1
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Wang H, Poopal RK, Ren Z. Biological-based techniques for real-time water-quality studies: Assessment of non-invasive (swimming consistency and respiration) and toxicity (antioxidants) biomarkers of zebrafish. CHEMOSPHERE 2024; 352:141268. [PMID: 38246499 DOI: 10.1016/j.chemosphere.2024.141268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Swimming consistency and respiration of fish are recognized as the non-invasive stress biomarkers. Their alterations could directly indicate the presence of pollutants in the water ecosystem. Since these biomarkers are a routine process for fish, it is difficult to monitor their activity manually. For this reason, experts employ engineering technologies to create sensors that can monitor the regular activities of fish. Knowing the importance of these non-invasive stress biomarkers, we developed online biological behavior monitoring system-OBBMS and online biological respiratory response monitoring system-OBRRMS to monitor real-time swimming consistency and respiratory response of fish, respectively. We continuously monitored the swimming consistency and respiration (OCR, CER and RQ) of zebrafish (control and atrazine-treatments) for 7 days using our homemade real-time biological response monitoring systems. Furthermore, we analyzed oxidative stress indicators (SOD, CAT and POD) within the vital tissues (gills, brain and muscle) of zebrafish during stipulated sampling periods. The differences in the swimming consistency and respiratory rate of zebrafish between the control and atrazine treatments could be precisely differentiated on the real-time datasets of OBBMS and OBRRMS. The zebrafish exposed to atrazine toxin showed a concentration-dependent effect (hypoactivity). The OCR and CER were increased in the atrazine treated zebrafish. Both Treatment I and II received a negative response for RQ. Atrazine toxicity let to a rise in the levels of SOD, CAT and POD in the vital tissues of zebrafish. The continuous acquisition of fish signals is achieved which is one of the main merits of our OBBMS and OBRRMS. Additionally, no special data processing was done, the real-time data sets were directly used on statistical tools and the differences between the factors (groups, photoperiods, exposure periods and their interactions) were identified precisely. Hence, our OBBMS and OBRRMS could be a promising tool for biological response-based real-time water quality monitoring studies.
Collapse
Affiliation(s)
- Hainan Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
3
|
Qin L, Jian PA, Yi BJ, Ma XY, Lu WH, Li XN, Li JL. Effect of atrazine on testicular toxicity involves accommodative disorder of xenobiotic metabolizing enzymes system and testosterone synthesis in European quail (Coturnix coturnix). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115716. [PMID: 37992640 DOI: 10.1016/j.ecoenv.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Due to the wide use of atrazine (ATR), the concern has increased regarding the negative impact of ATR on reproduction. Nevertheless, the reproductive effects caused by different exposure concentrations and the severity of toxic damage are poorly understood. In organisms, ATR is metabolized and degraded through phase II enzyme systems, and changes in cytochrome P450 (CYP) enzymes may have a regulatory role in the harm of ATR. However, less information is available on the induction of CYPs by ATR in avian organisms, and even less on its effects on the testis. Birds are exposed to ATR mainly through food residues and contaminated water, the purpose of this study was to examine reproductive toxicity by different exposure concentrations and elaborate metabolic disorders caused by ATR in European quail (Coturnix coturnix). In this study, the quail were given ATR at 50 mg/kg, 250 mg/kg and 500 mg/kg by oral gavage for 45 days, and the testicular weight coefficients, histopathology and ultrastructure of testes, primary biochemical functions, sex steroid hormones, critical protein levels in the testosterone synthesis pathway, the expression of genes involved CYPs, gonad axis and nuclear receptors expression were investigated. Altogether, testicular coefficient decreased significantly in the high-dose group (1.22%) compared with the control group (3.03%) after 45 days of ATR exposure, and ATR is a potent CYP disruptor that acts through the NXRs and steroid receptor subfamily (APND, CAR, ERND and ERα) without a dose-dependent manner. Notably, ATR interfered with the homeostasis of hormones by triggering the expression of hormones on the gonad axis (LH and E2). These results suggest that exposure to ATR can cause testicular toxicity involving accommodative disorder of phase II enzyme and testosterone synthesis in European quail.
Collapse
Affiliation(s)
- Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei-Hong Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Salaro AL, Silva SB, Ferraz RB, Salinas Jiménez LG, Carneiro CLS, Quadros ASG, Machado JP, Freitas MB, Oliveira EE. Acute sublethal exposure to ethiprole impairs physiological and oxidative status in the Neotropical fish Astyanax altiparanae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122152. [PMID: 37414119 DOI: 10.1016/j.envpol.2023.122152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Ethiprole, a phenylpyrazole insecticide, has been increasingly used in the Neotropical region to control stink bug pests in soybean and maize fields. However, such abrupt increases in use may have unintended effects on non-target organisms, including those inhabiting freshwater ecosystems. Here, we evaluated the effects of acute (96 h) sublethal exposure to ethiprole (up to 180 μg/L, which is equivalent to 0.013% of the recommended field dose) on biomarkers of stress in the gills, liver, and muscle of the Neotropical fish Astyanax altiparanae. We further recorded potential ethiprole-induced effects on the structural histology of A. altiparanae gills and liver. Our results showed that ethiprole exposure increased glucose and cortisol levels in a concentration-dependent manner. Ethiprole-exposed fish also exhibited higher levels of malondialdehyde and greater activity of antioxidant enzymes, such as glutathione-S-transferase and catalase, in both gills and liver. Furthermore, ethiprole exposure led to increased catalase activity and carbonylated protein levels in muscle. Morphometric and pathological analyses of the gills revealed that increasing ethiprole concentration resulted in hyperemia and loss of integrity of the secondary lamellae. Similarly, histopathological analysis of the liver demonstrated higher prevalence of necrosis and inflammatory infiltrates with increasing ethiprole concentration. Altogether, our findings demonstrated that sublethal exposure to ethiprole can trigger a stress response in non-target fish species, which may lead to potential ecological and economic imbalances in Neotropical freshwater systems.
Collapse
Affiliation(s)
- Ana Lúcia Salaro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Stella B Silva
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Renato B Ferraz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luis G Salinas Jiménez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Cristiana L S Carneiro
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, 4450-208, Portugal
| | - Alessandro S G Quadros
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - João Paulo Machado
- Departamento de Medicina Veterinaria, Centro Universitário de Viçosa (UNIVIÇOSA), Viçosa, Minas Gerais, 36576-340, Brazil
| | - Mariella B Freitas
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Eugênio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
5
|
Santos KPED, Ferreira Silva I, Mano-Sousa BJ, Duarte-Almeida JM, Castro WVD, Azambuja Ribeiro RIMD, Santos HB, Thomé RG. Abamectin promotes behavior changes and liver injury in zebrafish. CHEMOSPHERE 2023; 311:136941. [PMID: 36272627 DOI: 10.1016/j.chemosphere.2022.136941] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The indiscriminate use of pesticides is a worldwide concern due to the environment contamination since it can cause deleterious effects to non-target organisms including the fishes. The effects of abamectin, a pesticide from the avermectin family, were evaluated in adult zebrafish (Danio rerio) after exposure to a commercial formula commonly used in Brazil. The animals were submitted to acute (96 h) and to a short-term chronic exposure (15 days) of distinct concentrations of abamectin. LC50 was determined and a histological study followed by an immunohistochemistry analysis for P-gp and HSP70 identification were performed on livers of the animals submitted to the acute and chronic treatment, respectively. Moreover, behavior patterns were observed daily in both trials. A LC50 value of 105.68 μg/L was determined. The histological analysis revealed a morphological alteration of the hepatocytes, glycogen accumulation, degeneration, and disorganization of the cytoplasm, and a pyknotic, irregular, and laterally located nuclei. The immunohistochemistry for HSP70 and P-gp showed strong staining in the hepatocytes of the control groups and progressive decrease as the concentration of abamectin increased. Changes were observed in body posture, movement around the aquarium, opercular activity, body color and search for food in the groups treated with abamectin. The results presented suggest that abamectin can affect the behavioral pattern of the animals, promote morphological changes, and decrease the expression of HSP70 and P-gp in zebrafish liver.
Collapse
Affiliation(s)
- Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Isabella Ferreira Silva
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Brayan Jonas Mano-Sousa
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Joaquim Maurício Duarte-Almeida
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Farmacognosia, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Whocely Victor de Castro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório Central Analítica, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Patologia Experimental, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Hélio Batista Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Laboratório de Processamento de Tecidos, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Ribeiro YM, Moreira DP, Weber AA, Sales CF, Melo RMC, Bazzoli N, Rizzo E, Paschoalini AL. Adverse effects of herbicides in freshwater Neotropical fish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106293. [PMID: 36148734 DOI: 10.1016/j.aquatox.2022.106293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Although herbicides have been developed to act on the physiological processes of plants, they are responsible for causing deleterious effects on animals. These chemical compounds are widely used throughout the world, but especially in countries that export agricultural products such as Central and South America, their use has increased in recent years. Aquatic environments are natural reservoirs of herbicides, which after being applied on crops, run off through the soil reaching rivers, lakes, and oceans. Fish are among the many organisms affected by the contamination of aquatic environments caused by herbicides. These animals play an important ecological role and are a major source of food for humans. However, few studies address the effects of herbicides on fish in this region. Thus, in the present review we discuss the morphophysiological and molecular consequences of herbicide exposure in Neotropical fish systems as well as how the environmental and land use characteristics in this region can influence the toxicity of these pollutants. A toxicity pathway framework was developed summarizing the mechanisms by which herbicides act and endpoints that need to be further investigated.
Collapse
Affiliation(s)
- Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | | | - Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brasil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
7
|
Lopes-Ferreira M, Maleski ALA, Balan-Lima L, Bernardo JTG, Hipolito LM, Seni-Silva AC, Batista-Filho J, Falcao MAP, Lima C. Impact of Pesticides on Human Health in the Last Six Years in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063198. [PMID: 35328887 PMCID: PMC8951416 DOI: 10.3390/ijerph19063198] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Every year, Brazil intensifies its activity in agriculture and, as a result, it has become one of the biggest consumers of pesticides in the world. The high rate of these substances raises environmental and human health concerns. Therefore, we collected papers from PubMed, Scopus, Scielo, and Web of Science databases, from 2015 to 2021. After a blind selection using the software Rayyan QCRI by two authors, 51 studies were included. Researchers from the South and the Southeast Brazilian regions contributed to most publications, from areas that concentrate agricultural commodity complexes. Among the pesticides described in the studies, insecticides, herbicides, and fungicides were the most frequent. The articles reported multiple toxic effects, particularly in rural workers. The results obtained can be used to direct policies to reduce the use of pesticides, and to protect the health of the population.
Collapse
Affiliation(s)
- Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Correspondence:
| | - Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Lucas Marques Hipolito
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Joao Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
- Post-Graduation Program of Toxinology, Butantan Institute, São Paulo 05503-009, Brazil
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500, Butantan, São Paulo 05503-009, Brazil; (A.L.A.M.); (L.B.-L.); (J.T.G.B.); (L.M.H.); (A.C.S.-S.); (J.B.-F.); (M.A.P.F.); (C.L.)
| |
Collapse
|
8
|
Ali MF, Soliman AA, Gewaily MS, Abdel-Kader TY, Amer AA, Zaineldin AI, Al-Asgah NA, Younis EM, Abdel-Warith AWA, Sewilam H, Dawood MA. Isatis phytogenic relieved atrazine induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia. Saudi J Biol Sci 2022; 29:190-196. [PMID: 35002408 PMCID: PMC8716907 DOI: 10.1016/j.sjbs.2021.08.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
The influence of herbicides causes health and economic loss, which requires innovative solutions to sustain the aquaculture industry. In this regard, dietary isatis is included in Nile tilapia diets to relieve atrazine (ATZ)-induced growth retardation, hepato-renal dysfunction, and oxidative stress. The first and second groups offered the control diet (control), while the third and fourth groups offered the isatis supplemented diet (1%). Meantime, half of the water was replaced and mixed with ATZ (1.39 mg/L) in the second and fourth groups for 30 days. The group of fish delivered isatis had significantly enhanced FBW, WG, and SGR, while fish intoxicated with ATZ had meaningfully impaired growth behavior (p < 0.05). Further, the FCR was improved by isatis, and ATZ resulted in the worst FCR among the groups. Interestingly fish fed isatis and exposed with ATZ (88.89%) had a higher survival rate than fish exposed with ATZ without isatis feeding, and both are lower than the control (97.78%) (p < 0.05). The histological structure in the isatis-treated groups showed distinguished enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed damage and inflammatory cell infiltration in the intestinal mucosa with separation of lining epithelium. Generally, fish fed isatis and intoxicated with ATZ had lower uric acid, urea, creatinine, ALT, and AST and higher total protein, globulin, and albumin than fish exposed with ATZ without feeding with isatis (p < 0.05). Markedly, fish-fed isatis had the highest SOD, CAT, GPx, and the lowest MDA level compared to the other groups (p < 0.05). Meanwhile, fish exposed with ATZ had the worst SOD, CAT, GPx, and the highest MDA level compared to the other groups (p < 0.05). In summary, dietary isatis relieved ATZ induced growth retardation, hepato-renal dysfunction, and oxidative stress in Nile tilapia.
Collapse
Affiliation(s)
- Mohamed F. Ali
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Ali A. Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Taheya Y. Abdel-Kader
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Asem A. Amer
- Central Laboratory for Aquaculture Research, Abbassa, Sharkia, Sakha Aquaculture Research Unit, Kafrelsheikh, Egypt
| | - Amr I. Zaineldin
- Animal Health Research Institute (AHRI-DOKI), Agriculture Research Center, Kafrelsheikh 33511, Egypt
| | - Nasser A. Al-Asgah
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Abdel-Wahab A. Abdel-Warith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hani Sewilam
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
9
|
Dang M, Nørregaard R, Sonne C, Bach L, Stride M, Jantawongsri K, Nowak B. Splenic and renal melanomacrophage centers in shorthorn sculpins (Myoxocephalus scorpius) in Nuuk harbor, West Greenland. Polar Biol 2021. [DOI: 10.1007/s00300-021-02934-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Chen J, Liu J, Wu S, Liu W, Xia Y, Zhao J, Yang Y, Wang Y, Peng Y, Zhao S. Atrazine Promoted Epithelial Ovarian Cancer Cells Proliferation and Metastasis by Inducing Low Dose Reactive Oxygen Species (ROS). IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2623. [PMID: 34435054 PMCID: PMC8358173 DOI: 10.30498/ijb.2021.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Atrazine (ATZ) is a triazine herbicide that is widely used in agriculture and has been detected in surface and underground water. Recently, laboratory and epidemiological research
have found that the bioaccumulation of ATZ in the environment leads to biotoxicity in the human immune and endocrine systems and results in tumor development. Objective: To investigate the effects of ATZ exposure on epithelial ovarian cancer (EOC) cells and elucidate the potential mechanisms governing these effects. Materials and Methods: The human EOC cell lines Skov3 and A2780 were used in this study to explore the effects and mechanisms of ATZ exposure on EOC. The mouse embryonic osteoblastic
precursor MC3T3-E1 cells served as the control cells to determine the effects of ATZ on cancer cell lines. After exposure to ATZ, the MTT assay, flow cytometry,
the colony formation assay, immunohistochemical staining, the cell scratch assay, and the Transwell assay were used to evaluate the proliferative activity, invasion,
and migration capabilities of EOC cell lines. Moreover, flow cytometry was also applied to detect the level of reactive oxygen species (ROS) in these two EOC cell lines,
as well as the MC3T3-E1 cells. To further illustrate the underlying mechanisms governing the effect of ATZ on EOC, real-time PCR and Western blotting were employed to assess
the transcription and the expression level of Stat3 signaling pathway-related genes in Skov3 and MC3T3-E1 cells. Results: The results showed that following ATZ treatment, the cell proliferation, migration, and invasion potencies of Skov3 and A2780 cells were increased compared to those of the
control group. Meanwhile, the ROS levels of EOC and MC3T3-E1 cells were notably elevated after ATZ treatment. In Skov3 cells, the expression levels of p53 and p21 were downregulated,
while those of Cyclin E, vascular endothelial growth factor (VEGF), matrix metallopeptidase 2 (MMP2), MMP9, signal transducers and activators of transcription 3 (Stat3),
and p-Stat3 were upregulated by ATZ treatment. In MC3T3-E1 cells, however, ATZ treatment did not affect the level of p53/p21 mRNA compared to the control groups.
Moreover, there was no significant change in the expression levels of Stat3 and p-Stat3 in MC3T3-E1 cells exposed to ATZ. This phenomenon was observed while the
proliferation rate was enhanced in MC3T3-E1 cells by ATZ. Conclusions: The results of this study suggest that ATZ effectively promotes the proliferation and metastasis of EOC cells through the Stat3 signaling pathway by inducing low levels of ROS.
Additionally, although ATZ might also induce proliferative potential in normal cells, the mechanisms governing its effects in these cells might be different from those in EOC cells.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shan Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei Liu
- Research Center of Circular Economy and Pollution Prevention and Control, Jilin Academy of Environmental Sciences, Changchun 130021, China
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanrong Yang
- Tongji University, School of Medicine, Shanghai 200092, China
| | - Yuan Wang
- School of nursing, Jilin University, Changchun 130021, China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
11
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
12
|
Macêdo AKS, de Melo Costa P, Salgado MAR, de Ribeiro RIMA, Dos Santos HB, Thomé RG. Can the exposure system adopted influence the results of the atrazine toxicity in hepatic tissue of fish? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:512-521. [PMID: 33949805 DOI: 10.1002/jez.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 11/06/2022]
Abstract
The widespread use of atrazine, a herbicide used to control weeds, has contributed to the increased contamination of aquatic environments. To assess the toxicological effects of a xenobiotic on a nontarget organism in the laboratory, different models of toxicological exposure systems have been widely used. Therefore, the aim of this study was to evaluate and compare the action of sublethal concentrations of atrazine on the hepatic histology of Oreochromis niloticus, considering two models of exposure: static (where atrazine was only added once) and semi-static (where atrazine was periodically renewed). Fish were exposed to a concentration of 2 ppm atrazine for 15 days, which was verified by high-performance liquid chromatography. The livers were stained with hematoxylin and eosin and histopathological data were collected. In addition, they were submitted to immunohistochemistry for inducible nitric oxide synthase (iNOS). A maximum variation of 45% (static) and 12.5% (semi-static) was observed between the observed and nominal atrazine concentration. Nuclear and cytoplasmic changes were observed in both experimental models. Hepatocytes from the livers of the static system showed a degenerative appearance, while in the semi-static system, intense cytoplasmic vacuolization and necrosis were observed. iNOS positive cells were identified only in macrophages in the hepatocytes of fish in the semi-static system. These results directly showed how the choice of exposure system can influence the results of toxicological tests. However, future analysis investigating the by-products and nitrogen products should be carried out since the histopathological findings revealed the possibility of these compounds serving as secondary contamination routes.
Collapse
Affiliation(s)
- Anderson K S Macêdo
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Pauliane de Melo Costa
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Mariana A R Salgado
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Rosy I M A de Ribeiro
- Laboratório de Patologia Experimental - LAPATEX, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Hélio B Dos Santos
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| | - Ralph G Thomé
- Laboratório de Processamento de Tecidos - LAPROTEC, Universidade Federal de São João Del Rei, Divinópolis, Minas Gerais, Brazil
| |
Collapse
|
13
|
Destro ALF, Silva SB, Gregório KP, de Oliveira JM, Lozi AA, Zuanon JAS, Salaro AL, da Matta SLP, Gonçalves RV, Freitas MB. Effects of subchronic exposure to environmentally relevant concentrations of the herbicide atrazine in the Neotropical fish Astyanax altiparanae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111601. [PMID: 33396121 DOI: 10.1016/j.ecoenv.2020.111601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Atrazine (ATZ) is among the most widely used herbicides in the world, and yet it has a potential to contaminate aquatic environments due to pesticide leaching from agricultural areas. In the Neotropical region, studies about the effects of this herbicide in native aquatic wildlife is scarce.Our study aimed at investigating the effects of a 30-day exposure to a commercial atrazine formulation on oxidative stress parameters, histopathology in testis and liver, and hormone levels in males and female of yellow-tailed tetra fish (Astyanax altiparanae). Adults were exposed to low but environmentally relevant concentrations of atrazine as follows: 0 (CTL-control), 0.5 (ATZ0.5), 1 (ATZ1), 2 (ATZ2) and 10 (ATZ10) μg/L. Our results showed decreased GST activity in gills in all groups of exposed animals and increased CAT activity in gills from the ATZ10 group. In the liver, there was an increase in lipid peroxidation in fish from ATZ1 and ATZ2 groups. Histological analysis of the liver showed increased percentage of sinusoid capillaries in ATZ2 fish, increased vascular congestion in ATZ1 and increased leukocyte infiltration in the ATZ10 group. Hepatocyte diameter analysis revealed a decrease in cell size in all groups exposed to ATZ, and a decrease in hepatocyte nucleus diameter in ATZ1, ATZ2 and ATZ10 groups. Endocrine parameters did not show significant changes following ATZ exposure, although an increase of triiodothyronine/thyroxine (T3/T4) ratio was observed in ATZ2 fish. Our results provide evidence that even low, environmentally relevant concentrations of ATZ produced oxidative damage and histological alterations in adult yellow-tailed tetra.
Collapse
Affiliation(s)
- Ana Luiza F Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Stella B Silva
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kemilli P Gregório
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Amanda A Lozi
- Department of Cellular and structural Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | - Ana Lúcia Salaro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | - Mariella B Freitas
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
14
|
El Euony OI, Elblehi SS, Abdel-Latif HM, Abdel-Daim MM, El-Sayed YS. Modulatory role of dietary Thymus vulgaris essential oil and Bacillus subtilis against thiamethoxam-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23108-23128. [PMID: 32333347 DOI: 10.1007/s11356-020-08588-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Thiamethoxam (TMX) is a widely used neonicotinoid insecticide for its effective potential for controlling insects from the agricultural field, which might induce toxicity to the aquatic biota. In this study, the role of the probiotic Bacillus subtilis (BS) and a phytogenic oil extract of Thymus vulgaris essential oil (TVEO) in the modulation of thiamethoxam (TMX)-induced hepatorenal damage, oxidative stress, and immunotoxicity in African catfish (Clarias garipenus) has been evaluated. Fish were subjected to TMX (5 mg L-1) and fed with a diet either supplemented with BS (1000 ppm) or TVEO (500 ppm). The experiment lasted for 1 month. By the end of the experiment, blood was sampled for biochemical analysis and fish organs and tissues were collected for histopathological and immunohistochemical examinations. Results showed a substantial increase of serum markers of hepatorenal damage such as the activities of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) and levels of blood urea nitrogen (BUN) and creatinine with an obvious decrease of serum protein levels in the TMX-intoxicated group. Also, there was a considerable increase in malondialdehyde (MDA) levels and glutathione-S-transferase (GST) activity. TMX remarkably suppressed serum lysozyme activity, respiratory burst activity, and phagocytosis with a conspicuous elevation of the levels of interleukins (interleukin-1 beta (IL-1β) and interleukin-6 IL-6). The histopathological findings showed that TMX induced degenerative changes and necrosis in the gills, liver, head kidneys, and spleen of the intoxicated fish. Significant alterations of frequency, size, and area percentage of melanomacrophage centers (MMCs), decreased splenocyte proliferation, and increased number of caspase-3 immunopositive cells were also observed. Contrariwise, the concurrent supplementation of either BS or TVEO in the diets of catfish partially mitigated both the histopathological and histomorphometric lesions of the examined tissues. Correspondingly, they improved the counts of proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive splenocytes. In conclusion, the co-administration of either BS or TVEO in catfish diets partially diminished the toxic impacts of TMX. Nonetheless, the inclusion of TVEO in the diets of catfish elicited better protection than BS against TMX-induced toxicity in response to its potential anti-inflammatory, antioxidant, anti-apoptotic, and immune-stimulant effects.
Collapse
Affiliation(s)
- Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Hany M Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Beheira, 22758, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
15
|
Neamat‐Allah ANF, Abd El Hakim Y, Mahmoud EA. Alleviating effects of β‐glucan in Oreochromis niloticuson growth performance, immune reactions, antioxidant, transcriptomics disorders and resistance to Aeromonas sobriacaused by atrazine. AQUACULTURE RESEARCH 2020; 51:1801-1812. [DOI: 10.1111/are.14529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 09/02/2023]
Affiliation(s)
- Ahmed N. F. Neamat‐Allah
- Department of Clinical Pathology Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| | - Yasser Abd El Hakim
- Department of Fish Diseases and Management Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| | - Essam A. Mahmoud
- Department of Clinical Pathology Faculty of Veterinary Medicine Zagazig University Zagazig City Sharkia Province Egypt
| |
Collapse
|
16
|
de Albuquerque FP, de Oliveira JL, Moschini-Carlos V, Fraceto LF. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134868. [PMID: 31706089 DOI: 10.1016/j.scitotenv.2019.134868] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Atrazine is a pre- and post-emergence herbicide used to control weeds in many crops. It was introduced in the late 1950s, but its use has been controversial because of its high potential for environmental contamination. In agriculture, the implementation of sustainable practices can help in reducing the adverse effects atrazine. This review addresses aspects related to the impacts of atrazine in the environment, with focus on its effects on aquatic species, as well as the potential use of nanoencapsulation to decrease the impacts of atrazine. The application of atrazine leads to its dispersal beyond the immediate area, with possible contamination of soils, sediments, plantations, pastures, public supply reservoirs, groundwater, streams, lakes, rivers, seas, and even glaciers. In aquatic ecosystems, atrazine can alter the biota, consequently interfering in the food chains of many species, including benthic organisms. Nanoformulations loaded with atrazine have been developed as a way to reduce the adverse impacts of this herbicide in aquatic and terrestrial ecosystems. Ecotoxicological bioassays have shown that this nanoformulations can improve the targeted delivery of the active ingredient, resulting in decreased dosages to obtain the same effects as conventional formulations. However, more detailed analyses of the ecotoxicological potential of atrazine-based nanoherbicides need to be performed with representative species of different ecosystems.
Collapse
Affiliation(s)
- Felícia Pereira de Albuquerque
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil.
| | - Jhones Luiz de Oliveira
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil
| | - Viviane Moschini-Carlos
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Av. Três de março, 511, Alto da Boa Vista, 18087-180 Sorocaba, Brazil.
| |
Collapse
|
17
|
Liu Y, Zhu K, Su M, Zhu H, Lu J, Wang Y, Dong J, Qin H, Wang Y, Zhang Y. Influence of solution pH on degradation of atrazine during UV and UV/H 2O 2 oxidation: kinetics, mechanism, and degradation pathways. RSC Adv 2019; 9:35847-35861. [PMID: 35528078 PMCID: PMC9074411 DOI: 10.1039/c9ra05747a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
The kinetics, degradation mechanism and degradation pathways of atrazine (ATZ) during sole-UV and UV/H2O2 processes under various pH conditions were investigated; the effects of UV irradiation time and H2O2 dose were also evaluated. A higher reaction rate was observed under neutral pH conditions in the UV only process. For the UV/H2O2 process, a higher reaction rate was observed in acidic solution and the degradation rate of ATZ firstly increased with the increase of concentration of H2O2 and then decreased when H2O2 concentration exceeded 5 mg L-1. In addition, qualitative and quantitative analyses of oxidation intermediates of ATZ in aqueous solution during the sole-UV and UV/H2O2 processes were conducted using UPLC-ESI-MS/MS. Ten kinds of dechlorinated intermediates were detected during sole-UV treatment under all five pH conditions. In contrast, the speciation of intermediates in the UV/H2O2 process varied dramatically with solution pH. Based on the analysis of ATZ oxidation intermediates, ATZ degradation pathways under different pH conditions were proposed for the sole-UV and UV/H2O2 processes. The results showed that the main degradation reactions of ATZ included dechlorination-hydroxylation, dechlorination-dealkylation, de-alkylation, deamination-hydroxylation, alkylic-oxidation of lateral chains, dehydrogenation-olefination, dechlorination-hydrogenation, dechlorination-methoxylation and dehydroxylation.
Collapse
Affiliation(s)
- Yucan Liu
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Kai Zhu
- College of Resources and Environment, Linyi University Linyi 276000 China
| | - Miaomiao Su
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Huayu Zhu
- School of Chemistry & Chemical Engineering, Linyi University Linyi 276000 China
| | - Jianbo Lu
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Yuxia Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power Zhengzhou 450046 China
| | - Jinkun Dong
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Hao Qin
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Ying Wang
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| | - Yan Zhang
- School of Civil Engineering, Yantai University Yantai 264005 China +86 0535 6902606
| |
Collapse
|
18
|
Wang Y, Shen L, Gong Z, Pan J, Zheng X, Xue J. Analytical methods to analyze pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1009-1024. [PMID: 31233653 DOI: 10.1002/wer.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Presented in this paper is an annual review of literatures published in 2018 on topics relating to analytical methods for pesticides and herbicides. According to the different techniques, this review is divided into six sections, including extraction methods; chromatographic or mass spectrometric techniques; electrochemical techniques; spectrophotometric techniques; chemiluminescence and fluorescence methods; and biochemical assays. PRACTITIONER POINTS: Totally 134 relevant research articles are summarized. The review is divided into six parts according to the techniques. Chromatographic and mass spectrometric methods are the most widely used.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhanyang Gong
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jian Pan
- Environmental Technology Innovation Center of Jiande, Hangzhou, Zhejiang Province, China
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. CHEMOSPHERE 2019; 227:425-434. [PMID: 31003127 DOI: 10.1016/j.chemosphere.2019.04.088] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pesticide pollution residues have become increasingly common health hazards over the last several decades because of the wide use of pesticides. The gastrointestinal tract is the first physical and biological barrier to contaminated food and is therefore the first exposure site. Interestingly, a number of studies have shown that the gut microbiota plays a key role in the toxicity of pesticides and has a profound relationship with environmental animal and human health. For instance, intake of the pesticide of chlorpyrifos can promote obesity and insulin resistance through influencing gut and gut microbiota of mice. In this review, we discussed the possible effects of different kinds of widely used pesticides on the gut microbiota in different experimental models and analyzed their possible subsequent effects on the health of the host. More and more studies indicated that the gut microbiota of animals played a very important role in pesticides-induced toxicity, suggesting that gut micriobita was also the unintended recipient of pesticides. We hope that more attention can focus on the relationship between pesticides, gut microbiota and environmental health risk assessment in near future.
Collapse
Affiliation(s)
- Xianling Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
20
|
Wang S, Zhang Q, Zheng S, Chen M, Zhao F, Xu S. Atrazine exposure triggers common carp neutrophil apoptosis via the CYP450s/ROS pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 84:551-557. [PMID: 30308298 DOI: 10.1016/j.fsi.2018.10.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/16/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Due to the excessive pursuit of crop yields and the abuse of herbicides, water pollution caused by atrazine (ATR) has become one of the most severe environmental issues threatening the health of fish and aquatic animals. However, no detailed report has been conducted on the mechanisms of ATR immunotoxicity in fish neutrophils. To investigate these mechanism, we exposed peripheral blood neutrophils to 25 μg/ml atrazine for 1, 2, and 3 h. The results showed that ATR induced the mRNA expression of CYPs enzymes (CYP1A1, CYP1B1, CYP1C and CYP3A138), which increased the ROS levels, and inhibited the SOD and CAT activities, GSH content and spurred the accumulation of MDA. Additionally, a significant decline in the OXPHOS, Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities of mitochondria was observed after ATR exposure. Concurrently, ATR activated Caspase3 and induced apoptosis by changing the expression of mitochondrial pathway factors (Bcl-2, BAX, Caspase9) and death receptor pathway major genes (TNF-α, TNFR, Fas, FasL, and Caspase8). The results reported here indicate that the oxidative stress and mitochondrial damage caused by ATR metabolism may play a crucial role in the apoptosis of carp neutrophils, and enrich the immunotoxicological mechanisms of ATR observed in fish.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fuqing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Veterinary and Husbandry, Liao ning Agricultural Technical College, Ying kou, Liao ning, 115009, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|