1
|
Carneiro KDS, Franchi LP, Rocha TL. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169483. [PMID: 38151128 DOI: 10.1016/j.scitotenv.2023.169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.
Collapse
Affiliation(s)
- Karla da Silva Carneiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Da Silva GH, Franqui LS, De Farias MA, De Castro VLSS, Byrne HJ, Martinez DST, Monteiro RTR, Casey A. TiO 2-MWCNT nanohybrid: Cytotoxicity, protein corona formation and cellular internalisation in RTG-2 fish cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106434. [PMID: 36870176 DOI: 10.1016/j.aquatox.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Collapse
Affiliation(s)
- Gabriela H Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil; Laboratory of Ecotoxicology and Biosafety, EMBRAPA Environment, Jaguariúna, São Paulo, Brazil; FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland.
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo A De Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil; Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Regina T R Monteiro
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Alan Casey
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
3
|
Vijayalakshmi V, Sadanandan B, Anjanapura RV. In vitro comparative cytotoxic assessment of pristine and carboxylic functionalized multiwalled carbon nanotubes on LN18 cells. J Biochem Mol Toxicol 2023; 37:e23283. [PMID: 36541368 DOI: 10.1002/jbt.23283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.
Collapse
Affiliation(s)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Raghu V Anjanapura
- Department of Chemistry, Jain Deemed-to-be University, Bengaluru, Karnataka, India
- Faculty of Allied Health Sciences, BLDE (Deemed-to-be University), Vijayapura, Karnataka, India
| |
Collapse
|
4
|
Siqueira PR, Souza JP, Estevão BM, Altei WF, Carmo TLL, Santos FA, Araújo HSS, Zucolotto V, Fernandes MN. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106199. [PMID: 35613511 DOI: 10.1016/j.aquatox.2022.106199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (rGO) are carbon-based nanomaterials that have a wide range of applicability. Therefore, it is expected that their residual traces reach the aquatic environment, accumulate, and interact with its different compartments and the biota living in them. The concentration- and time-dependency response to GO and rGO in aquatic organisms are still poorly known. In the present study, the effects of GO and rGO on zebrafish hepatocytes were investigated using in vitro assays performed with established liver cell lines from zebrafish (ZFL). GO and rGO nanosheets were applied on ZFL cells at a concentration range of 1-100 µg mL-1 for 24 and 72 h. The internalization of GO and rGO nanosheets, reactive oxygen species (ROS) production, cell viability, and cell death were evaluated. The internalization of GO increased as the concentrations of GO increased. The rGO nanosheets were smaller than GO nanosheets, and their hydrophobic characteristic favors their interaction with the cell membrane. However, the rGO nanosheets were not observed in the uptake assay. Exposure for 72 h was found to cause harmful effects in ZFL cells, causing higher ROS production in cells exposed to rGO and stopping cell replication. Nevertheless, GO did not stop cell replication, but exposed cells had higher levels of apoptosis and necrosis. After 72 h, both GO and rGO were toxic, but with different mechanisms of toxicity.
Collapse
Affiliation(s)
- Priscila Rodrigues Siqueira
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Jaqueline Pérola Souza
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Bianca Martins Estevão
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Wanessa Fernanda Altei
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil; Radiation Oncology Department, Barretos Cancer Hospital, SP, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, SP, Brazil
| | - Talita Laurie Lustosa Carmo
- Departamento de Ciências Fisiológicas, Universidade Federal do Amazonas, Av. Gen. Rodrigo Octávio, 6200, Campus Universitário, 69080-900 Manaus, Amazonas, Brazil
| | - Fabrício Aparecido Santos
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Heloísa Sobreiro Selistre Araújo
- Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Valtecir Zucolotto
- Institute of Physics, University of São Paulo, Av. Trabalhador São-Carlense, 400, 13566-970 São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Federal University of São Carlos, Rod. Washington Luiz Km 235, 13565-905 São Carlos, São Paulo, Brazil; Physiological Sciences Department, Federal University of São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
5
|
Zhao T, Ren B, Zhao Y, Chen H, Wang J, Li Y, Liang H, Li L, Liang H. Multi-walled carbon nanotubes impact on the enantioselective bioaccumulation and toxicity of the chiral insecticide bifenthrin to zebrafish (Danio rerio). CHEMOSPHERE 2022; 294:133690. [PMID: 35063547 DOI: 10.1016/j.chemosphere.2022.133690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of different multi-walled carbon nanotubes on the enantioselective bioaccumulation and toxicity of the chiral pesticide bifenthrin to zebrafish were investigated in this work. The results showed that MWCNTs and MWCNTs-COOH did not affect the preferential bioaccumulation of 1R-cis-BF in zebrafish following exposure to cis-BF enantiomers for 28 days, but which increased cis-BF accumulation amount by 1.03-1.48 times. Further research demonstrated that the genes related to immunity, endocrine activity and neurotoxicity showed enantioselective expression in different zebrafish tissues, and sex-specific differences were observed. The levels of c-fos, th, syn2a, 17β-hsd and cc-chem were expressed as 1.09-2.84 times higher in females and males treated with 1R-cis-BF than in the 1S-cis-BF-treated groups. However, in the presence of MWCNTs or MWCNTs-COOH, c-fos, th, syn2a, 17β-hsd and cc-chem levels were expressed as 1.53-14.92 times higher in females and males treated with 1S-cis-BF than in 1R-cis-BF-treated groups, which indicated that enantioselective expression was altered. The effects of different types of MWCNTs on the enantioselective bioaccumulation and toxicity of BF in zebrafish have little difference. In summary, the presence of MWCNTs or MWCNTs-COOH increased the impact of BF on zebrafish. Therefore, the risks posed by coexisting nanomaterials and chiral pesticides in aquatic environments should be considered.
Collapse
Affiliation(s)
- Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Ju Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, PR China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China.
| |
Collapse
|
6
|
Coppola F, Russo T, Soares AMVM, Marques PAAP, Polese G, Pereira E, Freitas R. The influence of salinity on the toxicity of remediated seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32967-32987. [PMID: 35022978 DOI: 10.1007/s11356-021-17745-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is one of the most hazardous pollutants, due to its toxicity, biological magnification and worldwide persistence in aquatic systems. Thus, new efficient nanotechnologies (e.g. graphene oxide functionalized with polyethyleneimine (GO-PEI)) have been developed to remove this metal from the water. Aquatic environments, in particular transitional systems, are also subjected to disturbances resulting from climate change, such as salinity shifts. Salinity is one of the most relevant factors that influences the distribution and survival of aquatic species such as mussels. To our knowledge, no studies assessed the ecotoxicological impairments induced in marine organisms exposed to remediate seawater (RSW) under different salinity levels. For this, the focus of the present study was to evaluate the effects of seawater previously contaminated with Hg and remediated with GO-PEI, using the species Mytilus galloprovincialis, maintained at three different salinities (30, 20 and 40). The results obtained demonstrated similar histopathological and metabolic alterations, oxidative stress and neurotoxicity in mussels under RSW treatment at stressful salinity conditions (20 and 40) in comparison to control salinity (30). On the other hand, the present findings revealed toxicological effects including cellular damage and histopathological impairments in mussels exposed to Hg contaminated seawater in comparison to non-contaminated ones, at each salinity level. Overall, these results confirm the high efficiency of GO-PEI to sorb Hg from water with no noticeable toxic effects even under different salinities, leading to consider it a promising eco-friendly approach to remediate contaminated water.
Collapse
Affiliation(s)
- Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Department of Mechanical Engineering & TEMA, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Souza IDC, Morozesk M, Siqueira P, Zini E, Galter IN, Moraes DAD, Matsumoto ST, Wunderlin DA, Elliott M, Fernandes MN. Metallic nanoparticle contamination from environmental atmospheric particulate matter in the last slab of the trophic chain: Nanocrystallography, subcellular localization and toxicity effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152685. [PMID: 34974021 DOI: 10.1016/j.scitotenv.2021.152685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric particulate material (PM) from mining and steel industries comprises several metallic contaminants. PM10 samples collected in a Brazilian region with a recognized influence of the steel and iron pelletizing industries were used to investigate metallic nanoparticle incorporation into human fibroblast cells (MRC-5). MRC-5 cells were exposed to 0 (control, ultrapure water), 2.5, 5, 10, 20 and 40 μg PM10 mL-1, for 24 h. Cytotoxic and genotoxic dose-response effects were observed on lysosome and DNA structure, and concentrations high as 20 and 40 μg PM10 mL-1 induced elevated cell death. Ultrastructure analyses showed aluminosilicate, iron, and the emerging metallic contaminants titanium, bismuth, and cerium nanoparticles were incorporated into lung cells, in which the nanocrystallography analysis indicated the bismuth as Bi2O3. All internalized metallic nanoparticles were free and unbound in the cytoplasm and nucleus thereby indicating bioavailability and potential interaction to biological processes and cellular structures. Pearson's correlation analysis showed Fe, Ni, Al, Cr, Pb and Hg as the main cytotoxic elements which are associated with the stainless steel production. The presence of internalized nanoparticles in human lung cells exposed to environmental atmospheric matter highlights the need for a greater effort by regulatory agencies to understand their potential damage and hence the need for future regulation, especially of emerging metallic contaminants.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Priscila Siqueira
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Enzo Zini
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Iasmini N Galter
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A de Moraes
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, SP, Brazil
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000 Córdoba, Argentina
| | - Michael Elliott
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK; International Estuarine & Coastal Specialists Ltd., Leven HU17 5LQ, UK
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905 São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Grzelak J, Gázquez J, Grayston A, Teles M, Herranz F, Roher N, Rosell A, Roig A, Gich M. Magnetic Mesoporous Silica Nanorods Loaded with Ceria and Functionalized with Fluorophores for Multimodal Imaging. ACS APPLIED NANO MATERIALS 2022; 5:2113-2125. [PMID: 35252779 PMCID: PMC8886853 DOI: 10.1021/acsanm.1c03837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/26/2022] [Indexed: 05/12/2023]
Abstract
Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 μm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 μg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.
Collapse
Affiliation(s)
- Jan Grzelak
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Jaume Gázquez
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Alba Grayston
- Neurovascular
Research Laboratory, Vall d’Hebron
Research Institute (VHIR), 08035, Barcelona, Catalonia, Spain
| | - Mariana Teles
- Institute
of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Fernando Herranz
- Instituto
de Química Médica (IQM), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Nerea Roher
- Institute
of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Anna Rosell
- Neurovascular
Research Laboratory, Vall d’Hebron
Research Institute (VHIR), 08035, Barcelona, Catalonia, Spain
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Martí Gich
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
9
|
Vijayalakshmi V, Sadanandan B, Venkataramanaiah Raghu A. Single walled carbon nanotubes in high concentrations is cytotoxic to the human neuronal cell LN18. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Li FJ, Surolia R, Li H, Wang Z, Liu G, Kulkarni T, Massicano AVF, Mobley JA, Mondal S, de Andrade JA, Coonrod SA, Thompson PR, Wille K, Lapi SE, Athar M, Thannickal VJ, Carter AB, Antony VB. Citrullinated vimentin mediates development and progression of lung fibrosis. Sci Transl Med 2021; 13:13/585/eaba2927. [PMID: 33731433 DOI: 10.1126/scitranslmed.aba2927] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)-dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and α-SMA. Cit-Vim activated NF-κB in a TLR4-dependent fashion and induced the production of active TGF-β1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2-/- and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ranu Surolia
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huashi Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zheng Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A de Andrade
- Vanderbilt Lung Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Keith Wille
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
11
|
Morozesk M, Franqui LS, Pinheiro FC, Nóbrega JA, Martinez DST, Fernandes MN. Effects of multiwalled carbon nanotubes co-exposure with cadmium on zebrafish cell line: Metal uptake and accumulation, oxidative stress, genotoxicity and cell cycle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110892. [PMID: 32593098 DOI: 10.1016/j.ecoenv.2020.110892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 05/07/2023]
Abstract
Carbon nanotubes presence in the environment increases every year because of exponential industrial production around the world. In aquatic environments, carbon nanotubes can interact with other pollutants based on their adsorbent surface chemistry properties. Heavy metal ions represent one of the biggest concerns in water resources nowadays due to anthropogenic activities, in which cadmium (Cd) is one of the most harmful metal for aquatic organisms. This study investigated the influence of two co-exposure protocols differing by the order of interaction of oxidized multiwalled carbon nanotubes (ox-MWCNT) with Cd in zebrafish liver cell line (ZFL). The ox-MWCNT was characterized, Cd content in culture medium and uptake by cells were quantified using ICP-MS and, the reactive oxygen species (ROS), the biotransformation enzymes activity of phase I and II as well as the antioxidants defenses and oxidative damage were analyzed. The effects on the cell cycle were investigated by flow cytometry and DNA damage by comet assay. The exposure to ox-MWCNT alone decreased the activity of catalase, glutathione peroxidase, and glutathione S-transferase and altered the cell cycle with a reduction of cells in the G2/M phase. Cd exposure alone decreased the activity of catalase and glutathione S-transferase, increased ROS, metallothionein, and lipid peroxidation content and causes genotoxicity in the cells. Despite different incubation protocol, the co-exposure ox-MWCNT-Cd increased the Cd content in ZFL cells after 24 h exposure, increased ROS production and DNA damage without differences between them. Our results showed the modulation of ox-MWCNT on Cd effects and contributed to future co-exposure toxicity investigations and nanosafety regulations involving carbon nanomaterials and aquatic pollutants.
Collapse
Affiliation(s)
- Mariana Morozesk
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos (UFSCar), Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil; Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Av., Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, Jd Nova Italia, 13484-332, Limeira, São Paulo, Brazil
| | - Fernanda C Pinheiro
- Chemical Department, Federal University of São Carlos (UFSCar), Washington Luiz Av., Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Joaquim A Nóbrega
- Chemical Department, Federal University of São Carlos (UFSCar), Washington Luiz Av., Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Diego S T Martinez
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, Jd Nova Italia, 13484-332, Limeira, São Paulo, Brazil.
| | - Marisa N Fernandes
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos (UFSCar), Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil; Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Av., Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
12
|
Dong CD, Tsai ML, Wang TH, Chang JH, Chen CW, Hung CM. Removal of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments by persulfate oxidation and determination of degradation product cytotoxicity based on HepG2 and ZF4 cell lines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34596-34605. [PMID: 30746626 DOI: 10.1007/s11356-019-04421-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the use of magnetite (Fe3O4), carbon black (CB), and Fe3O4-CB composites activated by persulfate (PS) at circumneutral pH to oxidize polycyclic aromatic hydrocarbons (PAHs) in marine sediments. In addition, the in vitro cytotoxic activity and apoptotic response of the obtained degradation products were investigated. Chemical analyses showed that the total PAH concentration was 26,263 ng/g for sediment samples from an industrial port area. Highly toxic BaP was the main contributor to the TEQ in sediments. Source analyses demonstrated that the PAHs in the sediment were derived from coal combustion. In this study, we found that the PS oxidation processes effectively degrade PAHs at concentration levels of 1.7 × 10-5 M at pH 6.0. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the cytotoxicity of the PAH degradation products before and after Fe3O4/PS, CB/PS, and Fe3O4-CB/PS oxidation treatment using a human hepatoma carcinoma cell line (HepG2) and a zebrafish (Danio rerio) embryonic cell line (ZF4). Each sample extract showed a marked dose-related response, with the cell viability reduced by 82% in the case of HepG2 and 58% in the case of ZF4 at 100 μg/mL after the Fe3O4-CB/PS process. The PAH degradation products had different effects on the cell morphologies of the two cell lines. The results suggested that the ZF4 cell model is more sensitive than HepG2 to the toxicity of the PAH samples.
Collapse
Affiliation(s)
- Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Tsing-Hai Wang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli, Taiwan
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
13
|
De Marchi L, Freitas R, Oliva M, Cuccaro A, Manzini C, Tardelli F, Andrade M, Costa M, Leite C, Morelli A, Chiellini F, Pretti C. Does salinity variation increase synergistic effects of triclosan and carbon nanotubes on Mytilus galloprovincialis? Responses on adult tissues and sperms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138837. [PMID: 32464379 DOI: 10.1016/j.scitotenv.2020.138837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The use of carbon nanotubes (CNTs) is rapidly increasing and several scientific studies have addressed their toxicological properties. However, only a very small number of publications have deal with the interaction between CNTs and other molecules. Triclosan (TCS) is an antibacterial agent used in personal care and household products. Commonly detected in aquatic ecosystems, there is a strong evidence that aquatic biota is sensitive to this compound. Aside from emergent pollutants, aquatic organisms are continuously subjected to abiotic variations including salinities. Therefore, the main goal of the present study was to better understand how physio-chemical interactions of CNTs with TCS under different salinity levels (37, 28 and 19) affect the mussel species Mytilus galloprovincialis through the evaluation of biochemical alterations on gametes (sperms) and adult tissues, providing more ecologically relevant information on organisms' responses. The results showed toxicological effects in terms of sperm metabolic activity and intracellular reactive oxygen species production as well as cellular damage and alteration of metabolic capacity at the adult's stage when exposed to both contaminants acting alone and in combination, under tested salinities. Moreover, when the mussels were exposed to the combination of both contaminants, they showed major toxic impacts on both assessed biological levels (adult tissues and sperms) especially under control salinity. This suggests that toxicity upon mixture exposure compared to single-substance exposure may impair mussels' populations, affecting reproduction success and growth.
Collapse
Affiliation(s)
- Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Alessia Cuccaro
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chiara Manzini
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Federica Tardelli
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Madalena Andrade
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| |
Collapse
|
14
|
Wang W, Zhao X, Ren X, Duan X. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105546. [PMID: 32574930 DOI: 10.1016/j.aquatox.2020.105546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In natural environments, organisms are often exposed to several environmental pollutants at any one time, and the potential effects of such co-exposures on human and environmental health are of considerable concern. It is thought that multi-walled carbon nanotubes (MWCNTs) may interact with other pollutants in aquatic systems and induce considerably different effects compared with exposure to a single contaminant. The objective of this study was to evaluate the potential acute combined effects of mixtures of MWCNTs and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on embryonic development stages, oxidative stress, apoptosis and DNA damage in developing zebrafish (Danio rerio). The embryos were treated with BDE-47 (5, 10, and 50 μg/L) and MWCNTs (50 mg/L), either combined or individually, for 96 h. Following exposure, BDE-47 induced significant acute toxicity, while the MWCNTs exhibited slight toxicity. When compared with BDE-47-only exposure, the inhibited growth induced by BDE-47 was weakened in the presence of MWCNTs. Similarly, the levels of oxidative stress biomarkers (reactive oxygen species, superoxide dismutase, catalase activities and malondialdehyde), apoptosis (apoptosis rate, caspase-3 and caspase-9 activities) and DNA damage (comet assay and comet olive tails) decreased in the presence of MWCNTs compared to those exposed to BDE-47 alone. These results demonstrate that MWCNTs can weaken the developmental inhibition, oxidative stress, apoptosis and DNA damage induced by BDE-47 in the early stages of zebrafish development.
Collapse
Affiliation(s)
- Weitong Wang
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| | - Xuesong Zhao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China.
| | - Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street 1301, Tiexi Dist, Siping, 136000, China.
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China
| |
Collapse
|
15
|
Li L, Zhang Z, Huang Y. Integrative transcriptome analysis and discovery of signaling pathways involved in the protective effects of curcumin against oxidative stress in tilapia hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105516. [PMID: 32485495 DOI: 10.1016/j.aquatox.2020.105516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Summer outbreaks of the hepatobiliary syndrome in fish impose a heavy burden on aquaculture in China. Curcumin is a polyphenol with antioxidant activity that has been used to protect the health of fish livers, but the mechanism underlying its protective effect is unclear. In this study, an in vitro model of hepatocyte oxidative damage in Oreochromis niloticus was established using H2O2. Treatment with 5 mM H2O2 for 2.5 h markedly reduced cell viability and antioxidant activity and elevated lactate dehydrogenase (LDH) activity, indicating conditions that can be used to establish an oxidative stress model. Under H2O2 stress, curcumin pretreatment significantly maintained cell viability, reduced malondialdehyde (MDA) levels, and increased superoxide dismutase (SOD) activity. RNA-seq results showed that acute H2O2 treatment resulted in minor changes in gene expression, whereas curcumin changed the expression profile and affected cytochrome P450 (Cyp 450), glutathione (GSH) metabolism, and the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Several critical antioxidant defense signaling pathways were identified, and altered expression was confirmed by q-PCR. These results indicate that curcumin might upregulate PPAR expression by increasing Cyp2J2 expression. Further experiments showed that curcumin can upregulate the Nrf2-Keap1 signaling pathway at the transcriptional level, and this upregulation can induce downstream defense genes, including glutamate cysteine ligase catalytic subunit(GCLC) and glutamate cysteine ligase modifier subunit (GCLM), and thereby promote GSH synthesis and the expression of related antioxidases. This study might shed light on the effects of curcumin on the prevention and alleviation of liver diseases in fish.
Collapse
Affiliation(s)
- Linming Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; College of Animal Sciences (College of Bee Sciences), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ziping Zhang
- College of Animal Sciences (College of Bee Sciences), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yifan Huang
- College of Animal Sciences (College of Bee Sciences), Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
16
|
da Silva NDG, Carneiro CEA, Campos EVR, de Oliveira JL, Risso WE, Fraceto LF, Zaia DAM, Martinez CBR. Interference of goethite in the effects of glyphosate and Roundup® on ZFL cell line. Toxicol In Vitro 2020; 65:104755. [PMID: 31881238 DOI: 10.1016/j.tiv.2019.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
Goethite (α-FeOOH) brings important perspectives in environmental remediation, as, due to its physicochemical properties, this iron oxide can adsorb a wide variety of compounds, including glyphosate. This study aimed to evaluate the effects of goethite nanoparticles (NPs), glyphosate (Gly), Roundup® (Rd), and co-exposures (Gly + NPs and Rd + NPs) on zebrafish liver cell line (ZFL). ZFL cells were exposed to NPs (1, 10, and 100 mg L-1), Gly (3.6 mg L-1), Rd (10 mg L-1), and co-exposures (Gly + NPs and Rd + NPs), or only to saline for 1, 6, and 12 h. Cell viability was assessed by Trypan blue, MTT, and neutral red assays. The generation of reactive oxygen species and total antioxidant capacity were also determined, while genotoxicity was quantified by the comet assay. Both NPs and Rd in isolation produced cytotoxic effects at 6 h and genotoxic effects at 1 and 6 h. Rd + NPs resulted in synergistic effects, intensifying the toxicity. Cells exposed to Gly did not present toxic effects and Gly + NPs resulted in the suppression of toxic effects observed for NPs. The presence of other components in Roundup® seems to favor its toxicity compared to the active ingredient. In conclusion, according to the in vitro model, the concentrations used were not safe for the ZFL lineage.
Collapse
Affiliation(s)
- Natara D G da Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Cristiane E A Carneiro
- Departamento de Química, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Estefânia V R Campos
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Jhones L de Oliveira
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Wagner E Risso
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Dimas A M Zaia
- Departamento de Química, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Cláudia B R Martinez
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil; Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil.
| |
Collapse
|
17
|
Mehta L, Kumari S, Singh RP. Carbon Nanotubes Modulate Activity of Cytotoxic Compounds via a Trojan Horse Mechanism. Chem Res Toxicol 2020; 33:1206-1214. [PMID: 32011864 DOI: 10.1021/acs.chemrestox.9b00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon nanotubes (CNTs) are an emerging drug delivery system, but their success is thwarted by potential toxicity concerns. In vitro and in vivo studies imply toxic potential of CNTs, but their potential to influence toxicity of coadministered compounds still remains elusive. Therefore, the present study was conducted to determine the effect of multiwalled CNTs (MWCNTs) on the toxicity of cytotoxic compounds in macrophage (RAW 264.7), lung epithelial (A549), and breast cancer (MCF-7) cell lines. The results suggest that hydrophilicity/lipophilicity of the compounds is a critical parameter. The correlation between log P and enhanced cytotoxic activity followed an inverted U-shaped curve and log P close to 1 exhibited the highest increase in cytotoxicity. Further, the increase in cytotoxicity of drug/MWCNT combinations was proportional to the degree of cellular uptake of MWCNTs. A mathematical model was developed and validated with a test set of compounds. These results suggest that MWCNTs act as a "Trojan horse" for increased intracellular delivery of drugs resulting in enhanced cytotoxic activity.
Collapse
Affiliation(s)
- Lokesh Mehta
- School of Pharmaceutical Sciences, Shoolini University, Solan (HP) 173212, India
| | - Shweta Kumari
- School of Pharmaceutical Sciences, Shoolini University, Solan (HP) 173212, India
| | - Raman Preet Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan (HP) 173212, India
| |
Collapse
|
18
|
Jiao Y, Tao Y, Yang Y, Diogene T, Yu H, He Z, Han W, Chen Z, Wu P, Zhang Y. Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113517. [PMID: 31761585 DOI: 10.1016/j.envpol.2019.113517] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Collapse
Affiliation(s)
- Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tuyiringire Diogene
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziqing He
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Dong Y, Chang Y, Gao H, León Anchustegui VA, Yu Q, Wang H, Liu JH, Wang S. Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions. Toxicol Res (Camb) 2019; 8:908-917. [PMID: 34055309 DOI: 10.1039/c9tx00146h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
The increasing applications of graphene oxide (GO) in bio-medicine, environment and other fields enhance the exposure possibility of human beings to GO. Studies have been performed to address the in vitro toxicity of GO; however, little information on the in vivo biological consequence of GO with other common disasters is available, especially when cells are co-exposed to GO and common metal ions. To explore the influence and possible mechanisms of such co-exposure scenarios, a series of tests of cell viability, membrane integrity, reactive oxygen species (ROS), cell morphology, and Cd2+ distribution, were conducted. The results showed that the synergistic toxic mechanisms of GO and Cd2+, initiated from the adhesion of GO on HeLa cells, and followed by the recruitment of Cd2+ ions around the cell membrane, impaired the membrane integrity, morphology and adhesion capability, and triggered cell toxicity. The synergistic toxic mechanism of GO and Cu2+ mainly correlated to ROS, while no obvious relationship with membrane integrity was observed. The findings are envisaged to facilitate the application of GO in biology and related fields.
Collapse
Affiliation(s)
- Yiyang Dong
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| | - Yulin Chang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| | - Haidi Gao
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| | - Victoria Arantza León Anchustegui
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| | - Qiang Yu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology , Shanghai University , Shanghai 200444 , China
| | - Jia-Hui Liu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260.,Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Shihui Wang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China . ; ; ; Tel: +86-10-64446260
| |
Collapse
|
20
|
Snyder RJ, Verhein KC, Vellers HL, Burkholder AB, Garantziotis S, Kleeberger SR. Multi-walled carbon nanotubes upregulate mitochondrial gene expression and trigger mitochondrial dysfunction in primary human bronchial epithelial cells. Nanotoxicology 2019; 13:1344-1361. [PMID: 31478767 DOI: 10.1080/17435390.2019.1655107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nanomaterials are a relatively new class of materials that acquire novel properties based on their reduced size. While these materials have widespread use in consumer products and industrial applications, the potential health risks associated with exposure to them remain to be fully characterized. Carbon nanotubes are among the most widely used nanomaterials and have high potential for human exposure by inhalation. These nanomaterials are known to penetrate the cell membrane and interact with intracellular molecules, resulting in a multitude of documented effects, including oxidative stress, genotoxicity, impaired metabolism, and apoptosis. While the capacity for carbon nanotubes to damage nuclear DNA has been established, the effect of exposure on mitochondrial DNA (mtDNA) is relatively unexplored. In this study, we investigated the potential of multi-walled carbon nanotubes (MWCNTs) to impair mitochondrial gene expression and function in human bronchial epithelial cells (BECs). Primary BECs were exposed to sub-cytotoxic doses (up to 3 μg/ml) of MWCNTs for 5 d and assessed for changes in expression of all mitochondrial protein-coding genes, heteroplasmies, and insertion/deletion mutations (indels). Exposed cells were also measured for cytotoxicity, metabolic function, mitochondrial abundance, and mitophagy. We found that MWCNTs upregulated mitochondrial gene expression, while significantly decreasing oxygen consumption rate and mitochondrial abundance. Confocal microscopy revealed induction of mitophagy by 2 hours of exposure. Mitochondrial DNA heteroplasmy and insertion/deletion mutations were not significantly affected by any treatment. We conclude that carbon nanotubes cause mitochondrial dysfunction that leads to mitophagy in exposed BECs via a mechanism unrelated to its reported genotoxicity.
Collapse
Affiliation(s)
- Ryan J Snyder
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | | | - Heather L Vellers
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Adam B Burkholder
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Stavros Garantziotis
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| |
Collapse
|
21
|
Xia T, Guo X, Lin Y, Xin B, Li S, Yan N, Zhu L. Aggregation of oxidized multi-walled carbon nanotubes: Interplay of nanomaterial surface O-functional groups and solution chemistry factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:921-929. [PMID: 31234258 DOI: 10.1016/j.envpol.2019.05.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The fast-growing production and application of carbon nanotube (CNT) materials in a variety of industrial products inevitably lead to their release to wastewater and surface water. CNT would experience oxidization in wastewater treatment plant due to the presence of large amount of disinfectants, such as H2O2 and O3, which in turn affects the environmental fates and risks of CNT. In this study, oxidized CNT materials (O-CNTs) were prepared by treating CNT with H2O2/UV and O3 (denoting as H2O2-CNT and O3-CNT, respectively). A variety of characterizations indicated that oxygen containing groups were generated on CNT surface upon the oxidation, and the O/C ratio increased in the order of pristine CNT < H2O2-CNT < O3-CNT. In the presence of Na+, K+ and Mg2+, the O-CNTs displayed better colloidal stability than the pristine CNT, and the stability increased with the oxidation degree (indicated by O/C ratio). This could be explained by the more negative surface charge and stronger hydrophilicity of the O-CNTs. Unexpectedly, in the presence of Ca2+, the most oxidized O3-CNT exhibited the poorest colloidal stability. The abundant carboxyl groups in O3-CNT provided effective binding sites for cation bridging effect through Ca2+ and led to stronger aggregation. Increasing pH was more favorable to disperse CNTs (both O-CNT and pristine CNT) in the presence of Na+, but much less effective in inhibiting the aggregation of O3-CNT in presence of Ca2+. This could be explained by the stronger cation bridging effect due to enhanced deprotonation the -COOH groups at higher pH conditions. The calculated Hamaker constants of the CNTs decreased with the oxidation degree, implying that there was lower van der Waals force between the O-CNTs. The Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation confirmed that O-CNTs had to overcome higher energy barrier and thus showed better colloidal stability than the pristine CNT in the presence of Na+.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yixuan Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Bo Xin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Ni Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
22
|
Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:363-377. [PMID: 30948072 DOI: 10.1016/j.msec.2019.02.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
Abstract
The interaction of single-layer graphene oxide (SLGO) and multi-layered graphene oxide (MLGO) with a cell culture medium (i.e. DMEM) was studied by evaluating fetal bovine serum (FBS) protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. SLGO and MLGO exhibited different colloidal behavior in the culture medium, which was visualized by cryogenic transmission electron microscopy in situ analysis. Exploring proteomics and bioinformatics tools, 394 and 290 proteins were identified on the SLGO and MLGO hard corona compositions, respectively. From this amount, 115 proteins were exclusively detected on the SLGO and merely 11 on MLGO. SLGO enriched FBS proteins involved in metabolic processes and signal transduction, while MLGO enriched proteins involved in cellular development/structure, and lipid transport/metabolic processes. Such a distinct corona profile is due to differences on surface chemistry, aggregation behavior and the surface area of GO materials. Hydrophilic interactions were found to play a greater role in protein adsorption by MLGO than SLGO. Our results point out implications for in vitro studies of graphene oxide materials concerning the effective dose delivered to cells and corona bioactivity. Finally, we demonstrated the importance of integrating conventional and modern techniques thoroughly to understand the GO-FBS complexes towards more precise, reliable and advanced in vitro nanotoxicity assessment.
Collapse
|