFR at different concentrations using an integrated biomarker response index. Our results show that DBDPE has biochemical toxicity on earthworms, which sheds some light on the potential risks of DBDPE in the soil environment and provides a basis for the monitoring and diagnosis of soils contaminated with DBDPE.
Collapse
Affiliation(s)
- Yiyi Zhao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangqi Sun
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qianqian Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaotong Yan
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ziwei Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Bin Liu
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
14
|
Yao F, Wu J, Ru H, Li Y, Wu L, Ni Z, Chen D, Zhong L. Thyroid disruption and developmental toxicity caused by Cd 2+ in Schizopygopsis younghusbandi larvae. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108783. [PMID: 32344129 DOI: 10.1016/j.cbpc.2020.108783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the adverse effects of cadmium (Cd2+) on aquatic systems have attracted much attention because Cd2+ can induce endocrine disorders and toxicity in aquatic organisms at low levels. However, its effects on the thyroid system in native fish in Lhasa are still unclear. In the present study, Schizopygopsis younghusbandi larvae were exposed to Cd2+ (0.25, 2.5, 25 or 250 μg/L) for 7 or 14 days to determine its toxic effects on thyroid function. The results showed that whole-body total T4 and T3 levels were significantly decreased, which was accompanied by the significant upregulation of the expression of the dio1 and dio2 genes after exposure to Cd2+ for 7 or 14 days. Genes related to thyroid hormone synthesis (crh and tshβ) were upregulated after both 7 and 14 days of Cd2+ exposure, possibly due to the negative feedback regulation of the hypothalamic-pituitary-thyroid (HPT) axis caused by a decrease in thyroid hormone. In addition, survival rates and body lengths were reduced after treatment with Cd2+. This suggests that Cd2+ caused developmental toxicity in Schizopygopsis younghusbandi larvae. An integrated assessment of biomarker response (IBR) showed that there were dose-dependent and time-dependent effects of Cd2+ exposure on Schizopygopsis younghusbandi larvae. Schizopygopsis younghusbandi larvae were sensitive to Cd2+, which caused adverse effects at a concentration as low as 2.5 μg/L. In summary, the results indicated that Cd2+ causes thyroid disruption and developmental toxicity in Schizopygopsis younghusbandi larvae and that wild Schizopygopsis younghusbandi larvae living in the Lhasa River are at potential ecological risk.
Collapse
Affiliation(s)
- Fan Yao
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Wu
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Daqing Chen
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of the Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
15
|
Tian Y, Xia X, Wang J, Zhu L, Wang J, Zhang F, Ahmad Z. Chronic Toxicological Effects of Carbamazepine on Daphnia magna Straus: Effects on Reproduction Traits, Body Length, and Intrinsic Growth. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:723-728. [PMID: 31520142 DOI: 10.1007/s00128-019-02715-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In recent years, pharmaceuticals and personal care products (PPCPs) that remain in the environment have become increasingly important. Carbamazepine (CBZ) is a widely used antiepileptic drug that has a potential impact on the environment due to its Physico-chemical properties, which are rarely eliminated in conventional water treatment. Daphnia magna Straus (DMS) is a fundamental link of aquatic ecosystem chain. The influence of CBZ toxicity on DMS can effectively reflect the effects of CBZ toxicity on the aquatic environment. In this study, DMS was used as a subject to assess the chronic effects of CBZ exposure. It was found that after 21 days of CBZ exposure, the breeding frequency, the total number of eggs laid, body length, and intrinsic growth rate of DMS decreased with increasing CBZ concentrations. Maximum reductions of 69% in fecundity and 60% in fertility were observed at 0.5 mg/L CBZ, while a maximum reduction of 60% in body length was observed at 0.001 mg/L CBZ concentration. The integrated biomarker response version 2 (IBRv2) analysis suggests that with the increase in CBZ concentration, the overall negative effect of CBZ on DMS was enhanced.
Collapse
Affiliation(s)
- Yu Tian
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Taian, 271000, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Fengzhao Zhang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271000, China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
16
|
Gu B, Liang W, Yang T, Hu Z, Shen H. Metallothionein, hemocyte status and superoxide dismutase/aspartate aminotransferase activity are sensitive biomarkers of cadmium stress in Onchidium reevesii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105284. [PMID: 31479758 DOI: 10.1016/j.aquatox.2019.105284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Metal pollution in the environment is a serious threat to the biological sustainability of coastal ecosystems. However, our current understanding of the biological effects of metals in these ecosystems is limited. Herein, we investigated the responses of the sea slug Onchidium reevesii to persistent sublethal Cd environmental stress. Dynamic expression was analyzed using various biomarkers. The full-length cDNA of O. reevesii metallothionein (MT) was cloned and consists of 1639 nucleotides encoding a 65 amino acid polypeptide. Phylogenetic analysis showed that Or-MT has conserved Cys residues typical of MTs, including a typical Cys-X-Cys motif, implying that it can function the same as the MT of other shellfish. Expression of Or-MT in response to Cd varied in different tissues, and was highest in gastropod tissues. Thus, regiotemporal expression of MT may be useful for assessing pollution in coastal areas. Cellular immunity (in the hemolymph) and enzyme activity (in the hepatopancreas) were investigated along with hemocyte viability, hemocyte phagocytosis, and superoxide dismutase (SOD) and aspartate aminotransferase (AST) activities. Hemocyte viability was elevated under continuous Cd exposure but hemocyte phagocytosis was decreased. SOD and AST activities in the hepatopancreas fluctuated considerably, and SOD activity was more sensitive. SOD activity was lowest at 4 h and highest at 12 h, while AST activity peaked at 2 h and was lowest at 48 h. Thus, changes in enzyme activity may reveal adaptation to stress. Furthermore, the response patterns of certain enzymes, cellular immunity, and MT expression in O. reevesii could serve as biomarkers of Cd pollution in aquatic environments.
Collapse
Affiliation(s)
- Bingning Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Wei Liang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Tiezhu Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China
| | - Zhongjun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| | - Heding Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China.
| |
Collapse
|
17
|
Liu X, Chen Q, Ali N, Zhang J, Wang M, Wang Z. Single and joint oxidative stress-related toxicity of sediment-associated cadmium and lead on Bellamya aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24695-24706. [PMID: 31240645 DOI: 10.1007/s11356-019-05769-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The biotoxicity of heavy metals in sediments toward benthic organisms has evoked great concern for the health of freshwater ecosystems. This study applied a sediment toxicity testing protocol to investigate the single and joint toxicity of cadmium (Cd) and lead (Pb) on Bellamya aeruginosa. B. aeruginosa were exposed to different concentrations of Cd (5, 25, and 100 mg/kg), Pb (20, 100, and 400 mg/kg), and their different concentration combinations. A suite of biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), metallothionein (MT), malondialdehyde (MDA), and acetylcholinesterase (AChE), were measured after 7, 14, 21, and 28 days of exposure to evaluate their oxidative stress status. Cell apoptosis of soft tissue was also determined after exposure. Results revealed that these endpoints represented sensitive biomarkers for the characterization of the oxidative stress response induced by these metals. Specifically, a decrease of SOD and GPx and an increase of MDA were indicative of the potential failure of the antioxidant defense system in neutralizing the reactive oxygen species (ROS) generated in the exposure of the Pb-treated group. The integrated biomarker response (IBR) index revealed the most significant sub-lethal toxicity for Pb-spiked sediments, leading to the highest rate of cell apoptosis (70.8%). Exposure to Cd resulted in a time- and dose-dependent effect on MT levels, which suggested active detoxification of this metal. Exposure to the mixture resulted in amelioration of Pb toxicity, likely due to the competitive binding of Cd to active enzyme, with the result of an observed antagonistic interaction. This study indicated that B. aeruginosa represents a good biomonitor for assessing Cd and Pb contamination of sediments, and laid the foundation for their potential risk assessments in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China.
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai, 264005, China
| | - Min Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Zhiyuan Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| |
Collapse
|
18
|
Gouveia N, Oliveira CRM, Martins CP, Maranho LA, Seabra Pereira CD, de Orte MR, Harayashiki CAY, Almeida SM, Castro IB. Can shell alterations in limpets be used as alternative biomarkers of coastal contamination? CHEMOSPHERE 2019; 224:9-19. [PMID: 30802781 DOI: 10.1016/j.chemosphere.2019.02.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The present study evaluated the association among traditional biochemical biomarkers with biometric, morphometric, and elemental composition of Lottia subrugosa (patelliform gastropod) shells from three multi-impacted coastal areas in Brazil. The study was carried out in Todos os Santos Bay (TSB), Santos/São Vicente Estuarine System (SESS) and Paranaguá Estuarine Complex (CEP), using three sampling sites to seek contamination gradients in each area. Results showed that all biomarkers evaluated responded to environmental contamination, regardless the presence (SESS and CEP) or absence (TSB) of a gradient of contamination. The responses found using biometric and morphometric parameters were consistent with the traditional biomarkers of exposure and effects (lipid peroxidation and DNA damage). Indeed, changes in elemental composition of L. subrugosa shells suggest that exposure to contaminated environments is probably responsible for the alterations detected. Despite the simplicity and lower cost of biometric and morphometric analyzes, these parameters are influenced by natural environmental conditions from which biases may arise. Therefore, these tools should be evaluated through experimental studies before it can be used in future assessments. However, the findings from the present study were observed in three aquatic systems distributed over a wide range of latitudes, which indicates that gastropod shells reflect effects resulting from environmental contamination.
Collapse
Affiliation(s)
- Nayara Gouveia
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Carolina R M Oliveira
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Camila P Martins
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Luciane A Maranho
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Manoela R de Orte
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Cyntia A Y Harayashiki
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| | - Sérgio M Almeida
- Departamento de Biologia, Universidade Católica de Pernambuco, R. Do Príncipe 526, CEP, 50050-900, Recife, Brazil
| | - Italo B Castro
- Departamento de Ciências Do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil.
| |
Collapse
|
19
|
Cao R, Zhang T, Li X, Zhao Y, Wang Q, Yang D, Qu Y, Liu H, Dong Z, Zhao J. Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:167-178. [PMID: 30870663 DOI: 10.1016/j.aquatox.2019.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
Ocean acidification (OA) has been found to increase the release of free Cu2+ in seawater. However, only a handful of studies have investigated the influence of OA on Cu accumulation and cellular toxicity in bivalve species. In this study, Pacific oysters, Crassostrea gigas, were exposed to 25 μg/L Cu2+ at three pH levels (8.1, 7.8 and 7.6) for 14 and 28 days. Physiological and histopathological parameters [(clearance rate (CR), respiration rate (RR), histopathological damage and condition index (CI)), oxidative stress and neurotoxicity biomarkers [superoxide dismutase (SOD) and glutathione transferase (GST) activities, lipid peroxidation (LPO) and acetylcholinesterase (AChE) activity], combined with glycolytic enzyme activities [pyruvate kinase (PK) and hexokinase (HK)] were investigated in C. gigas. The bioconcentration of Cu was increased in soft tissues of Cu-exposed oysters under OA. Our results suggest that both OA and Cu could lead to physiological disturbance, oxidative stress, cellular damage, disturbance in energy metabolism and neurotoxicity in oysters. The inhibited CR, increased glycolytic enzymes activities and decreased CI suggested that the energy metabolism strategy adopted by oysters was not sustainable in the long term. Furthermore, integrated biomarker response (IBR) results found that OA and Cu exposure lead to severe stress to oysters, and co-exposure was the most stressful condition. Results from this study highlight the need to include OA in future environmental assessments of pollutants and hazardous materials to better elucidate the risks of those environmental perturbations.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao Li
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuting Zhao
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
20
|
Yang Y, Xiao Y, Chang Y, Cui Y, Klobučar G, Li M. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:78-86. [PMID: 29660616 DOI: 10.1016/j.ecoenv.2018.04.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity. Hameatoxylin and eosin (H&E) demonstrated that intestinal cells suffered serious damage, and the observed up-regulation of chitinase and cathepsin L in mRNA levels confirmed it. Both TCEP and TCP significantly increased the DNA damage when the concentrations exceeded 1 mg/kg (p < 0.01), and a dose-response relationship was observed. In addition, TCEP and TCP also changed the acetylcholinesterase (AChE) activity and expression of genes associated with neurotoxic effects in earthworms even under exposure to low OPEs concentration (0.1 mg/kg). Moreover, genes associated with nicotinic acetylcholine receptors (nAChR) and carrier protein further demonstrated that highest concentration of TCEP (10 mg/kg) may have an overloading impact on the cholinergic system of E. fetida. Integrated Biological Response index (IBRv2) showed that TCEP exerted stronger toxicity than TCP under the same concentrations. We deduced that the observed intestinal damage, oxidative stress and neurotoxic effect might be the primary mechanisms of TCEP and TCP toxicity. This study provides insight into the toxicological effects of OPEs on earthworm model, and may be useful for risk assessment of OPEs on soil ecosystems.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, PR China
| | - Göran Klobučar
- Faculty of Science, University of Zagreb, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
21
|
Cao R, Wang D, Wei Q, Wang Q, Yang D, Liu H, Dong Z, Zhang X, Zhang Q, Zhao J. Integrative Biomarker Assessment of the Influence of Saxitoxin on Marine Bivalves: A Comparative Study of the Two Bivalve Species Oysters, Crassostrea gigas, and Scallops, Chlamys farreri. Front Physiol 2018; 9:1173. [PMID: 30246779 PMCID: PMC6110902 DOI: 10.3389/fphys.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023] Open
Abstract
Harmful algae blooms have expanded greatly in recent decades, and their secreted toxins pose a severe threat to human health and marine ecosystems. Saxitoxin (STX) is a main paralytic shellfish poison naturally produced by marine microalgae of the genus Alexandrium. Despite numerous studies have assessed the impacts of STX on marine bivalves, comparative in vivo study on the toxicity of STX on bivalves with distinct accumulation ability (such as oysters and scallops) has been seldom investigated. The aim of this study was to identify whether distinct sensitivity exists between oysters, Crassostrea gigas, and scallops, Chlamys farreri under the same amount of STX exposure using multiple biomarker responses. The responses of different biochemical markers including oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, and lipid peroxidation) and immunotoxicity biomarkers (hemocyte phagocytosis rate, reactive oxidative species production, and DNA damages) were evaluated in bivalves after 12, 48, and 96 h of exposure to STX. The integrated biomarker responses value combined with two-way ANOVA analysis suggested that STX posed slightly severer stress on scallops than oysters for the extended period of time. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess the toxicity associated with STX exposure in marine bivalves.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianyu Wei
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoli Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
22
|
Duarte IA, Vasconcelos RP, França S, Batista MI, Tanner S, Cabral HN, Fonseca VF. Short-term variability of fish condition and growth in estuarine and shallow coastal areas. MARINE ENVIRONMENTAL RESEARCH 2018; 134:130-137. [PMID: 29370935 DOI: 10.1016/j.marenvres.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Short-term variability in condition factor: relative condition factor Kn; biochemical condition: RNA:DNA and protein content; and instantaneous growth rates were determined in estuarine and coastal fish. Dicentrarchus labrax, Solea senegalensis and Pomatoschistus microps were sampled in the Tejo estuary, while Trachurus trachurus was sampled in an adjacent shallow coastal area. Variation of condition indices was more frequent at the week scale (sampling periods with fortnight intervals) than at the daily scale (consecutive days in each sampling period) in all species. Water temperature was correlated with biochemical indices, while salinity showed no effect, evidencing the influence of environmental short-term variation (temperature) on biochemical condition in natural populations. Yet, decreasing individual variability in fish condition was observed along the sampled weeks, resulting in a more homogeneous condition of populations, particularly for T. trachurus likely due to a more stable coastal environment. Biochemical indices proved to be sensitive to short-term environmental variability, despite species-specific responses.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Rita P Vasconcelos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal.
| | - Susana França
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Marisa I Batista
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Susanne Tanner
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
23
|
Xu H, Li C, Suklai P, Zeng Q, Chong R, Gong Z. Differential sensitivities to dioxin-like compounds PCB 126 and PeCDF between Tg(cyp1a:gfp) transgenic medaka and zebrafish larvae. CHEMOSPHERE 2018; 192:24-30. [PMID: 29091793 DOI: 10.1016/j.chemosphere.2017.10.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
It has been intensively documented that there are species-differences in the sensitivity to dioxin-like compounds (DLCs) in mammalian and avian. However, this issue is still unclear in fish. This study aimed at evaluating the differential sensitivities to DLCs in fish larvae. Here, larvae of Tg(cyp1a:gfp) medaka and Tg(cyp1a:gfp) zebrafish were tested with 2,3,7,8-Tetrachlorodibenzodioxin (TCDD), polychlorinated biphenyl 126 (PCB 126) and 2,3,4,7,8,-Pentachlorodibenzofuran (PeCDF). Comparative analyses were performed on induction of GFP fluorescence, expression of endogenous cyp1a mRNAs and EROD activity between the two species after exposure to these chemicals. We found that PCB 126 and PeCDF exposure at high concentrations induced strong GFP expression in multiple organs (liver, head kidney and gut) in both medaka and zebrafish larvae. Moreover, the expression of endogenous cyp1a mRNA was significantly elevated in the zebrafish larvae exposed to TCDD, PCB 126 and PeCDF at different concentrations. Likewise, almost all the exposure conditions could cause prominent elevation of EROD activity in the zebrafish larvae, while the EROD activities were just slightly elevated in the medaka larvae exposed to 1 nM and 0.5 nM of TCDD as well as to 1.5 nM and 15 nM of PeCDF, but not in the medaka larvae exposed to PCB 126. Taken together, zebrafish was proved to be more sensitive than medaka to PCB 126 and to PeCDF in this study. The findings suggested species-specific sensitivity to DLCs in fish and will facilitate choosing a sensitive and reliable fish model or tool to evaluate the risk of dioxins and DLCs exposure.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, 1 Xingyu Road, Liwan District, Guangzhou, 510380, China; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Caixia Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Pacharaporn Suklai
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qinghua Zeng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Raymond Chong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
24
|
de Moura FR, Brentegani KR, Gemelli A, Sinhorin AP, Sinhorin VDG. Oxidative stress in the hybrid fish jundiara (Leiarius marmoratus × Pseudoplatystoma reticulatum) exposed to Roundup Original ®. CHEMOSPHERE 2017; 185:445-451. [PMID: 28711796 DOI: 10.1016/j.chemosphere.2017.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the effects of Roundup Original®, a glyphosate-based herbicide, against biochemical parameters including thiobarbituric acid-reactive substances (TBARS), protein carbonyl, enzymatic and nonenzymatic antioxidant responses and acetylcholinesterase (AChE) of jundiara fish (Leiarius marmoratus × Pseudoplatystoma reticulatum) at a sublethal concentration of 1.357 mg L-1. Fish exposed to the herbicide for different periods (6-96 h) showed a significant increase of both hepatic and muscular TBARS and protein carbonyl. Enzymatic antioxidant activity was decreased in the liver and brain after 48 h of exposure. Glutathione-S-tranferase (GST) had its levels raised in the brain and gills, probably as a toxicity event response. Non protein thiols (GSH) demonstrated a reduction after 6 and 24 h of exposure in the hepatic tissue, followed by an increase at 48 and 96 h in the same tissue. GSH brain levels, however, increased only after 96 h. AChE activity in muscle decreased for all the times tested (26.5, 45, 38 and 14% for 6, 24, 48 and 96 h respectively), but only at 96 h (34%) in the brain. We found that Roundup Original® is able to trigger important changes in the biochemical parameters tested, showing it can be a potential threat for the health and survival of fish in the environment.
Collapse
Affiliation(s)
- Fernando Rafael de Moura
- Post-Graduation Program in Environmental Science, Integrated Laboratories for Research in Chemical Sciences (LIPEQ), Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil
| | - Kamila Ribeiro Brentegani
- Institute of Health Sciences, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil
| | - Aline Gemelli
- Institute of Health Sciences, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil
| | - Adilson Paulo Sinhorin
- Post-Graduation Program in Environmental Science, Integrated Laboratories for Research in Chemical Sciences (LIPEQ), Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil
| | - Valéria Dornelles Gindri Sinhorin
- Post-Graduation Program in Environmental Science, Integrated Laboratories for Research in Chemical Sciences (LIPEQ), Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil.
| |
Collapse
|